
MATH 101, FALL 2018: SUPPLEMENTARY NOTES ON THE

REAL LINE

SEBASTIEN VASEY

These notes describe the material for November 26, 2018 (while similar content
is in Abbott’s book, the presentation here is different).

Before Thanksgiving break, we saw that to check whether a sequence is conver-
gent using the definition of convergence, one must have a value for the limit a. This
can be annoying if we do not know the limit yet, but still want to prove on general
grounds that it exists. Another technical problem was how to prove, easily, that a
sequence is divergent (i.e. does not converge).

To that end, we first observed that any convergent sequence is bounded, so (by
the contrapositive), a sequence that is not bounded is divergent. We also saw that
any subsequence of a convergent sequence converges to the same limit as the original
sequence. Thus if we have a sequence which has two convergent subsequences with
different limits, we can directly see that the original sequence is divergent.

For example the sequence (0, 1, 0, 1, 0, 1, . . .) is divergent as it has a constantly
zero subsequence and a constantly 1 subsequence. Unfortunately, the same sequence
show that it is not true that a bounded sequence must always be convergent. How-
ever we saw two approximations: the monotone convergence theorem, which says
that a monotone bounded sequence converges, and the Bolzano-Weierstrass theo-
rem, which says that a bounded sequence always has a convergent subsequence. We
used the latter to study Cauchy sequences and give a general criteria for convergence
of a sequence (without using the limit).

It still would be nice to be able to define some kind of limit for any bounded
sequence. Now unfortunately a bounded sequence may have several convergent
subsequences, and they may not all converge to the same limit. For example as
said before the sequence (0, 1, 0, 1, . . .) has the constantly zero subsequence and the
constantly 1 subsequence. However we can look at the set of all such limits:

Definition 1. An accumulation point (also called a cluster point) of a sequence
(an) is a real number a such that some subsequence of (an) converges to a. We
denote the set of accumulation points of the sequence (an) by acc((an)).

The reason for the name “accumulation point” is that if a is an accumulation
point of (an), then there will be infinitely-many terms of (an) which will “accumu-
late” very close from a.

So for example acc((0, 1, 0, 1, 0, 1, 0, 1, . . .)) = {0, 1} (try to prove this precisely
as an exercise!). Let us study some general basic properties of accumulation points:

Theorem 2 (Basic properties of accumulation points). Assume (an), (bn) are
sequences and a is a real number.

(1) If (ank
) is a subsequence of (an), then acc((ank

)) ⊆ acc((an)).
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(2) If (an)→ a, then acc((an)) = {a}.
(3) If (an) is bounded and acc((an)) = {a}, then (an)→ a.
(4) (an) has a bounded subsequence if and only if acc((an)) 6= ∅.
(5) If (an) is a bounded sequence, then acc((an)) is not empty, bounded below,

and bounded above.
(6) If (an) and (bn) are sequences such that for some natural numberN , an = bn

whenever n ≥ N , then acc((an)) = acc((bn)).

Proof.

(1) Assume that x is an accumulation point of (ank
). Then because a sub-

sequence of (ank
) is a subsequence of the original sequence (an), x is an

accumulation point of (an) as well.
(2) Assume that (an)→ a. Then by 2.5.2 in Abbott, any subsequence of (an)

also converges to a, so acc((an)) = {a}.
(3) This will be a problem on assignment 18.
(4) Assume that (an) has a bounded subsequence (ank

). Then (ank
) has a con-

vergent subsequence by the Bolzano-Weierstrass theorem, so acc((ank
)) 6=

∅. By the first part, also acc((an)) 6= ∅. Conversely, assume that acc((an)) 6=
∅. Then (an) has an accumulation point, hence in particular a conver-
gent subsequence (ank

). By 2.3.2 in Abbott, any convergent sequence is
bounded, so (ank

) is a bounded subsequence of (an).
(5) This will be a problem on assignment 18.
(6) Because, essentially, being a convergent subsequence does not depend on

the first few terms of a sequence (the details are left to you as an exercise).

