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1. Friday, September 7

1.1. Preliminaries. This course is an introduction to proof-based mathematics. All the
texts for the class (indicated on the course website) are freely available online, and there
will be recommended readings for each class. There will be two homework assignments
a week (excluding midterms and vacations), for a total of 20. There is no requirement for
this class.

The four topics of this class are

(i) proofs,
(ii) set theory,

(iii) group theory,
(iv) analysis/topology.

Broadly,

(i) proofs are going to be the foundation of this class and are going to be our main
tool;

(ii) set theory is a broad topic, but some of the results we will be concerned with con-
cern sizes of infinity. While this may sound confusing, it has a precise formulation.
It tells us (among other things) that the “size” of the natural numbers is less than
that of the real numbers (which we write |N| < |R|);

(iii) group theory is the study of objects like the Rubik cube, i.e. objects on which one
can performs certain types of transformations. These transformations need to be
reversible, and the order matters. The first time you will see the definition of a
group you may not realize how the Rubik cube is an example, but it will become
clearer as we delve more into the subejct;

(iv) analysis is the study of functions, sequences, and more generally the real line (i.e.
the real numbers seen as a line) and its subsets.

1.2. Proofs. There are some differences between math and other branches of science.
For example, in contrast with disciplines such as physics, it is not enough to show that
something works in some suitable cases to convince someone that what we are saying is
true. Instead, we require very clear, unambiguous explanations of why something is true.
This is what a proof is for. There are several ways to learn what a proof is. One is to just
do a lot of proofs (and we will do this throughout the semester). But it is also useful to
find out what a proof is by answering the question: what is not a proof ?

The sheet you have been handed today provides an example of a flawed proof. It has
several positive aspects: it is pretty, it is (too) simple, and it has plenty of pictures (which
can be useful to illustrate what is going on). On the other hand, we see that without
pictures it would be very hard to figure out what it says. In fact, the phrasing is very
ambiguous. For example, what does it mean to remove corners? It could mean a lot of
things, but this is not specified in the text. In a way, it is specified in the pictures, but in
this case the pictures are misleading. In fact, the tricky part is that here the pictures are
not only used to illustrate, but also to explain. The most controversial step in this “proof”
is certainly the one where the process is carried out to infinity. Infinity is a very tricy
object; even in an analysis class, it takes a whole course to learn what it means to take
something “to infinity.” In this case, however, the hard step is not emphasized at all. In
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correct proofs, the hardest steps are the ones we spend most time on, and that’s because
they are the hardest steps.

Student question: This looks similar to the limit of a Riemann sum. Why does it not
work?

Answer: There are many differences. For example, in this case we are talking about a
length. At any rate, the mathematical problem in the proof is not quite the reason why
we are discussing it. In fact, it is hard to discuss the mathematical content of this “proof”
precisely because it is not clear. We might say that the mathematical flaw in this proof is
that it claims that a certain limit commutes with integration, which is not the case. But
this is beyond the scope of the discusison.

In the end, we have seen that even if a proof is wrong it can still have educational value:
in this case, analyzing a wrong proof made us think about what a proof should be like.

It is now time to start exploring simple proofs. We are going to start by proving that
the sum of two even integers is even. For example, 2 + 6 = 8, an even number. Similarly,
4+6 = 10, again an even number. You might think this is completely obvious, but we still
should have a proof, just in case a skeptic comes around and does not believe you. Let us
now work out a proof for the following statement:

Theorem 1.1. The sum of two even integers is even.

A proof should rely on common ground shared with your target audience. In this case, the
target audience is a student of this class–potentially a very skeptical one! In this case, we
can assume that the target audience shares the knowledge of the terms in the following
definition:

Definition 1.2. An integer x is even if x can be expressed as the product of 2 and an
integer, i.e. x = 2a for some integer a.

We see that the first part of the definition is in simple English, while in the latter part
(the one after “i.e.”) we reformulate it using mathematical symbols. Also note that we
usually emphasize the term to be defined.

Student question: Are the two parts of the definition equivalent, and is one preferrable
to the other when writing a proof?

Answer: Yes, although sometimes you might prefer the one with more mathematical
symbols for clarity.

Student question: Why are we justified in proving things this way (e.g. talking about
integers this way)?

Answer: Another necessary component of a proof is that everyone agrees with its un-
derlying logic. We usually use our judgement to establish whether or not this is the case.
In this case, for example, we can safely assume that the logic is clear.

Now we have defined our terms with words whose meaning everyone agrees on, and
we can start our proof:

Proof. Take two arbitrary even integers x and y. By definition, x = 2a and y = 2b for some
integers a and b. Therefore

x+ y = 2a+ 2b = 2(a+ b)
5



and so x+y = 2cwhere c = a+b is also an integers. Therefore x+y is even by definition. �
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2. Monday, September 10

2.1. Proof strategies. We will start by introducing some terminology.
A definition is an unambiguous explanation of a word or phrase. For example:

Definition 2.1. An integer x is even if x = 2a for some integer a.

Definition 2.2. An integer x is odd if x = 2b+ 1 for some integer b.

A theorem is a statement that has been proved to be true. For example,

Theorem 2.3. The sum of two even integers is even.

Theorem 2.4. The series

1 +
1
2

+
1
3

+ · · · =
∞∑
n=1

1
n

diverges

Theorem 2.5. Any differentiable function is continuous.

Theorem 2.6. The area of a circle of radius r is πr2.

There are synonims of theorems, namely corollary, lemma, and proposition. These
have a slightly different use than theorem, but the mathematical meaning is the same–
they are statements that have been proven to be true.

A proof is a written verification that a theorem is true. There are several kind of proofs.

2.1.1. Direct proof. We use this kind of proof to prove something of the form

If P , then Q.

We call P the hypothesis, and Q the conclusion. An example of the above is the state-
ment

If x and y are even, then x+ y is even.

In this case, P is the sentence “x and y are even,” and Q is “x+ y is even.”
We shall now see how to prove such a statement by using a direct proof.

Theorem 2.7. If x and y are even, then x+ y is even.

Proof.
7



A direct proof always starts by assuming the
hypothesis. We therefore start as follows:

Assume x and y are even.
At this point, we expand the definitions in-
volved in the statement.

Since x is even, x = 2a for some integer a
(by definition of even). Similarly, y = 2b for
some integer b.

The reason why we are expanding the defini-
tion is that we want to go from P to Q. Since
we already know the end goal of this proof
(namely, concluding that Q) it is always a
good idea to expand while keeping in mind Q.
In particular, we can look at Q and reverse-
engineer the process by compressing back to
the definitions, as follows:

Thus x + y = 2a+ 2b = 2(a+ b). This means
that x+ y = 2c, where c = a+ b is an integer,
and therefore x+ y is even by definition.

�

Student question: In the above proof, do we not have to prove that c is also an integer?
Answer: The fact that the sum of two integers is an integer is one of the basic facts we

ca always assume in a proof. If we really wanted to be careful we would want to start
from the very axiom of the integers and work from there.

Student question: Is an axiom a theorem?
Answer: I haven’t talked about axioms yet, but an axiom is something which is assumed

to be true.
The statement “if P then Q” is not the same as “if Q then P .” For example, we know

that if 1 = 2, then 0 = 0 (this is the basic logical fact that anything follows from a contra-
diction). However, swapping hypothesis and conclusion yields that if 0 = 0, then 1 = 2,
which is false. Similarly, we can consider our theorem and swap P and Q to get that if
x+ y is even, then x and y are even, which is false (they could be both odd).

Another proof strategy is proof by cases.

2.1.2. Proof by cases. Consider the theorem

Theorem 2.8. If n is a natural number, then

1 + (−1)n(2n− 1)

is a multiple of 4.

Let’s see what happens if we attempt a direct proof.

Direct proof. Assume n is a natural number. . . . Thus

1 + (−1)n(2n− 1) = 4k

for some integer k. Therefore 1 + (−1)n(2n− 1) is a multiple of 4. �
8



What could we do in the middle? As a part of our draft work, we might start by listing
some cases:

• for n = 0: 1 + 2 · 0− 1 = 0;
• for n = 1: 1 + (−1) · (2 · 1− 1) = 0;
• for n = 2: 1 + 1 · (2 · 2− 1).

We see that a pattern emerges that has to do with whether or not n is even. We can then
divide the proof in two cases, the one where n is even and the one where it is odd.

What could we do in the middle? As a part of our draft work, we might start by listing
some cases:

Direct proof. Assume n is a natural number.
Case 1: n is even.
. . .
Thus

1 + (−1)n(2n− 1) = 4k

for some integer k. Therefore 1 + (−1)n(2n− 1) is a multiple of 4.
Case 2: n is odd.
. . .
Thus

1 + (−1)n(2n− 1) = 4k

for some integer k. Therefore 1 + (−1)n(2n− 1) is a multiple of 4.
�

What goes in the blanks now? A crucial fact is to prove that (−1)n is 1 when n is even
and −1 when n is odd. To prove this, we see that

(−1)2a =
(
(−1)2

)
a = 1a = 1

and

(−1)2b+1 = (−1)
(
(−1)2

)b
= −1.

We are now ready to complete the proof.

Direct proof. Assume n is a natural number.
Case 1: n is even.
If n is even, then n = 2a for some integer a. Then

(−1)n =
(
(−1)2

)a
= 1a = 1

and therefore

1 + (−1)n (2n− 1) = 1 + (2 · (2a)− 1) = 4a.

Thus

1 + (−1)n(2n− 1) = 4k

for some integer k. Therefore 1 + (−1)n(2n− 1) is a multiple of 4.
Case 2: n is odd.
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We can write n = 2b+ 1 for some integer b. Then

1 + (−1)n (2n− 1) = 1− (2 · (2b+ 1)− 1) = 4b.

Thus

1 + (−1)n(2n− 1) = 4k

for some integer k. Therefore 1 + (−1)n(2n− 1) is a multiple of 4.
�

A third strategy is a proof by contrapositive.

2.1.3. Proof by contrapositive. We saw earlier that the statement “if P , then Q” is not the
same as “if Q, then P .” However, “if P , then Q” is equivalent to “if not Q, then not P .”
The latter form is called the contrapositive of the original statement. We also write “not
Q” as “∼Q” and we denote implication by a bold right arrow, as in “∼Q⇒∼ P .”

For an example of a proof by contrapositive, consider the following example:

Theorem 2.9. If xy is odd, then both x and y are odd.

If we attempted to use a direct proof, we would soon find out that it does not work.
This is a sign that we might benefit from using the contrapositive. Such a proof would
look as follows:

Proof by contrapositive. The first step is to negate Q, and assume its negation:
Assume that at least one of x or y is even.
Student question: Does this mean that they could both be even?
Answer: Yes. The original form of Q can be reformlated as

Q: x is odd and y is odd.

Therefore its negation is

∼Q: (not x is odd) or (not y is odd),

that is to say, x is even or y is even. It is important to note that in math we are more precise
than when speaking everyday English; in particular, in math “or” is always inclusive
(meaning that both sides can be true), whereas this might not be true in some English
sentences. A good resource to learn more about logical negation in math is Chapter 2 of
the text by Hammack.

Student question: In a contrapositive proof can one also use the strategy of proof by
cases?

Answer: Yes. Contrapositive proof is usually only the first step, and one usually proceed
by direct proof or proof by cases.
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Going back to our proof, we note that we just
assumed ∼ Q. At this point, it looks like we
should use cases, and consider separately the
cases when only one is even and when both
are.

Case 1. x is even. In this case, x = 2a and
therefore xy = 2ay = 2c where c = ay is an
integer. Therefore xy is even.

Now we note that any other case is very simi-
lar to this one, and we can say this in the next
step.

Case 2. y is even. Completely similar to case
1.

The above is an example of invoking no loss
of generality. This is a piece of mathematical
jargon, and as a rule one should use it only
when no doubt arises.

�

The last strategy we are going to discuss is proof by contradiction.

2.1.4. Proof by contradiction. In this case, to prove P we assume∼ P and derive somtething
false. By doing so, we show that ∼ P cannot be true and therefore P must be true. For
example:

Definition 2.10. A real number is rational if

x =
a
b

where a and b are integersand b , 0.

Theorem 2.11.
√

2 is not rational.

To prove this by direct proof would be very hard, since we cannot check all rational
numbers. Therefore, we prove this by contradiction.

Proof. Suppose
√

2 is rational. Then
√

2 = a/b for some integers a,b with b , 0. We assume
that we chose a,b such that they have no common divisor, i.e. the fraction is reduced. By
squaring both sides,

2 = a2/b2

and therefore 2b2 = a2. We are now going to show that both of them are even, which
mean that a/b was not reduced in the first place. We know for sure that a2 is even (by
definition). Therefore a is even (left as an exercise–if the square of an integer is even then
the integer itself is even). This means that a = 2k for some integer k, and therefore

2b2 = a2 = 4k2,

which means that b2 = 2k2. By the same argument as above, b is even, which leads to a
contradiction. �

11



This was a bit fast, so it is recommended that you go over it on your own.
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3. Friday, September 14

3.1. More on proofs. The last thing we did last time was proving that
√

2 is irrational.
This is the hardest theorem we’ve seen so far. Legend has it that when Pythagoras discov-
ered this fact he kept it secret since it clashed with Pythagorean beliefs.

We will now see another example of a proof by contradiction.

Theorem 3.1. There are infinitely many prime numbers.

Definition 3.2. An integer x divides an integer y if y = ax for some integer a. We also say
that y is a multiple of x.

Definition 3.3. A natural number n is prime if n ≥ 2 and the only positive divisors of n
are 1 and n.

Example 3.4. Example of prime numbers are 2, 3, 5, 7, 11, 13, and so on.

Does the above list continue forever? The answer is yes (Theorem 3.1).

Proof of Theorem 3.1. Assume for a contradiction that there are only finitely many primes.
We list all of them as p1,p2, . . . ,pn. Consider now the number

a = p1p2 · · ·pn + 1.

a has at least one prime divisor q. In fact, either a is prime, in which case q = a, or it is
not prime, in which case it has another divisor d such that 1 < d < a. So a = d · b for some
integer b, and 1 < b < a. We can now repeat the above step with d,b in place of a until you
reach a prime divisor.

(We are waving our hands a little bit here because we really need a proof technique that
we have not seen yet, but the idea is that this procedure always works because each step
yields a number which is smaller than the original; we will prove this more rigorously
this time.)

Since q dividese a, a = qb for some integer b. So

p1p2 · · ·pn + 1 = a = qb,

and since q is prime, q = pk for some k. So

p1 · · ·pn + 1 = pkb.

Since pk is a factor in p1 · · ·pk−1pkpk+1 · · ·pn, we can divide both sides of the above equation
by pk to get

p1 · · ·pk−1pk+1 · · ·pn +
1
pk

= b.

After subtracting p1 · · ·pk−1pk+1 · · ·pn from both sides, we get that

1
pk

= b − p1 · · ·pk−1pk+1 · · ·pn.

However, the right hand side is an integer (since it is obtained by subtracting two inte-
gers), while the left hand side is not, since pk > 1. This is a contradiction.

�
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3.2. If and only if. We saw that a statement of the form
If P , then Q

is not the same as
If Q, then P .

The latter is called the converse of the former. If both P ⇒Q and Q→ P are true, we say
P if and only if Q,

which is also written “P ⇔Q” or “P iff Q.”

Example 3.5.

Theorem 3.6. x is an odd integer if and only if x2 is an odd integer.

Proof. First we prove that if x is odd then x2 is odd.
Assume x is odd. Then x = 2a+ 1 for some integer a. Then

x2 =(2a+ 1)2

=4a2 + 4a+ 1
=2c+ 1

for some c.
Second, we prove that if x2 is odd then x is odd.
We prove the contrapositive, namely that if x is even then x2 is even.
Assume x is even. Then x = 2b for some integer b. Thus

x2 =4b2

=2(2b2)

and so x2 is even. �

3.3. For all/There exists. Another way to write
If x and y are even then x+ y is even

is
For all even integers x and y, x+ y is even.

Another example of such a statement is
For all irrationals x and y, x+ y is irrational.

