MATH 101, FALL 2018: SUM OF INTERIOR ANGLES OF POLYGONS

Theorem. If a polygon is drawn by picking $n \ge 3$ points on a circle and connecting them in consecutive order with line segments, then the sum of the interior angle of that polygon is (n-2)180 degrees.

Proof. We prove by induction on $n \ge 3$ the statement S_n : any polygon drawn by picking n points on a circle and connecting them in consecutive order with line segments has the sum of its interior angles equal to (n-2)180 degrees.

- Base case: if n = 3, then the statement says that the sum of the interior angles of a triangle is 180. This is a result of high school geometry (which we take for granted for that problem).
- Inductive step: Assume $n \geq 3$ and S_n is true. Assume $P_1, P_2, \ldots, P_n, P_{n+1}$ are (n + 1)-many points on a circle (in consecutive order), and consider the polygon A made from connecting these points. Drawing a line from P_1 to P_3 , we obtain a triangle T with points P_1, P_2, P_3 , and another polygon B with points $P_1, P_3, P_4, \ldots, P_{n+1}$. Note that B has n points, so by the induction hypothesis the sum of its interior angles is (n 2)180. Also, T is a triangle so the sum of its interior angles is 180. Now observe that the sum of the interior angles of A is just the sum of the interior angles of B plus the sum of the interior angles of T. Therefore the sum of the interior angles of A is (n 2)180 + 180 = ((n + 1) 2)180. Thus S_{n+1} is true.

By the principle of mathematical induction, S_n is true for all natural numbers $n \ge 3$.