�

Note that by the part (5) of Theorem 2 and the axiom of completeness, we can
take the inf and sup of the set of accumulation points of any bounded sequence.
This will be a replacement for taking the “limit” of any bounded sequence. We give
these numbers a name:

Definition 3 (Limit superior and inferior). Given a bounded sequence (an), the
limit superior of (an), written lim sup an, is defined to be the supremum of acc((an)).
The limit inferior of (an), written lim inf an, is defined to be the infimum of
acc((an)).

Before studying the basic properties of lim inf and lim sup, it is worth recalling
a few simple properties of inf and sup:

Theorem 4 (Basic properties of inf and sup). Assume that A and B are non-empty
sets of real numbers that are bounded below and bounded above.

(1) inf(A) ≤ sup(A).
(2) inf(A) = sup(A) if and only if A = {a} for some real number a (in this

case, a = inf(A) = sup(A)).
(3) If for all a ∈ A, there exists b ∈ B with a ≤ b, then sup(A) ≤ sup(B).
(4) If for all a ∈ A and all b ∈ B, a ≤ b, then sup(A) ≤ inf(B).

Proof. Assignment 18. �

Theorem 5 (Basic properties of limit superior and inferior). Assume that (an)
and (bn) are bounded sequences.
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(1) lim inf an ≤ lim sup an.
(2) lim inf an = lim sup an if and only if (an) is convergent. In this case,

lim an = lim inf an = lim sup an.
(3) If an ≤ bn for all n ∈ N, then lim inf an ≤ lim inf bn and lim sup an ≤

lim sup bn.

Proof. Let A = acc((an)) and let B = acc((bn)).

(1) We have that lim inf an = inf(A) ≤ sup(A) = lim sup(an), where the equal-
ities are by definition of lim inf and lim sup, and the inequality by Theorem
4(1).

(2) Assume that lim inf an = lim sup an. Then sup(A) = inf(A), so by Theorem
4(2), A = {a} for some real number a, and a = inf(A) = sup(A). By
Theorem 2(3), (an)→ a.

Conversely, if (an)→ a, then by Theorem 2(2), A = {a}, so lim inf(an) =
inf(A) = sup(A) = lim sup(an) by Theorem 4(2).

(3) Assume that an ≤ bn for all n ∈ N. We show that lim sup an ≤ lim sup bn,
and the proof for lim inf will be similar. We show that for all a ∈ A there
exists b ∈ B such that a ≤ b. This will be enough by Theorem 4(3).
So assume a ∈ A. By definition of an accumulation point, there exists
a subsequence (ank

) of (an) converging to a. Consider the corresponding
subsequence (bnk

). It may not be convergent, but by Bolzano-Weierstrass
we can take a convergent subsequence (bnkm

) of it. Say this converges to b.
By 2.5.2 in Abbott, the corresponding subsequence (ankm

) of (an) converges
to a. Since we know that ankm

≤ bnkm
for all m, the order limit theorem

implies that a ≤ b.
�

Limit inferior and superior are a useful tool to prove the following result:

Theorem 6 (Squeeze theorem). Assume that (an), (bn), (cn) are sequences with
an ≤ bn ≤ cn for all n ∈ N. If (an)→ ` and (cn)→ `, then (bn)→ `.

Proof. We compute the limit inferior and superior of (bn) and show that they
coincide. We have:

` = lim an = lim inf an ≤ lim inf bn ≤ lim inf cn = lim cn = `

Where we have used that lim inf an = lim an, because (an) is convergent (The-
orem 5(2)). Therefore lim inf bn = `. Similarly, lim sup bn = `. It follows from
Theorem 5(2) that (bn) is convergent and lim bn = `. �

The following is a slightly stronger version that will also be useful:

Theorem 7 (Strengthened squeeze theorem, assignment 18). Assume that (an),
(bn), (cn) are sequences. Assume that (an)→ ` and (cn)→ `. Assume further that
for all ε > 0 there exists a natural number N such that whenever n ≥ N , we have
that an − ε ≤ bn ≤ cn + ε. Then (bn)→ `.

