MATH 123 - ALGEBRA II - SPRING 2020 ASSIGNMENT 9

Due Tuesday, April 7, 11h59pm. (please submit your assignment as a PDF on Canvas). Unless otherwise noted, references are to Dummit and Foote, *Algebra*, 3rd edition, Wiley, 2004.

PRACTICE PROBLEMS

(*Not* for credit. No need to submit your solutions. Try to do them while minimally looking at the textbook)

- (1) Give the definition of the following: Frobenius map, perfect field, separable and inseparable degree, cyclotomic polynomial, automorphism, fixed field, Galois extension, Galois group.
- (2) What is the degree of the cyclotomic field of *n*th root of unity? Prove that your answer is correct.
- (3) Prove that in a perfect field, irreducible polynomials are separable.
- (4) Prove that if K/F is a finite extension, then $|\operatorname{Aut}(K/F)| \leq [K : F]$. Give an example where equality holds, and an example where the inequality is strict.
- (5) Compute the Galois group of $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$.
- (6) True or false?
 - (a) If f is a polynomial over a field of characteristic p with zero derivative, then $f(x) = g(x^p)$ for some polynomial g.
 - (b) $\mathbb{Q}(e^{2\pi i/n})$ has degree n-1 over \mathbb{Q} .
 - (c) p is prime if and only if the pth cyclotomic polynomial is of the form $x^{p-1} + x^{p-2} + \ldots + x + 1$.
 - (d) If K/F is Galois, and L/K is Galois, then L/F is Galois.

PROBLEMS FOR CREDIT

- (1) You should have the assignment from another student available for review in your Canvas todo list. Review problem 3 from that assignment (submit your comment on Canvas, *not* with this assignment). Refer to the peer review instructions on the course website for more details. You are encouraged not to look at the official solution before submitting your review!
- (2) Let F be a field and let $f(x) \in F[x]$ be a polynomial of degree $n \ge 1$. Assume that the characteristic of F is either zero or at least n. Let $\alpha \in F$. Let $1 \le m \le n$. Show that α is a root of f of multiplicity at least m if and only if $f^{(k)}(\alpha) = 0$ for all $k \in \{0, 1, 2, ..., m-1\}$.

Here, $f^{(k)}$ denotes the kth derivative of f: $f^{(0)} = f$, and $f^{(k+1)}$ is the derivative of $f^{(k)}$.

- (3) (a) Show that any algebraically closed field is perfect.
 - (b) (DF, 13.6.4) Prove that if $n = p^k m$ where p is prime and m is coprime to p, then there are precisely m distinct nth root of unity over a field of characteristic p.
 - (c) Show that a field F is perfect if and only if any irreducible polynomial in F[x] is separable.
- (4) (a) (DF, 14.1.2) Prove that the map $\tau : \mathbb{C} \to \mathbb{C}$ defined by $\tau(a+bi) = a-bi$ (called *complex conjugation*) is an automorphism of \mathbb{C} .
 - (b) (DF, 14.1.3) Determine the fixed field of complex conjugation on \mathbb{C} .
 - (c) (DF, 14.1.4) Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.
- (5) Determine Aut(\mathbb{R}/\mathbb{Q}). *Hint: first show that any automorphism must preserve the ordering on* \mathbb{R} *and be continuous.*

Date: April 6, 2020.