This is a false statement. Sometimes in math we are asked to disprove false statement.
But how do we prove that something isn’t true? It means proving the negation of the
statement. In other words, to disprove a statement P we have to prove not P .

What is
not (for all x R(x))?

There are many ways to write down such a negation, but one of these is
There exists x not R(x).

For example,
not for all leaves x x is green

is the same as
14



there exists a leaf x x is not green,

i.e. there is a nongreen leaf. Therefore to disprove

for all irrationals x and y, x+ y is irrational

we must prove

there exists irrationals x and y such that x+ y is rational.

Bonus question: what is

not there exists x R(x)?

The answer is

for no x, R(x),

i.e.

for all x not R(x).

To prove a statement of the form “there exists . . . ,” one thing we can do is finding an
example.

Example 3.7.

Theorem 3.8. There is an even prime number n

Proof. Take n = 2. �

Example 3.9.

Theorem 3.10. For all real numbers x, there exists a real number y such that x < y.
How do we write this statement in the form “if P , then Q?” One way is

If x is a real number, then there exists a real number y such that x < y.

Now that we have the statement in this form, we can prove it using a direct proof.

Proof. Assume x is a real number. Take y = x+ 1. Then x < x+ 1 = y. �

WARNING: A statement of the form “for all x there exists y . . .” is not the same as
“there exists y such that for all x . . . .”

Example 3.11. Consider the statement

There exists a real number y such that for all x, x < y.

This is obtained from Theorem 3.10 by using the procedure you have been warned about.
It is a false statement, and it is directly disproved by Theorem 3.10 itself.

Example 3.12. To say that “for every door, there is a key that opens it” is not the same as
saying that “there is a key that opens every door.”

Consider now the following theorem:

Theorem 3.13. There exists irrational numbers x and y such that xy is rational.

We are now going to give a non-constructive proof, i.e. a proof that does not involve
finding an example.

15



Proof. Consider the number
√

2
√

2
. Either it is rational or it is irrational.

Case 1:
√

2
√

2
is rational. Take x =

√
2 and y =

√
2.

Case 2:
√

2
√

2
is irrational. Take x =

√
2
√

2
and y =

√
2. Then

xy =
(√

2
√

2
)√2

=
√

2
√

2·
√

2
=
√

2
2

= 2

which is rational.
In both cases we found x and y such that xy is irrational. �
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4. Monday, September 17

4.1. Mathematical induction. Mathematical induction is a very important example of
a proof technique. The word “induction” is used by philosopher in a different way, but
in math it denotes a very rigorous method of proving something. Last time we proved
that there are infinitely many primes. At some point in the proof we claimed that every
natural number n ≥ 2 has a prime divisor. This was a sub-claim of the proof, but it was
not an obvious one and we kind of swept it under the rug. The idea of the proof was that
if n is prime then we are done, and if not we can write n as n = ab for integers a,b with
1 < a < n and 1 < b < n. If a is prime, we are done. If not, we can write it as the product of
two smaller numbers, and keep going. Intuitively, any time we use arguments that rely
on phrases like “keep going” and “and so on,” we can use induction to make the proof
precise. Let’s see induction at work.

Theorem 4.1. Any natural number is either even or odd.

(As a note, there is a debate as to whether natural numbers include 0. In this class we
will define natural number to omit 0, and use the term non-negative integers otherwise.)

There are several ways to prove this, but it is not so easy to prove it directly. The idea
of the proof is as follows: 1 is odd, 2 is even, 3 is odd, . . . and so on. In general, if n is
even, then n+ 1 is odd, and if n is odd, then n+ 1 is even. We now want to formalize what
we mean by “and so on.” Induction relies on the fact that if a property is valid for 1, and
whenever it is valid for n it is also valid for n + 1, then it must be valid for all numbers.
The setup is as follows:

(1) We have a statement Sn about a natural number n (like “n is either even or odd”)
(2) We know that

(a) S1 is true (this is sometimes called the base case), and that
(b) if Sn is true, then Sn+1 is true (this is sometimes called the inductive step).

The principle/axiom of mathematical induction states that if (1) and (2) hold, then Sn
is true for all n.

The idea of why this must hold is that if (1) and (2) hold, then in particular we know
S1 implies S2, and S2 implies S3, and so on. This can be thought of by picturing each
Sn as a domino piece, with S1 being the first one and Sn+1 being after Sn. In this picture
induction states that all the pieces are going to fall once the first falls.

Student question: Can this method be applied for other sets of numbers, for example
rational numbers?

Answer: Rational numbers are a bit tricky. Induction may be applied to natural num-
bers greater than some numbers n. However, if we consider integers we see that there is
a problem in where the starting point is. The same problem applies to rational numbers.
There are ways to circumvent this (for example by indicating a correspondence between
the naturals and the rationals), however.

We now prove Theorem 4.1.

Proof of Theorem 4.1. We prove by mathematical induction on the natural number n ≥ 1
the statement

Sn: n is either even or odd.
17



Base case: If n = 1 then n is odd (since 1 = 2 · 0 + 1), so n is either even or odd. So S1
holds.

Inductive step: Assume n is a natural number and Sn holds. Thus n is either even or
odd. We consider the two cases separately.

• If n is even, then n+ 1 is odd (as seen in class).
• If n is odd, then n+ 1 is even (as seen in class).

Thus n+ 1 is either even or odd.
Student question: How do we know that two cases exhaust all the possibility?
Answer: The fact that we only have two cases here is a property of this particular state-

ment. We could have a statement in which more work needs to be done (for example,
proving that the remainder of division by 3 is either 0, 1, or 2).

Therefore Sn+1 holds. By the principle of mathematical induction, Sn is true for all
natural numbers. �

We will now consider another example.

Theorem 4.2. For all natural numbers n we have that

0 + 1 + 2 + · · ·+n =
n(n+ 1)

2
.

One way to see it is to see that we can regroup the terms in the sum as (0 +n) + (1 + (n−
1))+(2+(n−2))+ · · · = n+n+n+ · · · and counting how many terms there are (this depends
on the parity of n).

A useful way to denote summation is sigma notation, where we indicate a sum of the
form f (0) + f (1) + · · ·+ f (n) as

n∑
i=0

f (i).

In particular, Theorem 4.2 states that
n∑
i=0

i =
n(n+ 1)

2
.

We are now ready to prove our theorem.

Proof of Theorem 4.2. We prove by induction on the non-negative integer n ≥ 0 the state-
ment

Sn :
n∑
i=0

i =
n(n+ 1)

2
.

Base case: Assume n = 0. Then
∑n
i=0 i = 0 and n(n+ 1)/2 = 0, so that S0 holds.

Inductive step: Assume n is a non-negative integer and Sn holds. Thus
n∑
i=0

i =
n(n+ 1)

2
.
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Then
n+1∑
i=0

i =0 + 1 + 2 + · · ·+n+ (n+ 1)

=

 n∑
i=0

i

+ (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) by Sn (the inductive hypothesis)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
Thus

n+1∑
i=0

=
(n+ 1)(n+ 2)

2
.

Therefore Sn+1 holds.
By the principle of mathematical induction, Sn is true for all non=negative integers

n. �

Student question: It looks like the two steps are very different: in the base case you have
to prove that Sn works for n = 1, whereas in the inductive step you don’t need to prove
that Sn is true for a given n, but it is enough to just assume it. Is this correct?

Answer: This is correct–the two steps of a proof by induction are very different.
Let us now go back to our initial theorem.

Theorem 4.3. Any natural number n ≥ 2 has a prime divisor.

If we proved our proof by induction, our inductive step would need to snow that n+ 1
has a prime divisor based on the assumption that n does. However, we see that this is not
practical. In fact, we would rather prefer to know that (n+ 1)/2, (n+ 2)/3 and so on have
prime divisors (whenever they are integers). In particular, it would be great to be able to
assume that Sk is true for all k such that 1 ≤ k ≤ n. This is called the principle of strong
induction. The setup is as follows:

Assume that
(1) S1 is true
(2) If Sm is true for all m < n.

Then Sn is true.
We are now ready to prove Theorem 4.3.
Student question: How can we think of strong induction in terms of the domino picture?
Answer: The domino picture is useful only as an intuition aid–numbers are not exactly

like domino pieces. In any case, we can think of strong induction as saying that if all
domino pieces before the nth one have fallen, then n too will fall.

At any rate, if you are ever in doubt about whether to use induction or strong induction,
use strong induction.
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Student question: Does normal induction imply strong induction?
Answer: Yes.

primedivisor. We prove by strong induction the statement

Sn: n can be written as a product of primes.

Base case: If n = 2, then 2 is prime, so n is a product of one prime. Therefore S2 is true.
Inductive step: Assume n ≥ 3, and assume that Sm holds for all m < n such that 2 ≤ m.

If n is prime, we are done. If not, we can write n = ab for a,b integers such that 1 < a < n
and 1 < b < n. By Sa, a is a product of primes, i.e. a = p1 · · ·pk for primes p1, . . . ,pk. By Sb,
b = q1 · · ·q` for primes q1, . . . , q`. Therefore

n =ab
=p1 · · ·pk · q1 · · ·q`.

So n is a product of primes. Thus Sn is true. By induction, Sn is true for all n. �

Student question: Where do you prove that Sm is true for all m < n?
Answer: We don’t need to prove this; we just need to assume it.
An interesting exercise is to prove that given n points on a circle (where n ≥ 3), the sum

of the interior angles is (n− 2)180◦.
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5. Friday, September 21

Last time we left with the following puzzle:
Prove that given n points on a circle (where n ≥ 3), the sum of the interior angles is

(n− 2)180◦.
A way to do it is to use induction. The base case for n = 3 is known. We now assume

that it is true for n points. We now look at n + 1 points, ordered counterclockwise. We
then draw a line between point 1 and point n. The resulting figure is the union

1

n+ 1
n

a.

1

n+ 1
nb.

1

n+ 1
n

c.

of an n-gon (in blue) and a triangle (in green). By the induction hypothesis we know that
the sum of the angles of the n-gon is equal to 180(n − 2), whereas that of the triangle is
equal to 180. Therefore the total sum is equal to the sum of these two, which is equal to
180(n− 1) = 180((n+ 1)− 2). Thus the claim is proved by induction.

5.1. Sets. Sets do not have a precise defition, but we can say that a set is a collection of
(mathematical) things. For example, {1,8,3,7} is a set. Order does not matter in a set, and
thus the former set is the same as {8,7,1,3}. Two sets are the same when they have the
same elements. There are some special sets:

• the empty set, denoted by ∅, is the set that cointains no elements;
• the set of natural numbers N = {1,2,3,4, . . . };
• the integers Z = {. . . ,−2,−1,0,1,2, . . . };
• the rationals Q;
• the reals R.

These are sets that come up a lot and therefore are reserved a special notation.
If x is an element of A we write x ∈ A. For example,
• 1 ∈N;
• −1 <N;
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• π ∈R;
•
√

2 <Q;
• x < ∅ for any x.

For a finite set A we define |A| as the cardinality of A, i.e. the number of elements of A.
For example, |∅| = 0 and | {1,3} | = 2.

Sets don’t have to contain numbers. For example, the set V = {a,e, i,o,u} consisting of
vowels in the English language is a set; so is the set B = {T ,F} contain true or false, the set
E = {{0,1} , {1}} consisting of some sets, or even a mixed set of the form {{1} ,π,a}.

As a warning, note that {∅} , ∅. In the homework you are going to see the set P (A)
called the power set of A and defined as the set of all subsets of A. However, we still have
not defined what a subset is.

Definition 5.1. Given two sets A and B we say that A is the subset of B, written A ⊆ B, if
every element of A is an element of B.

For example, {1} ⊆ {1,π}, and ∅ ⊆ A for all sets A.
Note that we usually don’t think about the set of all sets, since it can lead to paradoxes

(Russel’s paradox).
Now that we have the definition of a set we see that the power set of {1,2} is the set

P ({1,2}) = {∅, {1} , {2} , {1,2}} .
A useful case is to find a formula for the size of the power set of a set with n elements.

5.2. Set builder notation. We now have a limited notation for some special sets, such as
the integers. However, consider the case where we might want to define the set E of even
integers. Then the notation would look as follows:

E ={ 2n︸︷︷︸
expression

|n ∈Z︸︷︷︸
rule

}

= {. . . ,−4,−2,0,2,4, . . . }
=“the set of all objects of the form

2n, for some integer n”

= {x ∈Z|x = 2n for some integer n} .
For example, consider the set S = {3k + 1|k ∈N}. We could also write this as S = {4,7,10,14, . . . }.
On the other hand, the set {1,3,5,7, . . . } can also be written as {2n+ 1|n ∈Z and n ≥ 0}, or
even just {x ∈N|x is odd}.

5.3. Operations on sets.

Definition 5.2. Given two sets, we define their union as

A∪B = {x|x ∈ A or x ∈ B}
= the set of things in A or in B,

and their intersection as

A∩B = {x|x ∈ A and x ∈ B}
= set of things in both A and B.
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For example,

N∪ {0} = {0,1,2,3, . . . }

{1,2} ∪ {2} = {1,2}

{1,2,4} ∩ {2,5,9} = {2}

∅ ∩ {5,6} =∅

∅∪ {5,6} = {5,6} .

Definition 5.3. Given sets A and B we define their difference as

A−B = {x|x ∈ A and x < B} .

For example, {1,5} − {5,3} = {1}.

Definition 5.4. Given sets A and U , we define the complement of A with respect to U ,
written Ac or A, is the set U −A.

For example, if A is the set of even integers andU = Z then Ac is the set of odd integers.
However, if U = R we have that Ac = { odd integers }∪ (R−Z). Thus the complement of a
set really depends on two sets. The set U is usually called the universal set.

For finite unions and intersection, we can use shorthand notations such as

{1} ∪ {2} {3} ∪ · · · =
⋃
n∈N
{n}

(−1,1)∩
(
−1

2
,
1
2

)
∩

(
−1

3
,
1
3

)
∩ · · · =

⋂
n∈N

(
−1
n
,
1
n

)
.

In general, our sets need not be indexed by natural numbers, but we can have something
as ⋃

i∈I
Ai ,

meaning the set of elements x that are in some Ai , and analogously the set⋂
i∈I
Ai

of elements that are in all the Ai ’s.

5.4. Proving things about sets. One of the most common things in proving things about
sets is to prove that a certain element belongs to a set. To see how to do so we need to go
back to the definition of A. For example, consider if we wanted to prove that

x ∈ {y ∈Z : there is n ∈N with y = 5n+ 1} .
To do this, we have to prove that

• x ∈Z, and
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• There is n ∈N with x = 5n+ 1.
Another common procedure is to prove that A ⊆ B for two sets A,B. To do so we must

prove that if x ∈ A, then x ∈ B. A direct proof of this would start by assuming that x ∈ A
and concluding that x ∈ B.

A related thing is to prove that A = B, for which we first prove that A ⊆ B and then that
B ⊆ A.

An example of a theorem about sets is the following:

Theorem 5.5. For sets A,B,C, we have that

A∪ (B∩C) = (A∪B)∩ (A∪C) .

Proof. We first prove

A∪ (B∩C) ⊆ (A∪B)∩ (A∪C).

Assume that x ∈ A∪(B∩C). Then x ∈ A or x ∈ B∩C. We can address these cases separately.
If x ∈ A, then x ∈ A∪B and x ∈ A∪C. So x ∈ (A∪B)∩ (A∪C).
If x ∈ B∩C, then x ∈ B and x ∈ C and therefore x ∈ (A∪B) and x ∈ (A∪C), which implies

that x ∈ (A∪B)∩ (A∪C). Therefore

A∪ (B∩C) ⊆ (A∪B)∩ (A∪C).

The rest of the proof (the reverse inclusion) is left as an exercise. �
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6. Monday, September 24

6.1. Relations. Last time we discussed sets, which are unordered collections of objects.
Today we will study relations. We will see that relations are going to be defined as or-
dered pairs, i.e. lists of two things in which the order does matter. Examples of oder
pairs include (1,2), (1,1), (a,b), (∅, {∅}), (red, black), and so on. In particular, (1,2) , (2,1).
Beyond ordered pairs, we can also look at n-tuples, which are ordered collections of n
elements. For example, (1,2,π) is a triple (3-tuple). Also note that (1,2,2) , (1,2) whereas
in the case of sets {1,2,2} = {1,2}.