We can use the strengthened squeeze theorem to prove the rest of the algebraic
limit theorem:

Theorem 8 (Algebraic limit theorem, part II). Assume (an), (bn) are sequences
and a, b are real numbers. Then:
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(1) If (an)→ a, then (an + b)→ a+ b.
(2) (an)→ 0 if and only if (|an|)→ 0.
(3) (an)→ a if and only if (|an − a|)→ 0.
(4) If (bn)→ b and b 6= 0, then there exists a real number δ > 0 and a natural

number N such that |bn| ≥ δ whenever n ≥ N .
(5) If (an)→ a and (bn)→ b, then (an + bn)→ a+ b.
(6) If (an)→ a and (bn)→ b, then (anbn)→ ab.
(7) If (an)→ a, (bn)→ b, b 6= 0, and bn 6= 0 for all n ∈ N, then (an

bn
)→ a

b .

Proof.

(1) Assignment 18.
(2) Assignment 18.
(3) Assignment 18.
(4) Assignment 18.
(5) We first claim that for every ε > 0, there exists a natural number N such

that whenever n ≥ N ,

an + b− ε ≤ an + bn ≤ an + b+ ε

Indeed, assume ε > 0. Since (bn)→ b, there exists N such that |bn−b| <
ε whenever n ≥ N . For such n, we can write equivalently that b− ε < bn <
b+ ε. Adding an to this inequality, we get the claim.

Now we can use the strengthened squeeze theorem because we have that
(an + b)→ a+ b (using the first part).

(6) By the third part, it suffices to show that (|anbn−ab|)→ 0. For any natural
number n, the triangle inequality gives:

|anbn − ab| ≤ |anbn − anb|+ |anb− ab|
Let’s estimate each term. We have that |anbn − anb| = |an(bn − b)|. We

know that (an) is convergent, so it is bounded: let M be a positive real
number such that |an| ≤ M for all n. Then |an(bn − b)| ≤ M |bn − b|. We
have shown that:

0 ≤ |anbn − anb| ≤M |bn − b|
The left hand side of this inequality (seen as the constantly zero se-

quence) goes to zero. The right hand, the sequence (M |bn − b|) also goes
to zero because (bn)→ b, so by previously proven parts (|bn − b|)→ 0 and
hence (algebraic limit theorem, part I), (M |bn − b|) → M · 0 = 0. By the
squeeze theorem, (|anbn − anb|)→ 0.

Now let’s estimate |anb − ab| = |(an − a)b|. Since (an) → a, a similar
argument gives that |(an − a)b| → 0.

Putting all this together, we get (using the previous part) that (|anbn −
anb|+ |anb− ab|)→ 0. By the squeeze theorem (using the constantly zero
sequence on the left hand side), |anbn − ab| → 0.

(7) We have that an

bn
= an · 1

bn
, so if we can show that ( 1

bn
)→ 1

b , we will be able

to use the previous part. As before, it suffices to show that (| 1bn −
1
b |)→ 0.

We have that 1
bn
− 1

b = b−bn
bnb

. The numerator will go to zero, but we need to
bound the denominator from below. This is given by the fourth part of the
theorem: there exists a real number δ > 0 and a natural number N such
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that for any natural number n ≥ N , |bn| ≥ δ. Since convergence does not
depend on finitely-many terms (assignment 17), we might as well assume
that N = 1, i.e. that |bn| ≥ δ for all natural numbers n. Then:∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|b− bn|
|bnb|

≤ 1

δ|b|
|b− bn|

The right hand side goes to zero, so by the squeeze theorem, the left
hand side must also go to zero, as desired.

�


