MATH 101, FALL 2018: SUM OF INTERIOR ANGLES OF POLYGONS

Theorem. If a polygon is drawn by picking $n \geq 3$ points on a circle and connecting them in consecutive order with line segments, then the sum of the interior angle of that polygon is $(n-2) 180$ degrees.

Proof. We prove by induction on $n \geq 3$ the statement S_{n} : any polygon drawn by picking n points on a circle and connecting them in consecutive order with line segments has the sum of its interior angles equal to $(n-2) 180$ degrees.

- Base case: if $n=3$, then the statement says that the sum of the interior angles of a triangle is 180 . This is a result of high school geometry (which we take for granted for that problem).
- Inductive step: Assume $n \geq 3$ and S_{n} is true. Assume $P_{1}, P_{2}, \ldots, P_{n}, P_{n+1}$ are $(n+1)$-many points on a circle (in consecutive order), and consider the polygon A made from connecting these points. Drawing a line from P_{1} to P_{3}, we obtain a triangle T with points P_{1}, P_{2}, P_{3}, and another polygon B with points $P_{1}, P_{3}, P_{4}, \ldots, P_{n+1}$. Note that B has n points, so by the induction hypothesis the sum of its interior angles is $(n-2) 180$. Also, T is a triangle so the sum of its interior angles is 180 . Now observe that the sum of the interior angles of A is just the sum of the interior angles of B plus the sum of the interior angles of T. Therefore the sum of the interior angles of A is $(n-2) 180+180=((n+1)-2) 180$. Thus S_{n+1} is true.
By the principle of mathematical induction, S_{n} is true for all natural numbers $n \geq 3$.

[^0]
[^0]: Date: September 21, 2018.