We can also consider sets that are collections of ordered pairs, such as the set {(1,2), (1,1)}.
In particular, the following is an important example of such a set:

Definition 6.1. The cartesian product of two sets A and B (written A×B) is the set

A×B = {(a,b)|a ∈ A,b ∈ B}
= set of all pairs with first component

= in A and second component in B.

Example 6.2. We see that

{0,1} × {1,3,4} = {(0,1), (1,1), (0,3), (1,3), (0,4), (1,4)} .

Example 6.3. Another example that you might be familiar with is R
2 = R ×R, which is

the set of all points in the plane. We can also look at R3 = R ×R ×R, which is the set of
points in 3-d space.

What do relations have to do with order? Relations are ways to relate two objects. For
example an order < on a set tells us if two elements are related with respect to some order.
The same goes for =, and set membership ∈, subset inclusion ⊂, functions y = f (x), and
so on.

Student question: Are operations (addition, multiplication) relations?
Answer: That’s a good question. Operations are similarly to relations, but have more

than two arguments (some inputs and some outputs).
We now want to work with the general theory of relations. If we had to explain order

to some alien that had no concept no order, how would we do it? One way is to just
introduce a symbol, such as <, and specify what pairs can go at the sides of the symbol.
For example, given the set {4,3,1,2} we can introduce the symbol < and specify that 1 <
2,1 < 3,1 < 4,2 < 3,2 < 4,3 < 4. This works for all relations: we can always specify pairs of
elements that satisfy a certain relation (namely look at the set of all such pairs), and that’s
enough to specify what the relation is. For example, in our case order is given by the set

<= {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)} .

We could do the same with relations such as ,, which would yield the set

,= {(1,2), (1,3), (2,1), . . . } .

We are going to use this as our definition of relation.

Definition 6.4. A relation on a set A is a subset R of A×A. We write xRy if (x,y) ∈ R and
x 6 Ry if (x,y) < R.
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Student question: How can we draw relations, for example ,?
Answer: We can draw arrows between related elements. Therefore the relation ,would

connect all the elements but there would be no arrows from an element to itself. We can
also draw it in terms of the cartesian product. Given the usual picture of the cartesian
product, the relation , consist of all the elements but those on the diagonal.

Example 6.5. Consider the set {1,2,3} and the relation {(1,3), (3,1), (2,2), (1,1), (3,3)}. If
we draw this we see that it connects odd numbers to odd numbers and even numbers to
even numbers. Therefore xSy if x and y have the same parity.

In any case, relations need not have a definite meaning, and they need not be necessar-
ily about numbers. The set A = {1,2,∅} with the relation R = {(1,∅), (2,1), (1,2)} does not
have any apparent meaning to it, although it is still a relation.

Student question: So a relation is just an ordered set of pairs?
Answer: A relation is an unordered set. It does not matter what order you list related

pairs.
Student question: Can a relation have more than two arguments?
Answer: Although we are only looking as binary relations, we can define n-ary relations

with n arguments.
When we discussed relations earlier we mentioned relations such as ∈. This does not

fit our definition, since the left hand side of the relation is not in the same set of the right
hand side. We introduce a definition to make up for this:

Definition 6.6. A relation from A to B is a subset R of A×B.

Example 6.7. Consider the set A = {1,2} and its power set P (A) = {∅, {1} , {2} , {1,2}}. The
relation R = {(1, {1}), (1, {1,2}) , (2, {2}) , (2, {1,2})} is a relation from A to P (A). This relation
is actually ∈. If we did not have a notion of membership, this would be the rigorous way
to define it.

6.2. Functions. Relations can be used to describe functions. Consider the function f :
R→R given by f (x) = x2. We can plot it on the plane R

2, which means that we can see it
as a subset of R ×R. But this means that it is a relation! In fact, we see that for instance
(1,1), (2,4) ∈ f . In particular, we can write its graph as{

(x,x2)|x ∈R
}
⊂R×R.

This works for any function, so every function is a relation. Is every relation a function?
We see that in a relation there could be two pairs that share the first argument. This
would be bad for a function, because you always want a function to have only one output
for each input. To distinguish when a relation is a function, we introduce the following
definition:

Definition 6.8. A function from A to B (written f : A → B) is a relation from A to B
satisfying the following condition: for every a ∈ A thee is exactly one b ∈ B such that
(a,b) ∈ f . We abbreviate (a,b) ∈ f by f (a) = b. The set A is called the domain and B is the
codomain.

Remark. Note that a function is a relation between two sets, i.e. the input and the output
can be from different sets.
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Example 6.9. Consider the function f (x) = 1/x. This is a function from R − {0} → R, i.e.
f : R − {0} → R. Is every element of the codomain an output of something? We see that
0 is not an output, and we are going to talk about these things when we talk about the
range of a function.

Example 6.10. Consider A = {∅,1,5} and B = {3,4,6}. We can define the function

f = {(1,3), (5,6), (∅,6)} .
Another definition of this function would be given by

f (1) = 3, f (5) = 6, f (∅) = 6.

Example 6.11. Let A = B = R and consider the relation

R =
{
(x,y) ∈R×R|y = x2

}
.

This is a function, since for every x there is exactly one y such that y = x2.

Proof. Assume a ∈ R. Then take b ∈ a2. Then (a,b) ∈ R. This shows that there is x such
that (a,x) ∈ R. To show uniqueness, assume that (a,c) ∈ R. Then c = a2 by definition of R,
and therefore c = b. �

Example 6.12. Consider S =
{
(x,y) ∈R×R|y2 = x

}
. This is not a function, since for each x

there are two numbers y such that y2 = x, namely y =
√

2 and y = −
√

2. We can see this
by drawing a graph: in fact, the negative x axis has no output, and the positive x axis has
two outputs.

Student question: Can you say that the output of a negative number is imaginary?
Answer: In this case since the codomain is R we can just say that negative values of x

have no outputs.
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7. Friday, September 28

7.1. Equivalence relations. We are going to start by defining some properties that some
relations can have.

Definition 7.1. Assume R is a relation on a set A. We say that R is

(1) reflexive if for any x ∈ A, xRx;
(2) symmetric if for any x,y ∈ A, if xRy then yRx.
(3) transitive if for any x,y,z ∈ A, if xRy and yRz then xRz.

Example 7.2. Consider the following relations on the set A = Z.

< ≤ = divides , does not divide
reflexive no yes yes yes no no

symmetric no no yes no yes no
transitive yes yes yes yes no no

If we look at the graph of a relation, we can try to determine the propertie of the relation
by looking at the graph. For instance, a relation is reflexive if and only if for every point
there are arrows from a point to itself; it is symmetric if every arrow goes both ways; it is
transitive if for every three points x,y,z, if there is an arrow from x to y and from y to z
then there is an arrow from x to z (note that it could be that x = z).

Yet another example of a relation is the following:

Definition 7.3. Assume n is a natural number and x and y are integers. We say that x is
congruent to y (modulo n) (written x ≡ y mod n) if n divides x − y.

Example 7.4. For example,

0 ≡2 mod 2

0 .1 mod 2

1 ≡5 mod 2.

We see that two numbers are congruent modulo 2 if and only if they have the same parity.
Other examples include

−3 ≡ 0 ≡ 3 ≡ · · · ≡ 9 ≡ · · · mod 3

1 ≡ 4 mod 3

4 ≡ 1 mod 3.

We might wonder if this relation is reflexive, symmetric, or transitive. In fact, it is all
of the above.

Theorem 7.5. Assume n ∈N. Then the relation ≡ mod n (on Z) is reflexive, symmetric, and
transitive.

Proof. Reflexivity. Assume x ∈Z. Then

x − x = 0 = 0 ·n.

Since n divides 0, we have that n divides x − x, and by definition x ≡ x mod n.
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Symmetric. Assume x,y ∈ Z, and assume that x ≡ y mod n. By definition, it follows
that n divides x − y. Therefore x − y = an for some integer a. Then

y − x = −(x − y) = (−a)n

which means that n divides y − x. By definition, it follows that y ≡ x mod n.
Transitive. Assume x,y,z ∈ Z, and assume that x ≡ y mod n and y ≡ z mod n. So n

divides x − y and n divides y − z. Therefore

x − y = an y − z = bn

for some integers a,b. Adding the two equations we get that

x − z = (x − y) + (y − z) = (a+ b)n.

So n divides x − z, and therefore x ≡ z mod n. �

A relation that satisfies these properties has a special name:

Definition 7.6. A relation R on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive.

Example 7.7. The relation = on A = Z is an equivalence relation. As we just saw, the
relation ≡ mod n on A = Z is an equivalence relation.

An important concept related to equivalence realtions is that of equivalence classes.

Definition 7.8. Assume R is an equivalence relation on a set A. Assume a ∈ A. The
equivalence class of a is the set

[a] = {x ∈ A|xRa} .

Example 7.9. For the relation ≡ mod 3, we see that the equivalence class of 1 contains
4,7,1,−2, and so on. Similarly, [2] = {5,8,2,−1, . . . } and [3] = {0,3,6,−3, . . . }. In particular,
we see that [4] = [1], [5] = [2], [6] = [3], and so on.

We might conjecture that there are only 3 equivalence classes. In fact, we see that if we
consider the equivalence class of some n and this contains m, it looks like we should have
that [n] = [m]. In fact, we can prove this.

Theorem 7.10. Assume R is an equivalence relation in A. Assume x,y ∈ A. Then xRy if and
only if [x] = [y].

We introduce the following definition in order to state the next theorem.

Definition 7.11. A partition P of a set A is a set of nonempty subsets of A whose union
is A and such that the intersection of two distinct subsets in P is empty.

Theorem 7.12. Assume R is an equivalence relation on A. Then

{[a]|a ∈ A}

is a partition of A.
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Proof of 7.10. Step 1: “if” direction. Assume [x] = [y]. By reflexivity, xRx and so x ∈ [x].
Therefore x ∈ [y], and os xRy by definition of y.

Step 2: “only if” direction. Assume xRy. First we prove that [x] ⊂ [y]. Assume a ∈ [x].
Then aRx by definition of [x] and xRy by assumption. Therefore aRy by transitivity, and
so [x] ⊂ [y]. Second, we prove that [y] ⊂ [x]. Assume a ∈ [y]. Then aRy. Moreover, yRx by
symmetry. Therefore aRx by transitivity and so a ∈ [y]. This proves that [y] ⊂ [x], and in
conclusion [x] = [y]. �
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8. Monday, October 1

8.1. Types of functions. Recall that a function from A to B (written f : A → B) is a
relation from A to B so that for each x ∈ A there is exactly one y ∈ Bwith (x,y) ∈ f (written
f (x) = y).

Example 8.1. Consider the sets A = {1,2,3} and B = {4,5,6}. Consider the function f :
A→ B such that

f (1) = 4 = f (2), f (3) = 5.

Note that we could have x1 , xb with f (x1) = f (x2) (in our previous example, take
x1 = 1,x2 = 2). We could also have one y ∈ B so that there is no x ∈ A with f (x) = y (here
y = 6 has no x ∈ A with f (x) = 6).

Definition 8.2. Assume f : A→ B is a function. Then
(1) f is called injective when for x1,x2 ∈ A if x1 , x2 then f (x1) , f (x2) (in other

words, “different imputs imply different outputs”);
(2) f is called surjective if for all y ∈ B there is x ∈ A such that f (x) = y (in other

words, “each value in the codomain is an output”);
(3) f is called bijective if it is both injective and surjective.

Example 8.3. With A and B as in the previous example, the function f (1) = 4, f (2) =
5, f (3) = 6 is bijective. However, if we add an element, say 3, to the set B, then f is not
surjective anymore.

Assume A and B are finite., and assume that f : A→ B is an injection. What can you
say about |A| and |B|? What if f is a surjection? Let’s consider the case where f is an
injection. Then we claim that |A| ≤ |B|. Informally, we can think of an injection as a way
of “copying” A into B, and therefore B must be able to contain it. If f is a surjection then
|A| ≥ |B|. In fact, if B was bigger than A, there would be not enough inputs to reach all the
elements of B.

Example 8.4. Let f : R− {0} →R defined by

f (x) =
1
x

+ 1.

Is it injective? We claim that it is.

Proof that f is injective. Assume x1,x2 ∈ R − {0}. We prove the contrapositive, namely we
prove that if f (x1) = f (x2) then x1 = x2. Assume f (x1) = f (x2). Then

1
x1

+ 1 =
1
x2

+ 1.

So 1/x1 = 1/x2. Multiplying both sides by x1x2 we conclude that x2 = x1. �

Is f surjective? We claim that it is not. In order to prove that a function is not surjective,
often we need to provide a value which is not an output.

Proof that f is not surjective. Take y = 1. Assume for a contradiction that there is x ∈R−{0}
such that f (x) = y. So

1
x

+ 1 = 1
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and therefore 1/x = 0, which is a contradiction. �

Example 8.5. Consider

g : R− {0} →R− {1}

g(x) =
1
x

+ 1.

Then g is injective as before. We claim that it is surjective.

Proof. Assume y ∈R− {1}. Take x = 1/(y − 1). This is well-defined since y − 1 , 0. Then
1
x

+ 1 =
1
1
y−1

+ 1 =y − 1 + 1 = y

and therefore g(x) = y. �

Example 8.6. Take

f : R→R
2

f (x) = x2.

Then f is not injective, since f (−1) = f (1) = 1. It is also not surjective, since there is no
x ∈R such that x2 = −1.

Example 8.7. Take

g : R≥0→R≥0

g(x) =x2.

Then g is bijective. Note that this is the same function as before, but changing the domain
made it injective and changing the codomain made it surjective.

Example 8.8. Let

g : { people on earth } →{ days of the year }
g(x) = birthday of x.

We see that this function is not injective and it is surjective. If we change the domain to
people in this class, it is not surjective and it is injective, defying the odds of the birthday
paradox.

8.2. Composition.

Definition 8.9. Consider maps f : A → B and g : B → C. The composition of f and g
(written g ◦ f ) is a function g ◦ f : A→ C defined by

(g ◦ f )(a) = g(f (a)).

Example 8.10. Let

f : R→R

f (x) =x2

g : R→R

g(x) =1 + x.
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Then

(g ◦ f ) (x) =1 + x2

(f ◦ g) (x) =(1 + x)2 .

Therefore the composition of two functions (even with the same domain and codomain)
depends on the order of the composition.

Example 8.11. Consider f : A → B and g : B → C. If both f and g are injective (resp.
surjective), is g ◦ f injective (resp. surijective)? Consider the injective case first.

Proof that g ◦ f is injective. If x1,x2 ∈ A are distinct, it follows that f (x1) , f (x2) since f is
injective. Therefore g(f (x1)) , g(f (x2)) since g is injective. Therefore g ◦ f is injective. �

Consider now the surjective case.

Proof that g ◦ f is surjective. Take c ∈ C. Then there exists b ∈ B such that g(b) = c since g
is surjective. Then there exists a ∈ A such that f (a) = b since f is surjective. It follows that
(g ◦ f )(a) = g(f (a)) = g(b) = c and therefore (g ◦ f ) is surjective. �

8.3. Inverse. Suppose f : A→ B is a bijection. Can we get a function that “goes back”
from B to A? Consider b ∈ B. We claim that if f is bijective there is exactly one a ∈ A such
that f (a) = b. We know that there is at least one such a since f is surjective. If a1 and a2
both satisfy f (a1) = f (a2) = b then a1 = a2 by injectivity. Therefore a is unique.

Definition 8.12. The inverse of a bijection f : A→ B is the function

f −1 : B→ A

where f −1(b) is defined as the unique a ∈ A such that f (a) = b.

What is f ◦ f −1? And what about f −1 ◦ f ? We see that

f ◦ f −1 : B→B
(f ◦ f −1)(b) =b

f −1 ◦ f : A→ A

(f −1 ◦ f )(a) =a.
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9. Friday, October 5

9.1. Cardinalities. We saw last time that bijection create a correspondece between two
sets. This implies that if A and B are finite sets and we have a bijection A → B then
|A| = |B|, i.e. the sets have the same cardinality. Is the converse true? Namely, suppose
that |A| = |B|. Is there a bijection A→ B? The answer turns out to be yes.

