
MATH 101, FALL 2018: AXIOMS, FACTS, AND THEOREMS OF

THE REAL LINE

SEBASTIEN VASEY

These notes give a list of axioms, facts, and theorems about numbers that we
will see and use in this course. This is mostly meant as a quick reference to look
up facts and theorems. We will call an axiom a statement that we just take for
granted. A fact is a statement that follows from the axioms that we can use, but
for which we skip the proof (usually because the proof is not too interesting). A
theorem is a statement that follows from the axioms (and the facts) and that we
will prove in this class.

Axioms of real numbers. There is:

• A set R (called the set of real numbers).
• Two binary operations + and · on R (called addition and multiplication).
• A relation < on R (called the ordering of R).

with the following properties:

(A) (R,+) is an abelian group. We denote its identity element by 0, and write
−a for the inverse of an element a in (R,+).

(M) (R−{0}, ·) is an abelian group. Moreover, · is associative and commutative
on all of R (including 0). We denote the identity element of (R−{0}, ·) by
1, and write a−1 for the inverse of an element a in (R− {0}, ·).

(D) Addition and multiplication satisfy the distributive law : for all x, y, z ∈ R,
x · (y + z) = (x · y) + (x · z).

(O) The binary relation < satisfies:
(O1) Trichotomy: if x ∈ R, then exactly one of the following is true: x < 0,

0 = x, or 0 < x.
(O2) Sums and products of positives are positives: if x, y ∈ R, 0 < x and

0 < y, then 0 < x+ y and 0 < x · y.
(O3) Adding a fixed element preserves inequalities: if x, y, z ∈ R and x < y,

then x+ z < y + z.
(C) The completeness axiom: any non-empty subset of R that is bounded above

has a least upper bound.

Some notation: when brackets are not present, multiplication should be done
first, i.e. for x, y real numbers, x · y + x means (x · y) + x, and not x · (y + x). We
often write xy instead of x · y. By associativity, the order of summation does not
matter, so we write x+y+z for (x+y)+z (which is the same thing as x+(y+z)).
Similarly for multiplication.

We write y > x to mean x < y. We write x ≤ y to mean that x < y or x = y.
x ≥ y means y ≤ x. We say x is positive if 0 < x, negative if x < 0, non-negative
if 0 ≤ x. When we want to emphasize that x is not zero, we may say “strictly
positive” or “strictly negative”.
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Notice that it is necessary to explicitly define relations such as > since all our
axioms talk about is <. We can similarly define subtraction and division:

Definition 1. For real numbers x, y, we define x− y to mean x+ (−y). Similarly,
for y nonzero, we define x/y (also written x

y ) to mean x · y−1.

From the axioms and the definitions of subtraction and division, we can go on to
prove many more elementary properties. The arguments are usually quite boring
(you will be asked to do a few of them in your homework). We list here all the
elementary facts we will need (you can use them freely).

Fact 2 (Properties of addition and multiplication). For all real numbers x, y, z, w:

• (F0): x · 0 = 0.
• (F1): −(xy) = (−x)y.
• (F2): −x = (−1)x.
• (F3): (−x)(−y) = xy.
• (F4): If xy = 0, then x = 0 or y = 0 (or both).
• (F5):

– (x+ y)(z + w) = xz + xw + yz + yw,
– (x+ y)2 = x2 + 2xy + y2.
– (x− y)2 = x2 − 2xy + y2.
– (x+ y)(x− y) = x2 − y2.

(Note: as usual with groups, x2 stands for x · x))
Fact 3 (Properties of the ordering). For all real numbers x, y, z, w:

• (F6): Totality: Exactly one of x < y, x = y, y < x always holds. Exactly
one of x ≤ y or y < x always holds.

• (F7): Reflexivity: x ≤ x.
• (F8): Antisymmetry: If x ≤ y and y ≤ x, then x = y.
• (F9): Transitivity: If x ≤ y and y ≤ z, then x ≤ z. Similarly if ≤ is

replaced by <.
• Interaction with addition and multiplication:

– (F10): 0 < 1.
– (F11): If x ≤ y and z ≤ w, then x + z ≤ y + w. Similarly if ≤ is

replaced by <.
– (F12): If x ≤ y, then −y ≤ −x. Similarly if ≤ is replaced by <.
– (F13): If x ≤ y and 0 ≤ z, then xz ≤ yz.
– (F14): If 0 ≤ x and 0 ≤ y, then 0 ≤ xy. Similarly if ≤ is replaced by
<.

– (F15): 0 ≤ x · x, and if 0 < x then 0 < x · x.
– (F16): If 0 < x, then 0 < x−1.
– (F17): If 0 < x < y, then 0 < y−1 < x−1.

Once we have the real numbers, we can also precisely define the integers, natural
numbers, and rationals.

Definition 4. We define the following sets:

• The set Z (called the set of integers) is the subgroup of (R,+) generated
by 1. That is, it is the intersection of all the subgroups of (R,+) which
contain 1.

• The set N (called the set of natural numbers) is the set of strictly positive
integers.
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• The set Q (called the set of rational numbers) is defined to be the set
Q = {ab | a, b ∈ Z, b 6= 0}.

The number 2 is defined to be 1 + 1. Similarly, 3 = 1 + 1 + 1, 4 = 1 + 1 + 1 + 1,
etc. Thus the natural numbers are is just the set containing the numbers 1, 2, 3, . . .,
etc.

You may take the following facts about the natural numbers and integers for
granted (but they actually follow from the axioms).

Fact 5.

(1) For all rationals x and y, x+ y and x · y are rationals.
(2) For all integers m and n, m+ n and m · n are integers.
(3) For all natural numbers m and n, m+ n and m · n are natural numbers.
(4) Any non-empty set S of natural numbers has a minimal element: an element

x ∈ S such that if y ∈ S, then x ≤ y.
(5) The principle of mathematical induction holds.
(6) Divisions have remainders: for any integer n and any integer d > 0, there

exists integers q and r (the quotient and remainder) such that 0 ≤ r < d
and n = dq + r.

We may use all these facts without explicitly mentioning them each time.

Square root and absolute value

Definition 6. A real number x is said to be a square root of a real number y if x
is non-negative and x2 = y.

By property (F15) from Fact 2, x2 is always non-negative, so only non-negative
real numbers have a real square root. Moreover, the square root is unique:

Fact 7 (Uniqueness of the square root). Given x, y non-negative real numbers,
assume x2 = y2. Then x = y.

Using the completeness axiom, square roots exist:

Theorem 8 (1.4.5 in Abott). Every non-negative real number has a square root.

Definition 9. For x a non-negative real number, we write
√
x for the unique square

root of x.

Warning. Assume that x, y are real numbers and x2 = y. Do we have x =
√
y?

No, because we do not know that x is non-negative. Indeed, it turns out that
−√y is also a possible solution, which will be different from

√
y if y > 0. Using

uniqueness of the square root, it is not hard to see that these are the only possible
solutions.

How do square roots play with the ordering? It turns out taking a square root
preserves the ordering.

Fact 10. For x, y real numbers, if 0 ≤ x ≤ y, then x2 ≤ xy ≤ y2 and
√
x ≤ √y.

Taking square root and squares preserve products:

Fact 11. For all real numbers x and y:

• (xy)2 = x2y2.
• If x and y are non-negative,

√
xy =

√
x
√
y.
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Definition 12. The absolute value |x| of a real number x is defined by:

|x| =

{
x if x ≥ 0

−x if x < 0

Fact 13 (Elementary properties of the absolute value). For all real numbers x and
y:

(1) x2 = |x|2.

(2) |x| =
√
x2.

(3) x ≤ |x|.
(4) |xy| = |x||y|.
(5) |x| ≥ 0, and |x| > 0 if x 6= 0.
(6) | − x| = |x|.

Theorem 14 (The triangle inequality, 1.2.5 in Abbott). For all real numbers x, y
and z:

(1) |x+ y| ≤ |x|+ |y|.
(2) |x− y| ≤ |x− z|+ |z − y|.

