MATH 123 - ALGEBRA II - SPRING 2020 ASSIGNMENT 10

Due Tuesday, April 14, 11h59pm. (please submit your assignment as a PDF on Canvas). Unless otherwise noted, references are to Dummit and Foote, *Algebra*, 3rd edition, Wiley, 2004.

PRACTICE PROBLEMS

(*Not* for credit. No need to submit your solutions. Try to do them while minimally looking at the textbook)

- (1) State and prove the fundamental theorem of Galois theory.
- (2) Prove that an extension K/F is Galois if and only if K is the splitting field of a separable polynomial in F[x].
- (3) Let K/F be an extension. True or false?
 - (a) The fixed field of $\operatorname{Aut}(K/F)$ always contains F.
 - (b) The fixed field of $\operatorname{Aut}(K/F)$ is always contained in F.
 - (c) If K/F is a Galois extension and E is an intermediate field, then K/E is Galois.
 - (d) If K/F is a Galois extension and E is an intermediate field, then E/F is Galois.

PROBLEMS FOR CREDIT

- (1) You should have the assignment from another student available for review in your Canvas todo list. Review problem 2 from that assignment (submit your comment on Canvas, *not* with this assignment). Refer to the peer review instructions on the course website for more details. You are encouraged not to look at the official solution before submitting your review!
- (2) (DF, 14.2.1) Determine the minimal polynomial over \mathbb{Q} for $\sqrt{2} + \sqrt{5}$.
- (3) (DF, 14.2.3)
 - (a) Determine the Galois group of the polynomial $f(x) = (x^2 2)(x^2 3)(x^2 5) \in \mathbb{Q}[x].$
 - (b) Describe all the subfields of the splitting field of f(x).
- (4) (DF, 14.2.5) Prove that the Galois group of $x^p 2 \in \mathbb{Q}[x]$, for p a prime, is isomorphic to the group of matrices $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, where $a, b \in \mathbb{F}_p$, $a \neq 0$.
- (5) Prove that n divides $\phi(p^n-1)$ for any prime p and any integer $n \ge 1$. Hint: study the automorphisms of the multiplicative group of \mathbb{F}_{p^n} .