Proof. Suppose n = |A| = |B|. We can write A = {a1, . . . , an} and B = {b1, . . . , bn}. Define
f : A→ B by f (ai) = bi . This is a bijection. �

The point of the proof is that once you have a finite set you can number its elements,
and then construct a bijection based on the numbering. At this point we might want to
talk about sizes of infinite sets. We can’t number infinite sets, so we are just going to
define cardinality based on bijections.

Definition 9.1. Two sets A and B have the same cardinality if there is a bijection from A
to B.

Note that we are not defining what the cardinality of a set is, but we are limiting our-
selves to defining what it means for two sets to have the same cardinality.

Example 9.2. The relation “having the same cardinality” is an equivalence relation. First,
we check it’s reflexive. According to the definition, we must find a bijection from a set to
itself. The identity works for this purpose, and therefore the relation is reflexive. We now
check it’s symmetric. If there is a bijection f : A→ B between two sets A,B we want to
prove that there is a bijection from B to A. This is the inverse f −1 : A→ B. We now check
transitivity. Assume f : A → B and g : B → C are bijections. Last time we proved that
g ◦ f : A→ C is a bijection. It follows that (g ◦ f )−1 : C → A is a bijection, and therefore
the relation is transitive. This concludes the proof.

We are now going to look at infinite sets and see whether they have the same size.

Example 9.3. Consider A = N and B = N∪ {0}.
Theorem 9.4. The sets A and B have the same cardinality.

Proof. We define f : A→ B by f (n) = n − 1. This is well defined since if n ∈N then n − 1
is either 0 (if n = 1) or a natural number (if n > 1). We now prove it is injective. Assume
n,m ∈N such that f (n) = f (m). This means that n− 1 =m− 1, and adding 1 to both sides
we get that n = m. To prove that it is surjective, assume y ∈N∪ {0}. Take x = y + 1. Then
x ∈N and f (x) = x − 1 = y + 1− 1 = y, and therefore f is surjective. �

Student question: Why do we care about the cardinality of an infinite set?
Answer: One answer is that it is philosophically interesting, and this is one of the his-

torical reasons of the origin of the theory of cardinality. Another use is in computer
science, where we want to number things. There are other uses in math, and different
mathematicians will give different answers when asked the question.

Example 9.5. Hilbert’s hotel is a hotel with an infinite number of rooms. One day every
room has a guest in it, and a visitor comes to the hotel looking for a room. It is actually
possible to find a room for the visitor by having all the guest occupy the next room.

Example 9.6. We can prove the following:
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Theorem 9.7. Take A = N and B = Z. Then A and B have the same cardinality.

The idea of the proof is that we start by mapping 1 to 0, 2 to 1, 3 to −1, 4 to 2, and so
on. We want to formally prove how this works.

Proof. Define f : A→ B by

f (n) =
{
n/2 if n is even
−(n− 1)/2 if n is odd

.

We now prove that f is an injection. Assume that n,m ∈N and f (n) = f (m). We consider
four cases depending on the parity of n and m.

Case 1: n is odd and m is odd. By definition of f , this implies that

−n− 1
2

= −m− 1
2

and therefore n =m.
Case 2: n is even and m is even. Similarly to case 1, we have that

n
2

=
m
2

and therefore n =m.
Case 3: n is odd and m is even. We have that

−n− 1
2

=
m
2
.

Note that since n ∈N it follows that

−n− 1
2
≤ 0.

Similarly, sincem ∈N we have thatm/2 > 0. This means that the above equality is impos-
sible, and thus this case is irrelevant.

Case 4: n is even and m is odd. Similar to case 3.
Having proved all cases, we conclude that f is injective.
We now prove f is surjective. Assume y ∈ Z = B. We consider the cases where y ≤ 0

and y > 0.
Case 1. y ≤ 0. In this case take x = −2y + 1. Then f (x) = y.
Case 2. y > 0. Consider x = 2y. Then f (x) = y.
In conclusion, f is bijective. �

Example 9.8. The sets N and Q have the same cardinality. The idea of the proof is the
following: fill a table

0 1 -1 2 -2 3 -3
1 0/1 1/1 −1/1 2/1 · · ·
2 0/2 1/2 −1/2 · · ·
3 0/3 1/3 −1/3 · · ·
4 0/4 1/4 . . .

5
...

and count them in a criss-cross fashion. We could formalize this bijection, but it takes
time.
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At this point, one could start to think that all infinite sets are in bijection with the
natural numbers. However, the next example disproves this.

Example 9.9. The sets N and R don’t have the same cardinality.

Proof. Assume for a contradiction that there is a bijection from N to R. By writing real
numbers in their decimal expansion, we can write the bijection in a table

f (n)
1 0.15321100 . . .
2 5.33333 . . .
3 18.9191919191534827 . . .
4 3.1415926 . . .
...
...

and try to create a real number which is not in the list. Define dij to be the ith digit after
the decimal point of the number in the jth row. Define now x = 0.d11d22d33 . . . and define
a new number x̄ = 0.d̄11d̄22d̄33 . . . where

d̄ii =
{

0 if dii = 9
dii + 1 if dii , 9

.

In our case, x̄ = 0.2406 . . . We now claim that x̄ is not in our table above, i.e. is not in the
image of the bijection. In fact, suppose f (n) = x̄ for some n. But then this implies that
dnn = d̄nn, which is impossible. This is a contradiction, and therefore there is no bijections
between R and N. �

This procedure is called diagonalization (from the fact that we construct the number x
by taking digits on the diagonal).
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10. Friday, October 12

10.1. Group theory.

10.1.1. Idea. We already know mathematical structure with operations such as + and ·,
such as Z and R. We want to describe other places with similar operations. First, we have
to define what an operation is.

Definition 10.1. A binary operation on a set A is a function ∗ : A×A→ A. We will write
a ∗ b instead of ∗(a,b).

Example 10.2. The operation + on A = Z,R,N. However, + is not a binary operation on
the set {1,2}, since 1 + 2 < {1,2}.
Example 10.3. The operation max is a binary operation on R which takes two inputs a,b
and outputs their maximum max(a,b).

Example 10.4. Another operation on A = Z could be something like a ∗ b = 5a + 7b, or
a ∗ b = a− b. Note however that subtraction is not a binary operation on A = N.

We are now ready to define a group.

Definition 10.5. A group is a set G with a binary operation ∗ on G satisfying three prop-
erties:

(1) ∗ is associative: if a,b,c ∈ G then

(a ∗ b) ∗ c =a ∗ (b ∗ c);
(2) there exists e ∈ G such that for any a ∈ G

e ∗ a = a ∗ e = a;

the element e is called the identity element;
(3) for any a ∈ G there exists b ∈ G such that

a ∗ b = b ∗ a = e;

we call b the inverse of a.
We write the group as (G,∗).
Remark. Note that property (2) is of the form “there exists . . . such that for all . . .” while
property (3) is of the form “for all . . . there exists.”

Example 10.6. Going back to our example, we see that (Z,+) is a group. The identity
element is 0 and for a ∈ Z we know that a + (−a) = 0. The same goes for addition on R.
However, (N,+) is not a group, since it does not contain 0. Even (N∪{0} ,+) is not a group
since it has no inverses. How about (R, ·)? We see that properties (1) and (2) hold, but (3)
does not since 0 has no inverse. In particular, (R− {0} , ·) is a group.

Student question: Can there be multiple identity elements?
Answer: We will see that the identity is unique.
Most of these groups we have seen are commutative, but this is not necessary:

Definition 10.7. A group G is abelian (or commutative) if a ∗ b = b ∗ a for all a,b ∈ G.

Example 10.8. Consider the group of invertible 2×2 matrices with matrix multiplication
as operation. This group is not abelian since there exist matrices that do not commute.
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10.1.2. Symmetries of an equilateral triangle. In this case, a symmetry is a rigid transfor-
mation preserving the shape. This includes not doing nothing, rotating, and reflecting.
In any symmetry, what counts is where each vertex goes. For example, the symmetry

C

B

A B

A

C

is written
(
A B C
B C A

)
to indicate that A went where B was, B where C was, and C where A

was. We can see these as functions (e.g. mapping A to B and so forth) so that we can
write composition of symmetries as ◦ (this is the group operation). We can list all of the
symmetries and give them a name:

id =
(
A B C
A B C

)
ρ1 =

(
A B C
B C A

)
ρ2 =

(
A B C
C A B

)
µ1 =

(
A B C
A C B

)
µ2 =

(
A B C
C B A

)
µ3 =

(
A B C
B A C

)
.

A way we can understand this group better is by writing a multiplication table:
◦ id ρ1 ρ2 µ1 µ2 µ3
id id ρ1 ρ2 µ1 µ2 µ3
ρ1 ρ1 ρ2 id µ3 µ1 µ2
ρ2 ρ2 id ρ1 ρ2 ρ3 ρ1
µ1 µ1 · · ·
µ2

...
. . .

µ3

We need to check that this is a group. We know that function composition is associative,
and we see that the identity symmetry is the identity of this operation. Moreoever, the
inverse of ρ1 is ρ2 (and vice versa) and the inverse of µi is itself (for i = 1,2,3).

10.1.3. Basic properties of groups. We are mainly going to study groups abstractly; even
so, there are several useful properties of groups that we can prove.
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Proposition 10.9. There is a unique identity element.

Proof. We need to show that an identity exists, and that there is at most one identity. We
already know that e exists by definition of groups. Assume now e,e′ are identity elements.
Since e is the identity it follows that e ∗ e′ = e′, and since e′ is the identity it follows that
e ∗ e′ = e. Therefore e = e′. �

Proposition 10.10. Each element has a unique inverse.

Proof. We know by the definition that there is at least one inverse. We now prove there
is at most one. Assume a ∈ G and b,b′ ∈ G are inverses of a (namely, a ∗ b = b ∗ a = e and
a ∗ b′ = b′ ∗ a = e). Therefore

b = b ∗ e = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = e ∗ b′ = b′

and so b = b′. �

In what follows, we will write the inverse of a ∈ G as a−1 and we will suppress the
operation symbol ∗.

Proposition 10.11. For all a,b ∈ G we have that

(ab)−1 =b−1a−1.

Proof. We need to prove that

(ab)
(
b−1a−1

)
=e(

b−1a−1
)
(ab) =e.

By associativity we have that

(ab)(b−1a−1) = a(bb−1)a−1 = aea−1 = aa−1 = e.

We prove the other equation similarly. �
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11. Monday, October 15

Student question: I read that a group needs to be closed under the group operation. Do
we not require that?

Answer: We require closure under our operation when we specify that ∗ is a map from
G ×G to G.

Student question: Can you repeat elements when writing down a group?
Answer: The underlying set of a group is a set, and therefore the usual set notation

applies; in particular one can repeat elements.

11.1. Subgroups. The idea behind subgroups is that they are the “parts” of a group.

Definition 11.1. A subgroup of a group (G,∗) is a subsetH ⊂ G that is also a group under
∗. Equivalently:

(1) e ∈H ;
(2) if a,b ∈H then a ∗ b ∈H ;
(3) if a ∈H then a−1 ∈H .

Example 11.2. The even integers are a subgroup of (Z,+). We can check this in several
ways. For example, we can check that it contains the identity 0, that it is closed under +
(we proved this in one of the first classes) and given an even number its negative is also
even. Note that in this case we might write 2−1 as the inverse of 2, but this does not mean
that 2−1 = 1/2 because the operation is addition.

Example 11.3. On the other hand, N∪ {0} is not a subgroup of (Z,+) since −1 <N∪ {0}.

Example 11.4. The set of 2× 2 matrices of determinant 1 is a subgroup of the invertible
2× 2 matrices.

Example 11.5. Given any group G, then H = G is a subgroup, and H = {e} is also a sub-
group.

Example 11.6. In the homework you saw that bijections from N to N form a group. This
is because every bijection has an inverse function, and this is the inverse of the group
operation; moreover, the identity function is the identity under the group operation. In
fact, for any set A the set of bijections from A to A is a group. It is so important that in
the case of finite sets it has a name.

Definition 11.7. For n ∈ N the group of bijections from {1,2, . . . ,n} to {1,2, . . . ,n} under
composition is denoted Sn and is called the symmetric group.

Example 11.8. Let n = 4. Then an element of S4 is a map

σ : {1,2,3,4} →{1,2,3,4} .

For example, we might have σ (1) = 2, σ (2) = 4, σ (3) = 3, σ (4) = 1. We can write this as

σ =
(
1 2 3 4
2 4 3 1

)
.

It is easier to think of members of Sn as permutations (ways to rearrange n things)
rather than just bijections.
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Example 11.9. Going back to the previous example, let’s calculate σ2. We can check that

σ2 =
(
1 2 3 4
4 1 3 2

)
.

What about σ3? We find that

σ3 =
(
1 2 3 4
1 2 3 4

)
.

This means that σ3 = e = id.

Definition 11.10. The order of an element a ∈ G is the minimal n ∈ N ∪ {0} such that
an = e (or∞ if such n does not exist).

Definition 11.11. The order of a group G is the number of elements in the group.

Example 11.12. What is the order of the group Sn? We want to list all the possible bijec-
tions from {1,2, . . . ,n} to itself; therefore, we must first specify where 1 is sent. There are
nways to specify this. After this, we have (n−1) ways to specify where 2 is sent, and so on
until we have only 1 way to specify where n is sent. Therefore the number of bijections is
equal to n · (n − 1) · · ·2 · 1. This number is also written as n! and is called n factorial. For
example, |S4| = 24 and |S3| = 6.

Last time we studied the group of symmetries of an equilateral triangle. This is a
subgroup of S3, since it permutes 3 things. Since it has the same number of elements as
S3, it turns out that it is the same group as S3.

11.1.1. Symmetries of an n-gon.

Definition 11.13. Let Dn denote the group of simmetries of an n-gon for n ≥ 3.

Example 11.14. What are the elements ofD4? We can list all of them. The group contains
the identity that does not change anything. It also contains rotations (and they form
a subgroup). We can also flip the square, which gives us other elements. Since every
symmetry of the square is specified by knowing where one vertex went and whether
there was a flip, the order of D4 is |D4| = 8. In particular, D4 is a proper subgroup of S4
(where “proper” means that D4 , S4).

Example 11.15. Consider now the subset of S4 defined by

H = {σ ∈ S4|σ (1) = 1} .

This group is actually analogous to S3, since we only permuting 3 elements. However, it
is not quite the same thing as S3, since the elements are not the same.

Theorem 11.16. The order of Dn is equal to |Dn| = 2n.

Proof. Given an n-gon, an element of Dn has n ways to send the vertex 1 to some other
vertex. Since it must preserve the n-gon, the vertex 2 cannot be sent wherever we want;
rather, there are only 2 possible choices for where vertex 2 is sent. After this, all the other
vertices are determined. Therefore |Dn| = 2n. �
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Theorem 11.17. Any element of Dn can be written as a product of r and s where

r =
(
1 2 · · · n
n 1 · · · n− 1

)
(a rotation) and s is the reflection fixing 1.

Is the group Dn abelian? We can check that rs , sr and therefore Dn is not abelian.
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12. Friday, October 19

12.1. Group morphisms. Today we are going to look at two groups that are very similar.
In the homework you saw the group (Z2,2). Its underlying set is Z2 = {[0], [1]} with the
operation given by

+ [0] [1]
[0] [0] [1]
[1] [1] [1]

.

However, we can also look at the group with underlying set {1,−1} and operation given
by

· 1 -1
1 1 -1
-1 -1 1

.

We see that both these group look the same since their table is given by
e a

e e a
a a e

.

In fact, it does not really matter what the underlying sets of the groups are; what matters
is the structure. Another example is the following: consider the group of bijections from
the set {1,2,3} to itself. This is the same as the group of bijections from the set {A,B,C}
to itself, or from {4,5,6} to itself, and so on. This is because it does not matter what the
elements are, as long as there are 3 of them. This concept is encapsulated in the following
definition.