Theorem 15 (Proving that two numbers are equal, 1.2.6 in Abbott). Assume x
and y are real numbers. We have that x = y if and only if |x− y| < ε for all ε > 0.

The axiom of completeness

Fact 16. Every non-empty set of real numbers that is bounded below has a greatest
lower bound.

Definition 17. For real numbers a and b, we define (a, b) = {x ∈ R | a < x < b},
[a, b] = {x ∈ R | a ≤ x ≤ b}, [a, b) = {x ∈ R | a ≤ x < b}, and (a, b] = {x ∈ R | a <
x ≤ b}. We call a set of the form (a, b) an open interval and a set of the form [a, b]
a closed interval. We also write (a,∞) for the set {x ∈ R | a < x} and (−∞, a) for
{x ∈ R | x < a}. Similarly define [a,∞) and (−∞, a].

Note that ∞ and −∞ are not members of R: writing (a,∞) is just notation.
Also, do not confuse the open interval (a, b) with the ordered pair (a, b). Even
though they are written in exactly the same way, they are completely different
objects. Which is meant depends on context.

Theorem 18 (Nested interval property, 1.4.1 in Abbott). Assume that for each
natural number n ∈ N, we are given a non-empty closed interval [an, bn]. Assume
In+1 ⊆ In for each n ∈ N. Then

⋂
n∈N In 6= ∅.

Theorem 19 (Archimedean property, 1.4.2 in Abbott). (1) Given any real num-
ber x, there exists a natural number n ∈ N such that x < n.

(2) Given any real number y > 0, there exists a natural number n ∈ N with
0 < 1

n < y.

Fact 20. Given any real number x, there exists a unique integer m such that
m ≤ x < m+ 1 and a unique integer n such that n < x ≤ n+ 1.

Theorem 21 (The rationals are dense in the reals, 1.4.3 in Abbott). For any real
numbers a and b with a < b, there exists a rational number r with a < r < b.
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Theorem 22 (Existence of the square root of two, 1.4.4 in Abbott). There exists
a real number α such that α2 = 2.

Fact 23 (Existence of nth root). For any natural number n and any y ≥ 0, there
exists a unique x ≥ 0 such that xn = y. We write n

√
y for this x.

Limits

Definition 24. A sequence (an) converges to a real number a if for every ε > 0,
there exists a natural number N such that whenever n ≥ N , we have that |a−an| <
ε. A sequence that converges to a real number is called convergent. A sequence that
does not converge is called divergent (and is said to diverge). We write lim(an) = a,
or limn→∞(an) = a, or (an) → a to mean that the sequence (an) converges to a
(the number a is called the limit of the sequence).

Fact 25 (Assignment 17). (1) If (an) converges to a and (an) converges to b,
then a = b (that is, the limit is unique if it exists).

(2) Assume c is a real number. If an = c for all n ∈ N, then (an)→ c.
(3) If (an) and (bn) are two sequences and their exists a natural number N such

that an = bn for all n ≥ N , then (an) is convergent if and only if (bn) is
convergent. Moreover, if they are convergent then (an) and (bn) will have
the same limit.

(4) ( 1
n )→ 0.

Theorem 26 (Algebraic limit theorem (part I), 2.3.3(i) in Abbott). If (an) → a
and c is a real number, then (can)→ ca.

Theorem 27 (Order limit theorem, 2.3.4 in Abbott). If (an) → a, (bn) → b, and
an ≤ bn for all n, then a ≤ b.

Limits and subsequences

Definition 28. A sequence (an) is bounded if there exists a positive real number
M such that |an| ≤M for every natural number n.

Theorem 29 (2.3.2 in Abbott). Any convergent sequence is bounded.

Definition 30. Given a sequence (an)n∈N and natural numbers n1 < n2 < n3 <
. . ., the sequence (ank

)k∈N is called a subsequence of (an).

Theorem 31 (2.5.2 in Abbott). Any subsequence of a convergent sequence con-
verges to the same limit as the original sequence.

Definition 32. A sequence (an) is:

• increasing if an ≤ am whenever n ≤ m.
• decreasing if an ≥ am whenever n ≤ m.
• monotone if increasing or decreasing.

Theorem 33 (Monotone convergence theorem, 2.4.2 in Abbott). Any sequence
which is monotone and bounded converges.

Theorem 34 (Bolzano-Weierstrass theorem, 2.5.5 in Abbott). Any bounded se-
quence has a convergent subsequence.

Definition 35. A sequence (an) is Cauchy if for every ε > 0 there exists a natural
number N such that whenever n,m ≥ N we have |an − am| < ε.
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Theorem 36 (Assignment 17 and 2.6.4 in Abbott). A sequence converges if and
only if it is Cauchy.

Accumulation points of sequences

For the details of this section, see the supplementary notes posted on the course
website.

Definition 37. An accumulation point (also called a cluster point) of a sequence
(an) is a real number a such that some subsequence of (an) converges to a. We
denote the set of accumulation points of the sequence (an) by acc((an)).

Theorem 38 (Basic properties of accumulation points). Assume (an), (bn) are
sequences and a is a real number.

(1) If (ank
) is a subsequence of (an), then acc((ank

)) ⊆ acc((an)).
(2) If (an)→ a, then acc((an)) = {a}.
(3) If (an) is bounded and acc((an)) = {a}, then (an)→ a.
(4) (an) has a bounded subsequence if and only if acc((an)) 6= ∅.
(5) If (an) is a bounded sequence, then acc((an)) is not empty, bounded below,

and bounded above.
(6) If (an) and (bn) are sequences such that for some natural numberN , an = bn

whenever n ≥ N , then acc((an)) = acc((bn)).

Definition 39 (Limit superior and inferior). Given a bounded sequence (an),
the limit superior of (an), written lim sup an, is defined to be the supremum of
acc((an)). The limit inferior of (an), written lim inf an, is defined to be the infi-
mum of acc((an)).

Theorem 40 (Basic properties of inf and sup). Assume that A and B are non-
empty sets of real numbers that are bounded below and bounded above.

(1) inf(A) ≤ sup(A).
(2) inf(A) = sup(A) if and only if A = {a} for some real number a (in this

case, a = inf(A) = sup(A)).
(3) If for all a ∈ A, there exists b ∈ B with a ≤ b, then sup(A) ≤ sup(B).
(4) If for all a ∈ A and all b ∈ B, a ≤ b, then sup(A) ≤ inf(B).

Theorem 41 (Basic properties of limit superior and inferior). Assume that (an)
and (bn) are bounded sequences.

(1) lim inf an ≤ lim sup an.
(2) lim inf an = lim sup an if and only if (an) is convergent. In this case,

lim an = lim inf an = lim sup an.
(3) If an ≤ bn for all n ∈ N, then lim inf an ≤ lim inf bn and lim sup an ≤

lim sup bn.

Theorem 42 (Squeeze theorem). Assume that (an), (bn), (cn) are sequences with
an ≤ bn ≤ cn for all n ∈ N. If (an)→ ` and (cn)→ `, then (bn)→ `.

Theorem 43 (Strengthened squeeze theorem, assignment 18). Assume that (an),
(bn), (cn) are sequences. Assume that (an)→ ` and (cn)→ `. Assume further that
for all ε > 0 there exists a natural number N such that whenever n ≥ N , we have
that an − ε ≤ bn ≤ cn + ε. Then (bn)→ `.

Theorem 44 (Algebraic limit theorem, part II). Assume (an), (bn) are sequences
and a, b are real numbers. Then:
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(1) If (an)→ a, then (an + b)→ a+ b.
(2) (an)→ 0 if and only if (|an|)→ 0.
(3) (an)→ a if and only if (|an − a|)→ 0.
(4) If (bn)→ b and b 6= 0, then there exists a real number δ > 0 and a natural

number N such that |bn| ≥ δ whenever n ≥ N .
(5) If (an)→ a and (bn)→ b, then (an + bn)→ a+ b.
(6) If (an)→ a and (bn)→ b, then (anbn)→ ab.
(7) If (an)→ a, (bn)→ b, b 6= 0, and bn 6= 0 for all n ∈ N, then (an

bn
)→ a

b .
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