MATH 123 - ALGEBRA II - SPRING 2020 ASSIGNMENT 11

Due Friday, April 24, 11h59pm. (please submit your assignment as a PDF on Canvas). Unless otherwise noted, references are to Dummit and Foote, *Algebra*, 3rd edition, Wiley, 2004.

PRACTICE PROBLEMS

(*Not* for credit. No need to submit your solutions. Try to do them while minimally looking at the textbook)

- (1) Give the definition of the Galois closure, and of the notion of a separable extension.
- (2) Prove that if K/F is a Galois extension and E is an intermediate field, then E/F is Galois if and only if Aut(K/E) is normal in Aut(K/F).
- (3) State and prove the primitive element theorem.
- (4) State and prove the characterization of the numbers n such that the regular n-gon can be constructed with straightedge and compass.
- (5) True or false?
 - (a) Any finite extension of \mathbb{Q} is simple.
 - (b) If K_1/F , K_2/F are Galois extensions with Galois group G_1 and G_2 , then the composite K_1K_2/F is a Galois extension, with Galois group $G_1 \times G_2$.
 - (c) Any finite extension of \mathbb{F}_p is simple.
 - (d) Any simple extension of \mathbb{F}_p is finite.
 - (e) The Galois group of $\mathbb{Q}(e^{\pi i/8})/\mathbb{Q}$ is the cyclic group of order 15.

PROBLEMS FOR CREDIT

- (1) You should have the assignment from another student available for review in your Canvas todo list. Review problem 4 from that assignment (submit your comment on Canvas, *not* with this assignment). Refer to the peer review instructions on the course website for more details. You are encouraged not to look at the official solution before submitting your review!
- (2) Consider the statement "If F is a field and G_1, G_2 are finite groups that can be realized as Galois groups of extensions of F, then $G_1 \times G_2$ is the Galois group of an extension of F".
 - (a) Describe what is wrong with the following "proof" of the statement: Let K_1/F be an extension with Galois group G_1 , and K_2/F be an extension with Galois group G_2 . Then the composite K_1K_2/F has Galois group $G_1 \times G_2$.
 - (b) Show that the statement is false by giving an explicit counterexample.
 - (c) Let G be an arbitrary finite group. Show that if there is an extension of \mathbb{Q} with Galois group G, then there is an extension of \mathbb{Q} with Galois group $G \times Z_2$ (where Z_2 is the cyclic group of order 2).
- (3) (DF, 14.4.2) Find a primitive generator for $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} .
- (4) (DF, 14.4.9) Suppose K/F is a Galois extension with Galois group G and θ is a primitive element for K: $K = F(\theta)$. For any subgroup H of G, let $f(x) = \prod_{\sigma \in H} (x \sigma(\theta))$. Show $f(x) \in E[x]$, where E is the fixed field of H in K, and that moreover f(x) is the minimal polynomial for θ over E, and the coefficients of f(x) generate E over F.
- (5) (DF, 14.5.5) Let p be a prime and let $\epsilon_1, \ldots, \epsilon_{p-1}$ denote the primitive pth roots of unity in \mathbb{C} . Set $p_n = \epsilon_1^n + \ldots + \epsilon_{p-1}^n$. Prove that $p_n = -1$ if p does not divide n, and $p_n = p 1$ if p does divide n.

Date: April 13, 2020.

- (6) (DF, 14.5.8) Let $K_n = \mathbb{Q}(\zeta_{2^{n+2}})$ $(n \ge 0)$. Set $\alpha_n := \zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1}$, and let $K_n^+ := \mathbb{Q}(\alpha_n).$
 - (a) Show that $[K_n : \mathbb{Q}] = 2^{n+1}$, $[K_n : K_n^+] = 2$, $[K_n^+ : \mathbb{Q}] = 2^n]$, and $[K_{n+1}^+:K_n^+] = 2.$ (b) Determine the minimal polynomial of $\zeta_{2^{n+2}}$ over K_n^+ (in terms of α_n).

 - (c) Show that $\alpha_{n+1}^2 = 2 + \alpha_n$, and deduce that:

$$\alpha_n = \sqrt{2 + \sqrt{2 + \sqrt{\dots + \sqrt{2}}}}$$

where the square root symbol appears n times. [This gives an explicit way to realize K_n by iterating quadratic extensions.]

(7) (DF, 14.5.10) Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q} .

 $\mathbf{2}$