Definition 12.1. Assume (G,∗G) and (H,∗H ) are groups. We say that they are isomorphic
if there exists a bijection ρ : G→ H that preserves the group operation. Namely, for any
a,b ∈ G we must have that

ρ (a ∗G b) = ρ(a) ∗H ρ(b).

We say that ρ is called an isomorphism from (G,∗G) to (H,∗H ).

Example 12.2. Define ρ : Z2→ {1,−1} by

ρ([0]) =1

ρ([1]) =− 1

. We claim that this is an isomorphism.

Proof. This is clearly a bijection. We now check that this is a group operation. We do so
by checking all possible values.

f ([0] + [0]) =f ([0]) = 1 = 1 · 1 = f ([0]) · f ([0])

f ([0] + [1]) =f ([1]) = −1 = 1 · (−1) = f ([0]) · f ([1])

f ([1] + [0]) =f ([1]) = −1 = (−1) · 1 = f ([1]) · f ([0])

f ([1] + [1]) =f ([0]) = 1 = (−1) · (−1) = f ([1]) · f ([1]).

Thus f is an isomorphism. �
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What if I had tried another bijection, such as g([0]) = −1 and g([1]) = 1? This is a
bijection, but it does not preserve the operation: in fact,

g([0] + [0]) =g([0]) = −1 , 1 = (−1) · (−1) = g([0]) · g([0]).

Example 12.3. Let’s look at (Z3,+). We claim that this is isomorphic to the group H of
rotations of an equilateral triangle. We denote the latter by

({
id, r, r2

}
,◦

)
where r is a

clockwise rotation of 120◦ (this is a subgroup of D3). One way we can do this is to define
an explicit bijection, for example f ([0]) = id, f ([1]) = r, f ([2]) = r2. The next step would
then be to check all 6 cases. Another way is the following: we define

f ([a]) = ra,

with the convention that ra = id. Note that this is actually valid for any integer a since
r3 = id and so we only care about the class of a in Z3. The function f is clearly a bijection,
and we now show that it preserves the group operation. In fact, assume a,b ∈Z. Then

f ([a] + [b]) = f ([a+ b]) = ra+b = ra ◦ rb = f ([a]) ◦ f ([b]).

Thus this is an isomorphism. One can check that the bijection defined by g([0]) = id, g([1]) =
r2, g([2]) = r is also an isomorphism. This is because r2 is the same as a counterclockwise
120◦ rotation, and thus the groups are the same for all practical purposes.

Example 12.4. Consider the groups (Z2,+) and (Z3,+). These cannot be isomorphic, since
the underlying sets have different cardinalities (that is to say, the groups have different
order).

Last week we saw that bijections defined an equivalence relation. Does this work for
isomorphisms too? Namely, is it true that the relation “being isomorphic” is an equiva-
lence relation? This is left as an exercise.

Example 12.5. Consider (Z6,+) and D3. Both groups have 6 element, so there are bijec-
tions between them. However, it turns out that they are not isomorphic. There are many
ways to check this. One proof is as follows:

Proof. Assume for a contradiction that f : Z6 → D3 is an isomorphism. Write D3 =({
id, r, r2, s, s2, s3

}
,◦

)
where the last elements are the reflections. Pick a,b ∈ Z6 such that

f (a) = s1 and f (b) = s2 (these exist since f is surjecive). Since s21 = id we must have that
either a = 0 or a = 3. But f is injective and 0 goes to id, and so it must be that a = 3. But
the same goes for b, which is a contradiction since f is supposed to be a function. �

Another proof is the following:

Proof. The group Z6 is abelian, but the group D3 is not. It follows that they cannot be
isomorphic. �

The last proof involved something that we are going to prove in general.

Theorem 12.6. If f is an isomorphism from (G,∗G) to (H,∗H ) and (G,∗G) is abelian, then
(H,∗H ) is abelian.
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Proof. Assume b1,b2 ∈H . Since f is a surjection we can pick a1, a2 ∈ G such that f (a1) = b1
and f (a2) = b2. Since G is abelian, a1 ∗G a2 = a2 ∗G a1. So f (a1 ∗G a2) = f (a2 ∗G a1). Therefore,
since f preserves the operation it follows that

b1 ∗H b2 =f (a1) ∗H f (a2) = f (a2) ∗H f (a1) = b2 ∗H b1.

Therefore H is abelian. �

We don’t have to look at finite groups. The following example is about infinite groups.

Example 12.7. We claim that (R,+) � (R>0, ·), with the isomorphism give by f (x) = ex.
This is a bijection since ex is injective and its image is R>0. Moreover, it preserves the
group structure since

f (a+ b) = ea+b = ea · eb = f (a) · f (b).

There is a generalization of group isomorphisms that covers the case where the function
is not a bijection.

Definition 12.8. Consider a function f : G→ H . We say that f is a homomorphism if f
is a function preserving the group operation.

Example 12.9. The map Z→Zn defined by

f (a) = [a]

is a homomorphism. Note that f is not injective.

Example 12.10. The determinant defines a homomorphism between invertible matrices
and (R− {0} , ·), since given matrices A,B we have that det(AB) = det(A) ·det(B).

Example 12.11. The absolute value map

| − | : (R− {0} , ·)→ (R>0, ·)
is a homomorphism since |x||y| = |xy|. As before, this is not injective.

Student question: Does “being homomorphic” define an equivalence relation?
Answer: In fact, any two groups are homomorphic, since we can always define a map

f : (G,∗G)→ (H,∗H ) such that f (a) = eH . The latter is a homomorphism, and therefore the
equivalence relation defined by being homomorphic is not used as it is not very useful.

As in linear algebra, we can define the kernel and image of a homomorphism as

ker(f ) = {a ∈ G|f (a) = eH }
im(f ) = {b ∈H | there exists a ∈ G such that f (a) = b} .

The following is a very useful result:

Theorem 12.12. If f : G→H is a homomorphism, then f (eG) = eH .

Proof. We know that

f (eG) = f (eG ∗G eG) = f (eG) ∗H f (eG).

Therefore

eH ∗H f (eG) = f (eG) = f (eG) ∗H f (eG).
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So

eH ∗H f (eG) = f (eG) ∗H f (eG)

and therefore eH = f (eG). �
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13. Monday, October 22

13.1. Cyclic groups. The motivation for cyclic groups is that we want to study not only
(Z,+) but also (Zn,+). If we wanted to draw a picture of Z, we would come up with
something like a line, and adding +1 will make us go one step right on this line. Similarly,
adding −1 will make us go one step left; by doing these two things (adding or subtracting
1) will yield all the elements in this group. If we wanted to draw Zn, then instead of a
line we would get something like a circle. For example, for n = 12 we would get an analog
clock. In this case we can get to every element by just adding 1. Last time we saw that Z3
is isomorphic to the group of rotations of the triangle, and in this case it was important
that one could get any element starting by one particular element. We want to formalize
this concept of “get to every element of Zn by adding 1.”

Definition 13.1. Assume G is a group, and let a ∈ G. Define

〈a〉 = {an|n ∈Z} .
We call this the cyclic subgroup generated by a.

Recall that for n ∈N we write

an = aaa · · ·a︸  ︷︷  ︸
n times

with the convention that a0 = e and

a−n =
(
a−1

)n
= a−1a−1 · · ·a−1︸         ︷︷         ︸

n times

.

Note that in groups where the operation is +, when we write an we really mean na. For
example, in G = (Z,+) we would have that 32 = 6. Therefore we have that in this case

〈e〉 = {0 · 3,1 · 3, (−1) · 3,2 · 3, . . . } = {3n|n ∈Z} .
Similarly, 〈0〉 = {0} and 〈1〉 = Z. We now prove that cyclic subgroups are in fact subgroups.

Theorem 13.2. Assume G is a group and let a ∈ G. Then the set H = 〈a〉 is a subgroup.
Moreover it is the smallest subgroups containing a.

Proof. We begin by showing that H is a subgroup.
• We start by showing that e ∈H . This is true since a0 = e ∈H by definition.
• We now show that H is closed under the group operation. In fact, assume b,c ∈H .

Then we can write b = an and c = am by definition of H , so that bc = anam = an+m.
Therefore bc ∈ H . Note that the fact that anam = an+m ought to be proved by
induction, as would the fact that (an)m = anm.
• We now show that H is closed under taking inverses. Assume b ∈ H . As before,

we write b = an by definition of H . It follows that b−1 = (an)−1 = a−n. Therefore
b−1 ∈H .

We now show that H is the smallest subgroup containing a. To do so we must show that
any subgroup ofG containing amust containH . AssumeH ′ is a subgroup ofG containing
a. Then by definition of subgroups H ′ contains all the positive powers of a, since it is
closed under teh group operation. It also contains a0 since e ∈H ′ by definition. Similarly
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it contains all the negative powers of a, since it is closed under inverses. ThereforeH ⊂H ′.
This proves the theorem. �

Definition 13.3. A group G is cyclic if G = 〈a〉 for some a ∈ G. We call such a the genera-
tor or G.

We see that this captures the motivating idea we introduced earlier.

Example 13.4. We showed that Z is cyclic: indeed Z = 〈1〉. So 1 is a generator of Z.
However, 2 is not a generator, since 〈2〉 is the set of even integers. On the other hand, −1
is a generator.

Remark. In general

〈a〉 = 〈a−1〉.

So a is a generator if and only if a−1 is a generator.

Example 13.5. The group (Z,+) is a cyclic group, and on of its generators is [1]. By the
above remark we also have that [−1] = [n− 1] is a generator.

Example 13.6. Consider n = 5. In this case, there are generators other than [1] and [−1].
We can check, for example, that [3] is a generator. For instance, [1] can be written as
[3] + [3] = [6] = [1]. Since [1] is a generator it follows that [3] is also a generator. Similarly
we can see that [2] is a generator since [1] = [2]+[2]+[2]. Therefore, all nonzero elements
of Zn are generators.

Example 13.7. In the case of n = 12 we see that not all nonzero elements are generators.
For example, [2] is not a generator since it only generates even numbers. Its order is 6,
since [0] = [12] = [2] + [2] + [2] + [2] + [2] + [2]. We can list the order of all the elements of
Z12.

element order element order
[0] 1 [1] 12
[2] 6 [3] 4
[4] 3 [5] 12
[6] 2 [7] 12
[8] 3 [9] 4

[10] 6 [11] 12
In particular we can prove that any time an element has the order the size of the group,
then it is a generator. The book contains some formulae to compute the order of elements
in a cyclic group. There are more patterns to this table; for example, primes always
generate the group, and in general an element generates the group only if it is coprime to
12. This holds in the general case of Zn.

Example 13.8. The group D3 is no cyclic. In fact, we see that all proper subgroups are
cyclic, but there is no way to generate the whole group using one generator since every
element generates a proper subgroup of D3. Indeed we could have proved this using the
following fact.

Theorem 13.9. Any cyclic subgroup is abelian.
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Proof. Assume G = 〈a〉. Let b,c ∈ G. Then by definition b = an and c = am. Therefore

bc = anam = an+m = am+n = aman = cb.

Therefore G is abelian. �

Theorem 13.10. Any subgroup of a cyclic group is cyclic.

Proof. Assume G is cyclic with generator a. Assume H is a subgroup of G. If H = {e} then
H = 〈e〉 and so it is cyclic. Assume now H , 〈e〉. Then there is n , 0 such that an ∈ H . If
n < 0 then (an)−1 ∈ H by taking inverses. So there is a strictly positive power of a in H .
Let m be the minimal positive integer such that am ∈H . We claim that H = 〈am〉.

• We first prove that 〈am〉 ⊂ H . For k ∈ Z we know that (am)k ∈ H since am ∈ H and
H is a subgroup.
• We now prove that H ⊂ 〈am〉. Assume x ∈ H . Then x = ak for some k ∈ Z. Let r be

the remainder of the division of k by m, that is to say, 0 ≤ r < m and k =mq + r for
some q. Therefore

ak = amq+r = (am)q · ar .
By assumption (am) ∈ H and so (am)q ∈ H as H is a subgroup. It follows that
((am)q)−1 and therefore (

(am)q
)−1

ak = ar ∈H.

So ar ∈ H , and the only possibility is that r = 0 as m is minimal. This means that
x = (am)q, whic means that x ∈ 〈am〉. This finishes the proof.

�
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14. Friday, October 26

14.1. Cosets and Lagrange’s theorem. If you have a group, a very good way to under-
stand it is to understand its subgroups. To this end, a powerful tool is Lagrange’s theorem:

Theorem 14.1 (Lagrange). If H is a subgroup of G (with G finite), then the order of H divides
the order of G.

Example 14.2. An example of this is the subgroup 〈[3]〉 = {[0], [3], [6], [9]} ⊂ Z12, whose
order is 4 and divides 12. Another example is the rotation subgroup of D3, which has
order 3 and divides 6.

For the proof we are going to need the definition of cosets.

Definition 14.3. Assume G is a group and H is a subgroup of G. For g ∈ G, the left coset
of H with representative g is

gH = {gh|h ∈H} .
Analogously, the right coset of H with representative g is

Hg = {hg |h ∈H} .

Note that g ∈ gH always, since taking h = e (which we can do since H is a subgroup)
means that g = gh.

Example 14.4. Let G = Z12 amd H = 〈[3]〉. Some of the left cosets are

[0] +H = {[0], [3], [6], [9]}
[1] +H = {[1], [4], [7], [10]}
[2] +H = {[2], [5], [8], [11]}
[3] +H =[0] +H =H

[4] +H =[1] +H

[5] +H =[2] +H

[9] +H =[6] +H = [3] +H

[10] +H =[7] +H = [4] +H

[11] +H =[8] +H = [5] +H.

So H has three left cosets of G.

Student question: In this case, G is abelian. Does it follow that the right cosets are the
same as the left cosets?

Answer: That is right. We are now going to see an example that involves a group which
is not abelian.

Example 14.5. Let G = D3 =
{
id,ρ1,ρ2,µ1,µ2,µ3

}
and H =

{
id,µ1

}
. Then some of the left

cosets are

id◦H =
{
id,µ1

}
=H

ρ1 ◦H =
{
ρ1,µ3

}
ρ2 ◦H =

{
ρ2,µ2

}
.
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The other cosets are given by the one above; in fact we can check that

µ1 ◦H =id◦H
µ3 ◦H =ρ1 ◦H
µ2 ◦H =ρ2 ◦H.

Thus there are three left cosets. How about the right cosets? We have that

H ◦µ1 =H ◦ id =
{
id,µ1

}
H ◦µ2 =H ◦ ρ1 =

{
ρ1,µ2

}
H ◦µ3 =H ◦ ρ2 =

{
ρ2,µ3

}
.

Thus there are three right cosets, and they are different from the left cosets.

In assignment 12 problem 6 we had a group G and a subgroup H . We defined an
equivalence relation on G by a ∼ b if a = bh for some h ∈ H . How does this equivalencee
relation relate to cosets?

Example 14.6. Let G = Z6 and H = {[0], [3]}. In this case, the equivalence classes are

[0] +H = {[0], [3]}
[1] +H = {[1], [4]}
[2] +H = {[2], [5]}

and so we see that the left cosets and equivalence classes are the same in this case.

It turns out that the result of the previous example holds in general.

Theorem 14.7. The equivalence classes of ∼ are the same as the left cosets. More precisely, for
a ∈ G,

aG = {b ∈ G|a ∼ b} = [a].

Proof. We start by proving that

aH ⊂ {b ∈ G|a ∼ b} .
Assume x ∈ aH . This means that x = ah for some h ∈ H . So a ∼ x by definition of ∼.
Therefore x ∈ {b ∈ G|a ∼ b}.

We now prove that

{b ∈ G|a ∼ b} ⊂ aH.

Assume x ∈ {b ∈ G|a ∼ b}. Then a ∼ x. So a = xh for some h ∈ H . This means that ah−1 = x.
We know that H is a subgroup, and thus h−1 ∈ H . Let h′ = h−1. Then x = ah′ for some
h′ ∈H . Therefore x ∈ aH .

In conclusion, left cosets are equivalence classes of ∼. �

Consequence. The left cosets form a partition.

Proof. We proved that any equivalence relation will induce a partition given by its equiv-
alence classes. �

In particular, left cosets are disjoint and cover all of G.
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Example 14.8. Consider G = Z and H being the subgroup of even numbers. Then the
corresponding equivalence relation is congruence mod 2. In particular

0 +H = {0,2,−2,4, . . . } = [0]

1 +H = {1,−1,3, . . . } = [1].

If G is finite, and g1H,g2H,. . . , gkH are the cosets, we see that

|G| = |g1H |+ · · ·+ |gkH |
since the cosets form a partition. It turns out that |gH | = |H |for all g ∈ G, which allows us
to simplify the above expression.

Theorem 14.9. Assume G is finiteand H is a subgroup. Then any left coset has the same
cardinality.

Proof. Assume g ∈ G. We give a bijection f : H → gH . Define f (h) = gh. This is well
defined since elements of gH are of the form gH .

We now prove f is an injection. Assume h1,h2 ∈H and f (h1) = f (h2). So gh1 = gh2, and
therefore h1 = h2.

We now prove f is a surjection. Assume y ∈ gH . So y = gh for some h ∈ H . This means
that y = f (h), and f is surjective. �

Definition 14.10. Assume H is a subgroup of G. The index of H in G, written [G : H], is
the number of left cosets of H in G.

From this it follows that

Theorem 14.11 (Lagrange). For a finite group G with H a subgroup we have that

|G| = [G :H] · |H |.
In particular, |H | divides |G|.

Proof. Since left cosets form a partition of G, we know that

|G| = |g1H |+ · · ·+ |gkH |
where k = [G :H]. Since every coset has cardinality |H |, it follows that

|g1H |+ · · ·+ |gkH | = [G :H] · |H |
and so

|G| = [G :H] · |H |
�

Corollary 14.11.1. Assume G is finite. Then the order of any a ∈ G divides |G|.

Proof. Assume H = 〈a〉. By Lagrange’s theorem, |H | divides |G|. But we know that |〈a〉| is
equal to the order of a, and so the order of a divides |G|. �

Corollary 14.11.2. Assume p is a prime, and assume G is a group with p elements. Then any
element of G except the identity has order p. So 〈a〉 = G for all a , e and therefore G is cyclic.
In particular G �Zp.
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15. Monday, October 29

15.1. Quotient groups (or: modular arithmetic generalized). Let’s review the defini-
iton of (Zn,+), say with n = 5. We start with the group (Z,+). For a,b ∈Z we define a ≡5 b
if 5 divides a− b (that is to say, a− b = 5k for some k ∈Z). This is an equivalence relation;
in particular we define Z5 to be the set of all equivalence classes of ≡5. In this case, we
can write

Z5 = {[0], [1], [2], [3], [4]} .

Then we defined an operation on these equivalence classes, defined by

[a] + [b] = [a+ b].

To check that this is a well defined function we need to check that if a ≡5 c and b ≡5 d
(that is, [a] = [c] and [b] = [d]) then a+ b ≡5 c + d (i.e. [a+ b] = [c + d]). We can check that
this is the case, and therefore (Zn,+).

Note that this is a special property, and it does not follow for all operations. For ex-
ample, the operation [a][b] = [ab] is not well-defined, since we can take [a] = 4, [b] = 2 and
[c] = −1, [d] = 7 and we see that while [a] = [c], [b] = [d], the result is not independent on
the choice of representative:

ab ≡5 1 .5 c
d = −1.

We now want to generalize this construction. The first step is going to be the same, i.e.
we are going to start with a group G. For the second step, we see that the integer case can
be reformulated as saying that a ≡5 b if a− b lies in the subgroup of multiples of 5. Thus,
we might want to formulate our generalized construction based on cosets, seeing as they
too involve this kind of equivalence relation. Let’s see this in detail.

Assume (G,∗G) is a group, and let H be a subgroup. We can define an equivalence class
on G by letting a ∼ b if a = bh for some h ∈ H . Last time we saw that the equivalence
classes of this relation are precisely the left cosets g ∗H = {g ∗ h|h ∈H}. (As seen in 14.8,
the cosets in our particular example are [0] = 0+H, [1] = 1+H , and so on). We would now
like to define a group G/H whose set will be the left cosets. For the operation, we want it
to be defined as

(g1 ∗H) ∗ (g2 ∗H) = (g1 ∗ g2) ∗H.

This is precisely what we did with (Z,+); however, we will see that it doesn’t always work.
The following theorem indicates when it does work.

Theorem 15.1. Assume H is a normal subgroup of G (that is, gH =Hg for all g ∈H). Then
for any a,b,c,d ∈ G such that aH = cH and bH = dH then (ab)H = (cd)H .

Notation. For any subset A of G and g ∈ G we define

gA = {ga|a ∈ A} Ag = {ag |a ∈ A} .

Note that (gA)g ′ = g(Ag ′) and g(g ′A) = (gg ′)A for any g,g ′ ∈ G. This is almost the defini-
tion of cosets, with the difference that A need not be a subgroup.
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Proof. By using the notation we just introduced, we can write (ab)H = a(bH), and in turn
we know that a(bH) = a(dH) by assumption. SinceH is a subgroup we know that a(dH) =
a(Hd). Similarly,

a(Hd) =(aH)d = (cH)d = c(Hd) = c(dH) = (cd)H.

Thus (ab)H = (cd)H . �

Definition 15.2. Assume G is a group, and assume that N is a normal subgroup of G. We
define the quotient group G/N (also known as factor group) as follows: G/N is the set of
(left) cosets of N in G. The operation is defined by (aN )(bN ) = (ab)N .

By the last theorem the operation is well-defined. We claim that G/N is a group.

Proof. We start by checking the operation is associative. In fact, we see that

aH(bHcH) = a(bc)H = (ab)cH = (aHbH)cH

by associativity of the original group operation on G.
The identity of the group is eH =H since

gHeH = geH = gH

by definition.
Given gH ∈ G/H we claim that the inverse is (gH)−1 = g−1H . In fact,

gHg−1H = gg−1H = eH.

�

Intuitively, we can think of G/N as G but with all the elements of N identified.

Example 15.3. Consider the symmetries of an equilateral triangle (D3,◦) with elements{
id,ρ1,ρ2,µ1,µ2,µ3

}
. We consider now the subgroup N =

{
id,ρ1,ρ2

}
. It turns out that this

is a normal subgroup. By Lagrange’s theorem, there are 2 cosets in the set G/N (since
|G/N | = |G|/ |N |). Specifically we find that

G/N =
{{

id,ρ1,ρ2
}
,
{
µ1,µ2,µ3

}}
,

namely the cosets are the rotations and the reflections. Since the second coset squared
is equal to the identity (for example, µ1Nµ1N = µ2

1N = N ) we see that G/N is actually
isomorphic to Z/2.

Example 15.4. If we consider N = G then G/N = {G}, i.e. the quotient group is a group
with one element. If N = {e} then the cosets are given by gN = {g}. Thus

G/N = {{g} |g ∈ G} .
This is isomorphic to G with isomorphism f : G/N → G given by f ({g}) = g.

Example 15.5. We can consider G = (R,+) and N = Z. In this case, G/N can be seen as a
circle, seeing as [1] and [0] are identified.
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16. Friday, November 2

16.1. Quotient groups: the first isoorphism theorem. Recall that given a group G and
a normal subgroup N we defined the quotient group (G/N,∗) as the set of cosets of N (i.e.

{G/N = {gN |g ∈ G}}) such that g1Ng2N
def= (g1g2)N . This is a group with identity eN = N

and inverses (gN )−1 = g−1N .

Example 16.1. As we saw last time, we have that Z/5Z (where 5Z is shorthand for multi-
ples of 5) is the same thing as Z5. Another example is D3/〈r〉 (where r is a rotation) which
is equal to

D3/〈r〉 = {id〈r〉, s〈r〉}

where s is some reflection. We see that the multiplication table of this group is
id〈r〉 s〈r〉

id〈r〉 id〈r〉 s〈r〉
s〈r〉 s〈r〉 id〈r〉

and we see that it is isomorphic to Z2 via the isomorphism [0] → id〈r〉 and [1] → s〈r〉.
We could also deduce that it is isomorphic to Z2 just looking at the number of elements.
In fact, if a group G has p elements, where p is prime, we know it must be cyclic. This
follows from Lagrange’s theorem: take a ∈ G such that a , e, and consider the subgroup
H = 〈a〉. By Lagrange’s theorem, |H | divides p. Since e,a ∈H we know that |H | ≥ 2, and so
|H | = p. It follows that G =H and G is cyclic.

Today we are going to talk about quotient groups and homomorphisms.
Remark. Given a group G and a normal subgroup N of G, there is a homomorphism

f : G→ G/N

given by f (g) = gN . Such f is called the canonical homomorphism.

Example 16.2. Let G = Z and N = 5Z (the multiples of 5) so that G/N = Z/5. In this case

f (n) = n+ 5Z.

In particular,

f (0) = {0,−5,5,10,−10, . . . }
f (1) = {1,6,−4, . . . }

...

f (n) = [n]mod 5.

Note: The map f (in the general case) is indeed a homomorphism: assume g1, g2 ∈ G.
Then

f (g1g2) = (g1g2)N = g1Ng2N = f (g1)f (g2).

What is ker(f )? Recall that by definition

ker(f ) = {g ∈ G|f (g) = eN =N } .
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So it follows that

{g ∈ G|f (g) = eN =N }
= {g ∈ G|gN =N } .

We claim that this set is equal to N . We prove this by proving both inclusions of sets.
We start by proving that N ⊂ {g ∈ G|gN =N }. Assume that n ∈ N . Then nN = N , so

that n ∈ {g ∈ G|gN =N }.
We now prove the reverse inclusion. Suppose g ∈ G and gN =N . This means in partic-

ular that ge ∈N . But ge = g and so g ∈N .
How about im(f )? We claim that im(f ) = G/N , i.e. f is a surjection. In fact, given

x ∈ G/N we know that x is of the form gN for some g ∈ G. Therefore x = f (g).
The conclusion is that

G/ ker(f ) = im(f ) = G/N.

We are now going to develop a similar result in a more general setting. Assume f : G→H
is a homomorphism. In assignment 14 you are going to prove the following theorem:

Theorem 16.3. The subgroup ker(f ) is a normal subgroup of G.

The main result of today will be the following:

Theorem 16.4 (First isomorphism theorem). For a group homomorphism f : G→H we have
that

G/ ker(f ) � im(f ).

A particular case of this is that ker(f ) = {e} if and only if f is injective. In fact, if
ker(f ) = {e} then we saw last time that G/ {e} � G, and therefore G � G/ ker(f ) � im(f ). On
the other hand, if f is injective then f is an isomorphism from G to im(f ).

16.1.1. Proof of the first isomorphism theorem. Write K = ker(f ) and define f̄ : G/K →
im(f ) by f̄ (gK) = f (g). Since this definition involves a choice of representative, we need
to prove it is well-defined: assume g1K = g2K . This means that we can write g1 = g2k for
some k ∈ K . Then

f̄ (g1K) =f (g1)

=f (g2k)

=f (g2)f (k)

=f (g2)e

=f (g2)

=f̄ (g2K).

Having proved it’s well-defined, we now prove that f̄ is a homomorphism. Assume
g1K,g2K ∈ G/K . Then

f̄ (g1Kg2K) =f̄ (g1g2K) = f (g1g2) = f (g1)f (g2) = f̄ (g1K)f̄ (g2K).
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Proving that f is a bijection is not hard, so we will skip it (details can be found in the
book). �
Application. Assume G is a cyclic group of order n. Say G = 〈a〉 for some a ∈ G. Define a
homomorphism Z→ G by f (m) = am. By the first isomorphism theorem we know that

Z/ ker(f ) � im(f ) = G.

But we see that

ker(f ) = {m ∈Z|am = e}
= {multiples of n}
=nZ

and therefore Z/nZ � G.
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17. Monday, November 5

17.1. Topology of the real line. 1

The real line is the set of real numbers. The real numbers have some properties that
distinguish them from other setss of numbers such as the rationals. For example, the
rationals don’t contain a lot of numbers that the reals might contain. But what it means
for a number to be a real number? To answer to this question we are first going to list
some axioms (i.e. exactly what we are assuming about R).

17.2. Axioms of the real numbers. There is:
• a set R;
• binary operations + and · on R;
• a relation < on R;

satisfying:
(A) (R,+) is an abelian group with identity denoted by 0;
(M) (R − {0} , ·) is an abelian group with identity denoted by 1; also, · is commutative

and associative on all of R;
(D) for all reals x,y,z we have that

x(y + z) = (xy) + (xz);

(O) the relation < satisfies:
(O1) trichotomy: for all reals x, exactly one of 0 < x, x = 0, or x < 0 is true;
(O2) for all x,y ∈R if 0 < x and 0 < y then 0 < x+ y and 0 < x · y;
(O3) for all x,y,z ∈R if x < y then x+ z < y + z.

(C) completeness axiom: we will discuss this on Friday.
Axiom (C) is necessary to distinguish real numbers from the rationals, since the latter

satisfy all of the other axioms.
We also introduce the following definitions:

Definition 17.1. We define x > y to mean y < x.

Definition 17.2. We define x − y ∈R as x − y = x+ (−y).

Definition 17.3. We define x/y ∈R as x/y = x · (y−1) and write xy for x · y.

We now move onto some facts.
Facts.

(F0) We have that x · 0 = 0;
(F1) we have that −(xy) = (−x)y.
Some of these facts are going to be part of your homework; for now, let’s prove that

x · 0 = 0.

Proof. From (A) we know that 0 = 0 + 0. So

x · 0 =x · (0 + 0)
(D)
= (x · 0) + (x · 0).

1Handout at http://www.math.harvard.edu/˜sebv/101-fall-2018/reals.pdf
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So

0 = x · 0 + (−x · 0) =x · 0 + ·0 + (−x · 0) = x · 0.
�

We also have the following fact:
Fact. For every y ≥ 0 there is a unique x ≥ 0 such that x2 = y.

This fact is not true for rational numbers, so we will be using axiom (C) to prove exis-
tence; we will do this on Friday. However, we are able to prove uniqueness, namely prove
that given x1,x2 ≥ 0 then x2

1 = x2
2 only if x1 = x2.

The above fact allows us to introduce the following definition:

Definition 17.4. For y ≥ 0 we define
√
y to be the unique x ≥ 0 such that x2 = y.

Definition 17.5. For x a real number, we define

|x| =
{
x x ≥ 0
−x otherwise.

Some basic properties of the absolute value are as follows:
• For x,y ∈R we have that |xy| = |x||y|;
• x ≤ |x|;
• |x| ≥ 0 and |x| > 0 if x 6 0;
• |x|2 = |x2|;
• |x|
√
x2.

One of the most important facts about the absolute value is the following:

Theorem 17.6 (Triangle inequality (1.2.5 in the handout)). For real numbers x,y ∈ R we
have that

|x+ y| ≤ |x|+ |y|.

An important consequence is the following: assume z ∈ R. Then |x − y| ≤ |x − z|+ |z − y|.
If we imagine x,y,z being vertices of a triangle then this fact tells us that going straight
from x to y takes less than going from x to z first and then from z to y. This is what
this this inequality its name. T he proof of this fact (given the triangle inequality) is the
following:

|x − y| =|x − z+ z − y|
≤|x − z|+ |z − y|.

We are now going to introduce a theorem that will be a useful tool to prove that two
real numbers are equal.

Theorem 17.7. For x,y ∈R we have that x = y if and only if |x − y| < ε for every ε > 0.

Proof. Assume x,y,ε ∈R with ε > 0, and assume x = y. Then

|x − y| =|x+ (−y)| = |x+ (−x)| = |0| = 0 < ε.
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This proves the “only if” direction.
Assume now |x − y| < ε for every ε > 0. Assume for a contradiction that x , y. Write

z = x−y. We know that z , 0, and therefore |z| > 0 (this is one of the basic properties listed
above). Write ε0 = |z|. Then by assumption

ε0 = |z| = |x − y| < ε0,

so ε0 < ε0, which is a contradiction by (F6) in the handout. �
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18. Friday, November 9

18.1. The completeness axiom of the real numbers. Last time we introduced the axioms
of the real numbers, and we noted that there is an axiom that makes the real number
different from the rationals. This axiom is called the axiom of completeness:
Axiom of completeness. Any non-empty set of real numbers that is bounded above has
a least upper bound.

Definition 18.1. A set A of real numbers is bounded above if there is b ∈ R such that
a ≤ b for all a ∈ A. We call b and upper bound for A. Similarly define bounded below
and lower bound by replacing ≤ by ≥ in the above definition.

Example 18.2. The interval A = (0,1) is bounded above, for example by 1. Note that you
don’t have to consider 1 as the only upper bound; any number x ≥ 1 will work.

Example 18.3. The interval A = (0,∞) is not bounded above, but it is bounded below.
Note that in our notation∞ is not a real number.

Definition 18.4. Given a non-empty set A of real numbers, a real number b ∈R is a least
upper bound (or supremum) of A if

(1) b is an upper bound;
(2) for any upper bound s of A we have that b ≤ s.

If b is the least upper bound of A we write b = sup(A).

Note that the least upper bound is unique. In fact, if b1 and b2 are least upper bounds
of A, then by (1) b1 is an upper bound and so by (2) we know that b2 ≤ b1. Similarly
b1 ≤ b2.

Example 18.5. We claim that if A = (0,1) then sup(A) = 1.

Proof. We chekc that b satisfies the definition of least upper bound.
(1) We claim that 1 is an upper bound of (0,1). In fact, assume a ∈ (0,1). Then by

definition of (0,1) it follows that a < 1, so a ≤ 1.
(2) Assume s is any upper bound of (0,1). Assume for a contradiction that s < 1. Then

s ∈ (0,1) or s ≤ 0. We now want to show that there is something strictly bigger than
s which is less than 1. Consider a = (s + 1)/2. We can prove using the axioms that
s < a < 1. Then a shows that s is not an upper bound.

�

Warning. The least upper bound is not the same as the maximum.

Definition 18.6. A maximum of A is an element a0 ∈ A such that a ≤ a0 for all a ∈ A.

Example 18.7. The set (0,1) has no maximum but it has a supremum; on the other hand,
the set (0,1] has a maximum (and a supremmum). In particular, if s is a maximum then
it is a supremum, but not vice versa.

Example 18.8. Consider A =
{
r ∈Q |r2 ≤ 2

}
. It looks like sup(A) = 1, which we need to

prove. Note that this set does not have a supremum in Q; in fact, we are going to prove
that if a < b are real numbers then there is a rational r such that a < r < b. This property
of the rationals is summarized by saying that the rationals are dense in R.
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18.2. Nested interval property. Consider a collection of intervals [a1,b1], [a2,b2], . . . that
are nested. Then the next theorem shows that the properties of the real numbers are
going to imply that there is some number in the intersection.

Theorem 18.9. Assume for each n ∈N we are given a non-empty closed interval In = [an,bn].
Assume In+1 ⊂ In for all n ∈N. Then ⋂

n∈N
In , ∅.

Remark. Note that it is crucial that the intervals here are closed. For a counterexample
where they are not closed, consider ⋂

x>0

(0,x) = ∅.

Proof. Let

A = {x ∈R |x ≤ bn for all n ∈N} .
We claim that A is bounded above. In fact, bn is an upper bound for all n ∈N. Moreover,
A is not empty, since an ∈ A for all n ∈ N. By the completeness axiom it follows that
y = sup(A) exists. We now want to prove that y ∈ ∩n∈NIn. To do so we need to prove that
y ∈ In for all n ∈N. Assume n ∈N. Then y ≤ bn, because bn is an upper bound and y is
the least upper bound, and so by definition y ≤ bn. Also an ≤ y since an ∈ A and y is an
upper bound of A by definition of least upper bound. Therefore y ∈ In, and so

y ∈
⋂
n∈N

In.

�

Studen question: how is this result logically related to the completeness axiom?
Answer: it turns out that the two are actually equivalent statements.

18.3. The archimedean property. The archimedean property of the real numbers states
that

(i) for all x ∈R, there is n ∈N such that x ≤ n;
(ii) for all x > 0 there is n ∈N such that 1/n < x.

Proof. We start by proving (i). Assume for a contradiction that there exists x ∈R such that
n < x for all n ∈N. Take A = N. By our assumption, A is bounded above by x. Therefore
we can take α = sup(A). Consider now α − 1. We know that α − 1 is not an upper bound
for N. This means that there is n ∈N with α−1 < n. Then α < n+ 1, and since n+ 1 ∈N it
follows that α is not an upper bound. This contradicts our assumption that α = sup(N).

We now prove (ii), and we will use part (i) to do this. Assume x > 0 and take y = 1/x.
Apply (i) to y to get n ∈N with y ∈ n. So y < n+ 1. Then

x =
1
y
>

1
n+ 1

.

�

Corollary 18.9.1. For any a,b ∈R with a < b there is a rational number r with a < r < b.
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For a proof of this, see the book; what we just did is the special case a = 0.

Theorem 18.10. There is α ∈R such that α2 = 2.

Proof. Let

A =
{
x ∈R |x2 ≤ 2

}
.

This is nonempty since 0 ∈ A, and A is bounded above by 2. Let α = sup(A). We claim
that α2 = 2.

Proof of claim. Assume that α2 , 2. If α2 < 2 then α ∈ A. We will find β ∈ A such that
α < β. For n ∈N we have that (

α +
1
n

)
=α2 +

2α
n

+
1
n2

≤α2 +
2α
n

+
1
n

=α2 +
2α + 1
n

.

So α2 +(2α+1)/n < 2 if (2α+1)/n < 2−α2. Such n exists by the archimedean property. �

�
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19. Monday, November 12

19.1. Limits of sequences. Last time we saw that
√

2 = sup
({
x ∈R|x2 < 2

})
.

Intuitively, we can think of this as saying that if we look at the real line and we consider
all the points such that x2 < 2, then they are bounded on the left by x =

√
2. Another way

of looking at it is to consider
√

2 as the limit of the sequence 1,1.4,1.41, . . . . Today we will
see how to make this last concept precise.

Definition 19.1. A sequence is a function whose domain is N.

Example 19.2. Let f : N→R be defined as f (n) = 1/n. This is the sequence

1,
1
2
,
1
3
,
1
4
, . . . .

Notations. In practice we never write out sequences as functions. Rather we use the
following notations:

• (a1, a2, a3, . . . ), which in the previous example would be
(
1, 1

2 ,
1
3 , . . .

)
;

• (an)n∈N, which in the previous example would be
(

1
n

)
n∈N

;

• (an)∞n=1 (
(

1
n
∞
1

)
in the example);

• (an) (
(

1
n

)
in the example).

Definition 19.3. A sequence (an) converges to a real number a if for every ε > 0 there
exists a natural number N such that whenevr n ≥ N we have |an − a| < ε. If it exists, the
number a is called the limit of the sequence (an), and is written as limn→∞(an) = a or
(an)→ a.

Example 19.4. Consider the sequence (an) given by an = 1√
n

. Then you might know from
calculus that (an)→ 0 = a. We now want to prove this rigorously. We have to check that
for every ε > 0 there is N such that whenever n ≥N then∣∣∣∣∣∣ 1

√
n

= 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
√
n

∣∣∣∣∣∣ < ε.
For example, given ε = 1/10 we see that N = 101 works, since 1√

101
< 1√

100
= 1/10 = ε;

similarly for ε = 1/100 we see that N = 10001 works. We want to show this in the general
case. The template is as follows: Assume ε > 0. Take N such that . . . (or N = . . . ). We now
show it works. Assume n ≥N .

...

Therefore |an − a| < ε.
How can we use this template in our case where an = 1√

n
? We see that we need to check

that ∣∣∣∣∣∣ 1
√
n

= 0

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
√
n

∣∣∣∣∣∣ < ε,
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, and if we square both sides we get
1
n
< ε2.

Let’s put this into our proof.

Proof. Assume ε > 0. Take N such that (1
ε

)2
< N.

Such N exists by the archimedean property of the natural numbers. We now show it
works. Assume n ≥ N . Since (1/ε)2 < N it follows that 1

ε <
√
N , and therefore 1/ε <

√
n

since
√
N ≤
√
n. Therefore

|an − a| ≤ ε.
�

Example 19.5. Consider (an) where an = n+1
n . We want to prove that (an)→ 1.

Proof. Assume ε > 0. Take a natural number N such that 1/N < ε (this exists by the
Archimedean property). We now show it works. Take a natural number n ≥N . Then

|an − a| =
∣∣∣∣∣n+ 1
n
− 1

∣∣∣∣∣ =
∣∣∣∣∣1n

∣∣∣∣∣ =
1
n
≤ 1
N
< ε,

as desired. �

We are going to introduce some facts that are going to be useful when computing limits.
The first is the algebraic limit theorem, and the second is the order limit theorem.

Theorem 19.6 (Algebraic limit theorem). Assume (an)→ a and (bn)→ b. Then
(i) (can)→ ca for every real number c;

(ii) (an + bn)→ a+ b;
(iii) (an · bn)→ ab;
(iv)

(
an
bn

)
→ a

b if bn , 0 for all n ∈N and b , 0.

Theorem 19.7 (Order limit theorem). Assume (an) → a and (bn) → b. If an ≤ bn for all
natural numbers n, then a ≤ b.

We are not going to prove the Algebraic limit theorem in full, but rather we will limit
ourselves to proving part (i). We will come back to the remaining parts once we develop
tools to prove them efficiently.

Proof of (i) in the algebraic limit theorem. Assume c is a real number. Either c = 0 or c , 0.
We can consider these two cases separately.

If c = 0 then (can) = (0)→ 0 = ca.
Suppose now n , 0. We know that (an)→ a. So for every ε2 > 0 there is N ∈N such that

whenever n ≥ N we have |an − a| < ε. We want to show that (can)→ ca. Assume ε > 0. Set
ε2 = ε/ |c|. By assumption, there is N ∈N such that |an − a| < ε2 whenever n ≥ N . Assume
that n ≥N . Then

|can − ca| =|c||an − a| < |c|ε2 = |c| ε
|c|

= ε,
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as desired. �

Proof of the order limit theorem. Assume (an)→ a and (bn)→ b. Assume an ≤ bn for all n.
Assume for a contradiction that b < a. Take ε = a−b

2 . Then ε > 0 by assumption. Since
(an)→ a there is N1 such that whenever n ≥ N1 we have |an − a| < ε. Since (bn)→ b there
is N2 such that whenever n ≥ N2 we have |bn − b| < ε. Take N = max(N1,N2) and assume
n ≥N . Then |bn − b| < ε. So

b − ε < bn < b+ ε = b+
a− b

2
=
a
2

+
b
2
.

Similarly |an − a| < ε and so
a
2

+
b
2

= a− a− b
2

= a− ε < an < a+ ε.

So

bn < b+ ε =
a
2

+
b
2

= a− ε < an,

and so bn < an. This contradicts our assumption that an ≤ bn. �
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20. Friday, November 16

20.1. Subsequences and limits. Last time we saw what it means for a sequence (an) to
converge to a real number a (written (an) → a) if for every ε > 0 there exists a natural
number N such that whenevr n ≥ N we have |an − a| < ε. If (an) does not converge we say
it diverges. Today we will explore some conditions under which a sequence converges or
diverges.

Definition 20.1. A sequence (an) is bounded if there exists a positive real numberM such
that an ≤M.

If we picture the sequence as dots on the real line, then it is bounded if there is an
interval [−M,M] that contains all the dots.

Example 20.2. The sequence (01,1,−1/2,1/2,−1/3, . . . ) is bounded: take M = 1. However,
the sequence (1,2,3, . . . ) is not bounded, and the same goes for (−1,−2,−3, . . . ).

The following theorem gives us a useful necessary condition for convergence.

Theorem 20.3. If a sequence (an) converges, then (an) is bounded.

Proof. Assume (an) converges to a. Take ε = 1. Then there is N ∈N such that whenever
n ≥ N we have |an − a| < 1. Take M = max(|a1|, |a2|, . . . , |aN |, |a+ 1|). Then for any n we have
that |an| ≤M. �

Is the converse true? Namely, if a sequence (an) is bounded, then does it converge? The
answer is no: for example consider the sequence an = (−1)n. We could prove that it does
not converge just using the definition, but we are going to see a way of proving it more
easily. For that, we are going to study this sequence in more detail. Note that although
the sequence itself does not converge, we can focus on the even terms ( the 1’s) in the
sequence and see that they form a convergent sequence. The same goes for the odd terms.
This observation introduces the following definition.

Definition 20.4. Given a sequence (an) and n1 < n2 < . . . are natural numbers, the se-
quence (ank )k∈N =

(
an1
, an2

, an3
, . . .

)
is called a subsequence of (an).

Example 20.5. Say

(an) =
(
1,

1
2
,
1
3
,
1
4
, . . .

)
.

Then (1/4,1/10,1/16,1/20, . . . ) is a subsequence. However, (1,1,1,1, . . . ) is not a subse-
quence because we are not allowed to repeat indices; also (1/3,1/2,1,1/4, . . . ) is not a
subsequence since we are not allowed to change the order of the indices.

Theorem 20.6. If (an)→ a then any subsequence of (an) converges to a.

Proof. Assume
(
ank

)
is a subsequence of (an). We show that (ank )→ a. Assume ε > 0. Take

N such that |an − a| < ε for all n ≥ N . Assume that k ≥ N . Then we know that nk ≥ k, and
so nk ≥N . Therefore |ank − a| < ε. �

A consequence of this theorem is that if (an) has two subsequences coverging to two
different limits then (an) does not converge. For example, (0,1,0,1, . . . ) does not converge.
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Definition 20.7. A sequence (an) is monotone if it is either decreasing or increasing. We
say that it is decreasing if an+1 ≤ an for all n ∈ N, and we say that it is increasing if
an+1 ≥ an for all n ∈N.

Example 20.8. The sequence (
1,1,

1
2
,
1
2
,
1
3
,
1
3
, . . .

)
is decreasing, hence monotone. The sequence (0,1,0,1, . . . ) is not monotone. The sequence
(1,1,1,1,1, . . . ) is both increasing and decreasing.

Theorem 20.9 (Monotone convergence theorem). If (an) is monotone and bounded, then (an)
converges.

Proof. Assume (an) is increasing. Set A = {an|n ∈N}. We know that a1 ∈ A and so A is not
empty. We also know that (an) is bounded, and so there is M such that |an| ≤ M. So M
is an upper bound for A. Then A has a least upper bound. Take a = sup(A). We want
to prove (an) → a. Assume ε > 0. Since a is the supremum of A, then a − ε is not an
upper bound for A and so there is x ∈ A such that a−ε < x. Take N such that x = aN . Then
a−ε < aN ≤ a. Assume n ≥N . Then since the sequence is increasing we know that aN ≤ an.
Then a− ε < aN ≤ an ≤ a since a is an upper bound. This shows that |an − a| < ε. �

Note that the last conclusion of the proof follows from the following general fact: we
have that |x − y| < ε if and only if x − ε < y < x+ ε.

Going back to the sequence (−1,1,−1, . . . ) we see that although it does not converge it
still has some converging subsequences. Is it true that given any bounded sequence it is
possible to find some susbequence which converges? The answer to this question is yes.

Theorem 20.10 (Bolzano-Weierstrass theorem). Any bounded sequence has a convergent
subsequence.

Definition 20.11. An accumulation point of a sequence (an) is a real number a to which
some subsequence of (an) converges.

Using this definition we can see that the Bolzano-Weierstrass theorem tells us that any
bounded sequence has an accumulation point.

Definition 20.12. A sequence (an) is Cauchy if for any ε > 0 there is N such that for all
n,m ∈N we have |an − am| < ε.

From assignment 17 you know that if a sequence converges then it is Cauchy. Is the
converse true? It turns out that it is.

Theorem 20.13. Any Cauchy sequence converges.

Proof. Cauchy sequences are bounded (this is left as an exercise, and the proof is similar
to the proof that convergent sequences are bounded). By Bolzano-Weierstrass, there is a
subsequence

(
ank

)
that converges to a real number a. We will prove that (an)→ a. Assume

ε > 0. Take N1 so that for any k with nk ≥N1 we have |ank − a| < ε/2, and take N2 such that
for any n,m ≥ N2 we have |an − am| < ε/2. Let N = max(N1,N2). Now assume n ≥ N , and
take k so that nk ≥N ≥N1,N2. Let m = nk. Then

|an − a| ≤ |am − a|+ |an − am| <
ε
2

+
ε
2

= ε.
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Therefore (an)→ a. �
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21. Monday, November 19

21.1. The Bolzano-Weierstrass theorem. We saw last time (without proof) that every
bounded sequence has a convergent subsequence. For example, the sequence (0,1,0,1,0,1,0, . . . )
is bounded and not convergent; however, the subsequence (1,1,1,1,1, . . . ) converges. There
are several ways to prove this. One way is take the interval where the sequence lies (which
exists since the sequence is bounded) and split it in half; then, look at a side with in-
finitely many points, and repeat the process. By repeating this we obtain a convergent
subsequence.

Another idea is as follows: find a subsequence that increases or decreases, and then
show that it goes to a limit (this uses the monotone convergence theorem).

A third idea is to find a bound that is near infinitely many terms. The first idea is the
proof used in the book, and the remaining two are exercises. Let’s look at the second one.
We’ll start by proving a theorem.

Theorem 21.1. Any sequence has a monotone subsequence.

An idea to prove this is modeled after the third idea above; namely, consider an element
and look at whether there are infinitely many terms above it. If the answer is yes, we add
it to our subsequence, and if no we discard it; we then repeat the process. This process
might not work because there might be no increasing subsequence, and in that case we
would try the process for a decreasing subsequence. For this kind of process it’s helpful
to introduce a definition.

Definition 21.2. A peak of a sequence (an) is a term am such that am ≥ an for all n ≥m.

In term of peaks, we can prove Theorem 21.1 by considering a subsequence of peaks.
Such a subsequence will be decreasing by definition. However, there might be no infinite
number of peaks; in that case, there might be an infinite number of “valleys” (the opposite
of peaks), but even in this case there might be only finitely many of those. In any case,
if we assume that there are finitely many peaks am1

, . . . , am` we can just consider an with
n > m`, knowing that it is not a peak. By definition this means that there exists n′ > n
such that an′ > an. Since an′ is not a peak either we can repeat the process, and so we end
up with an increasing subsequence.

Having proved Theorem 21.1 we can readily prove the Bolzano-Weierstrass theorem:

Proof of Bolzano-Weierstrass. Assume (an) is bounded. Find a monotone subsequence (ank ).
By the monotone convergence theorem (ank ) converges. �

Let’s go back to the third proof idea, namely that of finding a bound close to infinitely
many terms of (an). Consider the set

A = {x ∈R | there are infinitely many an with x < an} .

In order to show that this set has a supremum we need to show it is nonempty and
bounded. We know that A is nonempty since −M − 1 ∈ A (where [−M,M] is the interval
containing (an)). MoreoverA is bounded above sinceM is an upper bound. Let a = sup(A).
Consider the interval (a − 1, a + 1). We claim that there is n1 such that an1

∈ (a − 1, a + 1).
In fact, a is the supremum and therefore a − 1 is not an upper bound, and by definition
of A there are infinitely many an such that an > a − 1. Moreover, since a is a supremum

70



we know that there are only finitely many an above a + 1. So we can find an1
with an1

∈
(a−1, a+ 1). We repeat this step to find an2

such that an2
∈ (a−1/2, a+ 1/2), and in general

find ank ∈ (a− 1/k,a+ 1/k). Then the subsequence (ank ) converges to a.
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22. Monday, November 26

Missed class :( The material of today’s class can be found at http://math.harvard.
edu/˜sebv/101-fall-2018/supreals.pdf (note that the presentation is different than
in Abbott’s book).
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23. Friday, November 30

Note that the last class on Monday, December 3 will be a review session. Bring ques-
tions!

23.1. Representing real numbers: continuous fractions. 2

As we said previously, we can use decimal expansions to represent real numbers. For
example, we can write

√
2 =1.4142135 . . .
e =2.71828182845 . . .
π =3.141592653 . . .

and similarly for other numbers. However, we see that all these expansions look very
irregular, but this concept is harder to express. In particular, how complicated are these
numbers? Can we represent them in some other way? The answe is yes, and it will turn
out that numbers such as

√
2 are less complicated than e or π.

Example 23.1. Consider, for example, the decimal expansion

x =
19
7

= 2.714285714285714285 . . .

We could write in a way that isolates the integer part:

19
7

=2 +
5
7
.

We could repeat this step with the reciprocal of the remainder, to obtain

1
5
7

=
7
5

= 1 +
2
5

;

if we keep going, we obtain

1
2
5

=
5
2

= 2 +
1
2

and here the remainder is the reciprocal of an integer, so that there are no more steps to
take. If we combine all of these expansion, we can write

19
7

=2 +
5
7

= 2 +
1
7
5

= 2 +
1

1 + 2
5

= 2 +
1

1 + 1
5
2

= 2 +
1

1 + 1
2+ 1

2

.

In general, any rational number x ≥ 1 can be written as

a0 +
1

a1 + 1
a2+...

an−1+ 1
an

.

2 Good references for this topic include The Real Numbers by Stillwell and Elementary Number Theory by
Stein (links can be found on the course website)
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This is the continued fraction representation of x. For x = 19/7 we have a0 = 2, a1 =
1, a2 = 2, a3 = 2, and n = 3. The fact that there are only finitely many terms is due to the
fact that the Euclidean algorithm terminates in a finite number of steps.

Example 23.2. Consider now the irrational number
√

2. We can proceed similarly as
above, with the difference that in this case the integer part is going to be extracted by the
floor function bxc, which by definition returns the largest integer n such that n ≤ x. In
this case, we see that

√
2 =b
√

2c+
√

2− b
√

2c

=1 +
√

2− 1.

We can repeat the same steps as in the previous example:

1
√

2− 1
=

1
√

2− 1
·
√

2 + 1
√

2 + 1

=

√
2 + 1
√

2− 1

=
√

2 + 1

=2 + (
√

2 + 1− 2)

=2 + (
√

2− 1).

In this case, the remainder is the same as the one in the previous step, so that the next
step is going to be exactly the same. In conclusion,

√
2 =1

1
1√
2−1

=1 +
1

2 + 1√
2−1

=1 +
1

2 + 1
2+ 1

2+ 1
2+...

.

In particular, we see that
√

2 is not irrational.

Example 23.3. Let

ρ =
1 +
√

5
2
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(also known as the golden ratio). Let’s compute the continued fraction representation of
ρ.

ρ =
1 +
√

5
2

=
⌊

1 +
√

5
2

⌋
+ ρ − bρc

=1 + ρ − 1

=1 +

√
5− 1
2

.

Moreover,

1
√

5−1
1

=
2(
√

5 + 1)
5− 1

=

√
5 + 1
2

=ρ

so that this brings us to the first step. Therefore

ρ =1 +
1

1 + 1
1+ 1

1+...

.

Note that in the last two examples we have been very imprecise about what we mean
by our continued fraction example. For example, we haven’t defined what it means for
the fraction to “go on,” nor have we proved that such representation “approximates” the
number it represents. The following definition is going to make these concept precise.

Definition 23.4. For a0, a1, a2, · · · ≥ 1 define

a0 +
1

a1 + 1
a2+···

to be the limit (if it exists) of the sequence (cn) where

cn = a0 +
1

a1 + 1
a2+...

+ 1
an−1+ 1

an

.

The term cn is called the nth convergent.

Remark. Note that in general we write
∞∑
n=1

1
n2

def= lim
m→∞

m∑
n=1

1
n2 .

Example 23.5. For ρ = 1+
√

5
2 we have

c1 = 1, c2 =
2
1
, c3 =

3
2
, c4 =

5
3
,
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and in general we can prove that cn is going to be equal to Fn+1/Fn, where Fn is the nth
Fibonacci number.

We can find other ways to express the term cn. For instance, let p0 = a0 and q0 = 1. Then

c0 =
p0

q0
.

Moreover, we have

c1 = a0 +
1
a1

=
a0a1 + 1
a1

.

Let p1 = a0a1 + 1 and q1 = 1. In general for n ≥ 2 let

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

Then we can prove by induction that

cn =
pn
qn
.

Moreover we can prove using induction that for any number n we have

cn − cn−1 =
(−1)n−1

qnqn−1
.

Note that from the formula we see that q0,q1 ≥ 1, q2 = a2q1 + q0 ≥ 1 · 1 + 1 = 2, and in
general

qn ≥ n.

It follows that qnqn−1 ≥ (n− 1)2 and therefore

cn − cn−1 ≤
(−1)n−1

(n− 1)2 → 0.

Also, note that

c2 − c1 =
−1
q2q1

< 0

and so c2 < c1. Similarly we see that c3 > c2. For n ≥ 2 we see that

cn − cn−2 =cn − cn−1 + cn−1 − cn−2

≥(−1)n
2

qn−1qn−2
.

This implies that c4 − c2 > 0 (and similarly for even n) and c3 − c1 < 0 (same for odd n). In
particular, we have inequalities

a0 = c0 < c2 < c4 < · · · < c5 < c3 < c1,

which means that the odd convergents approximate our number by above while the even
convergents approximate it from below. Let’s focus now on these two sequences, namely
(c2k) and (c2k+1), separately. Each of these sequences are bounded and monotone, and
therefore converge. Let

lim
k→∞

(c2k) = α lim
k→∞

(c2k+1) = β.
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We know that

0 ≤ |c2k+1 − c2k | ≤
1
k2 → 0.

The squeeze theorem makes us conclude that (c2k+1 − cn) → 0. We can now apply the
algebraic limit theorem to show that

0 = lim
k→∞

(c2k+1 − c2k) =
(

lim
k→∞

c2k+1

)
−
(

lim
k→∞

c2k

)
= α − β,

and therefore (cn)→ α = β.
For fun, we can compute

e =2 +
1

1 + 1
2+ 1

1+ 1
1+ 1

4+ 1
1+ 1

1+ 1
6+ 1

1+ 1
1+ 1

8+...

.

The continued fraction of π lacks this regularity.
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24. Monday, December 3

24.1. Review. Today’s class is to review the material on the exam and especially to an-
swer any question.

Q: Can we go over the triangle inequality?

24.2. Triangle inequality. A way to state the triangle inequality is that for real numbers
x and y we have

|x+ y| ≤ |x|+ |y|.

Another version is the following: for all real mumbers x,y,z we have

|x − z| ≤ |x − y|+ |y − z|.

Q: This inequality is often used in proofs involving ε, for example the algebraic limit
theorem. Can we go over it?

24.3. Algebraic limit theorem. We can prove the agebraic limit theorem by using the
squeeze theorem or by using the definition. Let’s try the latter. We want to prove that if
(an)→ a and (bn)→ b then (an + bn)→ a+ b.

Proof. Assume ε > 0. We know that the end of the proof is going to conclude that

|an + bn − (a+ b)| < ε.

Seeing that there are sums and differences inside an absolute value we can try and use
the triangle inequality. In particular, we can regroup

|an + bn − (a+ b)| =|(an − a) + (bn − b)|

and use the triangle inequality to obtain

|(an − a) + (bn − b)| ≤ |an − a|+ |bn − b|.

Thus in order for the above sum to be less than ε we need to limit each summand ap-
propriately. Since (an)→ a and (bn → b), for every ε1, ε2 > 0 we can choose N1 ∈ N and
N2 ∈N such that for all n ≥N1 we have |an−a| < ε1 and for all n2 ≥N2 we have |bn−b| < ε2.
Set ε1 = ε/2 and ε2 = ε/2. Take N = max(N1,N2). Then if n ≥N we have

|an + bn − (a+ b)| =|(an − a) + (bn − b)|
≤|an − a|+ |bn − b|
<ε1 + ε2.

�

24.4. Accumulation points. We saw that not all sequences converge; for example, the se-
quence (0,1,0,1,0,1,0,1,0,1, . . . ). However, this sequence has accumulation points, which
by definition are limits of convergent subsequences. In this case the accumulation points
are 1 and 0, and

limsup(0,1,0,1,0,1, . . . ) = 1 liminf(0,1,0,1,0,1, . . . ) = 0.
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24.5. Properties of liminf and limsup. For (an) a bounded sequence (recall this means
that there exists M > 0 such that |an| ≤M, or equivalently −M ≤ a ≤M) we have

(1) liminfan ≤ limsupan;
(2) liminfan = limsupan = a if and only if liman = a;
(3) if there is a sequence (bn) such that an ≤ bn for all n, then liminfan ≤ liminfbn and

limsupan ≤ limsupbn.
The second point implies that we can check if a sequence converges by computing its
liminf and limsup.

24.6. Squeeze theorem. The squeeze theorem states that if (an)→ `, (cn)→ `, and an ≤
bn ≤ cn, then (bn)→ `. We can prove it using the definition, but we can also use one of the
properties above.

Proof. Let’s compute liminfbn. We know that ` = liminfan and

liminfbn ≤ liminfcn = `

so that liminfbn = `. We can show similarly that limsupbn = `, and therefore (bn)→ `. �

Note that there are some useful ways to prove that two real numbers a and b are equal.
For instance,

(a) a = b if and only if a ≤ b and b ≤ a;
(b) a = b if and only if |a− b| < ε for every ε > 0.

24.7. Boundedness. Note that in the above statement of the squeeze theorem we didn’t
rigorously prove that (bn) is bounded, which is necessary to know that liminfbn and
limsupbn exist. Indeed, we know that |an| ≤ M1 since it converges, and |cn| ≤ M2 sim-
ilarly. Take M = max(M1,M2). Then −M ≤ bn ≤M.

Note that sometimes it is easier to show that a bound exists and deduce that a limit ex-
ists rather than actually computing the limit and deducing that the sequence is bounded.
For example, consider the sequence1,1 +

1
4
,1 +

1
4

+
1
9
, . . . ,

m∑
n=1

1
n2 , . . .

 .
We can show that it is bounded by 2, but it’s much harder to compute the limit (which is
π2/6).

24.8. Strengthened squeeze theorem. This stronger version states the following: as-
sume (an)→ ` and (cn)→ `, and more over assume that for every ε > 0 there exists N ∈N
such that for every n ≥N we have

an − ε ≤ bn ≤ cn + ε.

Then bn→ `.

Proof. We show that (bn) is bounded. Take ε = 1, and take N ∈N such that for all n ≥ N
we have an − 1 ≤ bn ≤ cn + 1. Now take

M = max(|b1|, |b2|, |bN |,M1 + 1,M2 + 1) ,
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where M1 = max(an) and M2 = max(cn). Since

−M1 − 1 ≤ an − 1 ≤ bn ≤ cn + 1 ≤M2 + 1

for all n ≥ N it follows that max(M1 + 1,M2 + 1) bounds bn for n ≥ N . Consider M0 =
max(|b1|, |b2|, . . . , |bN |) andM3 = max(M1+1,M2+1). Then we see that forM = max(M0,M3)
we have

|bn| ≤M for all n ∈N.
This show that (bn) is bounded. Set `1 = liminfbn and `2 = limsupbn. If we show that

`1 = `2 then we are done. Assume ε > 0, and take N such that for all n ≥ N we have
an − ε ≤ bn ≤ cn + ε. Then liminf(an − ε) ≤ liminfbn ≤ liminf(cn + ε) since accumulation
points do not depend on the first few terms of the sequences (the ones before N ). By the
algebraic limit theorem this gives that

` − ε ≤ `1 ≤ ` + ε,

and therefore |`1 − `| ≤ ε for all ε. It follows that `1 = `, and similarly we can prove that
`2 = `. In conclusion ` = `1 = `2, which proves the theorem. �

24.9. Checking convergence. There are many ways to check that a sequence converges
or diverges. For instance:

• if you find the limit, it’s converges;
• if it’s unbounded, it diverges;
• if bounded and monotone, it converges;
• if it’s Cauchy, it converges;
• if liminf = limsup.
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proposition, 6
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transitive, 27
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bounded, 66
Cauchy, 67
convergence, 63
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