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Transition to a remote class

I Use the chat at any point to ask stuff or tell me your thoughts.

I The midterm is canceled.
I I updated the syllabus to describe how your grade will be

computed:
I 35 % final, 65 % assignments.
I 2 worst assignments dropped.

I Feel free to email me or the CAs at any point. You can also
use the Canvas discussion board.

I Office hours and class meeting will be held with Zoom.
Regular class meetings will be recorded. These slides will be
on the course webpage.
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More organization

I Read ahead of class. The reading for a given week is posted
on the course website by the end of the previous week.

I If you do not have a copy of Dummit and Foote, you can read
about the same topics in one of the free resources on the class
website (I added a link to some good notes on field theory).

I Ask yourself what the main points are. Try to summarize what
you read.

I The classes will not always cover proofs systematically, but
focus on understanding the main points, and how it all fits
together.

I Use the chat to ask anything, anytime.
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Fields: what we know so far

An extension K/F has a degree, written [K : F ], the dimension of
K as an F -vector space. An extension is finite if its degree is finite.

An important property of finite extensions: they are algebraic: every
element α is the root of a polynomial in F [x ] (consider 1, α, α2, ...).

If K/F is an extension and α ∈ K , F (α) is called a simple
extension of F . If α is algebraic, the degree of the extension is the
degree of the minimal polynomial of α (the monic poly of min
degree that α is a root of).

Example

Example (K = C): Q( 3
√

2) has degree 3. The minimal polynomial
of 3
√

2 is x3 − 2.
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Finitely generated field extensions

We now want to analyze potentially more complicated extensions,
like Q(

√
2, 3
√

2). Such extensions (of the form F (A), for A finite)
are called finitely generated.

Observe that F (α, β) = (F (α))(β) (exercise!). So any finitely
generated extension can be obtained by iterating simple extensions.

More precisely, if K = F (α1, . . . , αn), then letting F0 = F ,
Fi+1 = Fi (αi+1), we get a chain of extensions F0 ⊆ F1 ⊆ . . . ⊆ Fn,
where Fi = F (α1, . . . , αi ). In particular, Fn = K .

Theorem (Multiplicativity of degrees)

If F ⊆ K ⊆ L are field extensions, then [L : F ] = [K : F ][L : K ].
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Consequence of multiplicativity of degrees
Thus if we have K = F (α1, . . . , αn), then letting F0 = F ,
Fi+1 = Fi (αi+1), and the chain of extensions F0 ⊆ F1 ⊆ . . . ⊆ Fk
as before, we have:

[K : F ] = [Fk : Fk−1][Fk−1 : Fk−2] . . . [F1 : F0]

So if for each i , αi+1 is algebraic over F , and of degree ni , then
K/F is algebraic of degree at most n1 · n2 · . . . nk .

Example

It could be strictly less: take F = Q, α1 =
√

2, α2 = 6
√

2. Then
n1 = 2, n2 = 6, but Q(α1, α2) = Q(α2) has degree 6 < 2 · 6.

We saw last time we can also deduce that [Q( 6
√

2) : Q(
√

2)] = 3
(to do this directly, we would have to show 6

√
2 /∈ Q(

√
2), which is

annoying).
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Some important conclusions

Let K/F be an extension.

I (Characterization of finite extensions) K/F is finite if and
only if K is generated by finitely-many algebraic elements.

[Why? ⇒: We saw before that finite implies algebraic, so take
a basis. ⇐: if K = F (α1, . . . , αk) and each αi is algebraic of
degree ni , K/F has degree at most n1 . . . nk , which is finite]

I (Algebraic numbers form a field) If α, β ∈ K are algebraic
over F , then α + β, α · β, −α, and α−1 (α 6= 0) are all
algebraic over F .
[Why? because all these numbers are in F (α, β), which is
finite by the previous part, hence algebraic.]

I (Transitivity of being algebraic) If K is algebraic over F and L
is algebraic over K , then L is algebraic over F .
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(Transitivity of being algebraic) If K is algebraic over F and L is
algebraic over K , then L is algebraic over F .

[Why? Let α ∈ L. Since α is algebraic over K, α is the root of a
polynomial a0 + a1x + . . .+ anx

n, with each ai ∈ K. Since K is
algebraic over F , each ai is algebraic over F . Thus the extension
F (a0, . . . , an)/F is finite. The extension
F (a0, . . . , an)(α)/F (a0, . . . , an) is also finite. Thus F (a0, . . . , an, α)
is finite, so α is algebraic over F .]
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Example

Let F = Q, K = C. Let Q̄ denote all algebraic complex numbers
(over Q). What is [Q̄ : Q]?

Well, for each n, n
√

2 is algebraic, and its minimal polynomial is
xn − 2 (it is irreducible by Eisenstein).

Thus [Q̄ : Q] ≥ [Q( n
√

2) : Q] = n, for each n, so Q̄/Q is an infinite
extension.

However it is algebraic! So finite implies algebraic, but not
conversely! We need to assume finitely generated to get the
converse.

A fun exercise: prove that Q̄ is countable (hint: see the book).

Since C (or R) are uncountable, this shows there are
transcendental elements. However proving specific elements (like e
or π) are transcendental is much harder.
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Composite fields

How do we “put two fields together”?

Definition

For K1,K2 subfields of K , let K1K2, the composite field of K1 and
K2, be the smallest subfield of K containing K1 and K2.

Example

Q(
√

2)Q( 3
√

2) = Q(
√

2, 3
√

2) = Q( 6
√

2). Why is the last equality
true?

I ⊆:
√

2 ∈ Q( 6
√

2) as
√

2 = 6
√

2
3
. Similarly, 3

√
2 ∈ Q( 6

√
2).

I ⊇: 6
√

2 = 2
1
6 = 2

1
2
− 1

3 =
√
2

3√2
∈ Q(

√
2, 3
√

2).
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Degree of composite extensions

Observe that if K1,K2 are finite extensions of F with bases
α1, . . . , αn and β1, . . . , βm, then
K1K2 = F (α1, . . . , αn, β1, . . . , βm).

This means that K1K2 is generated by product and sums of αi and
βj ’s.

Product of αi ’s (like α2
1) are F -linear combinations of αi ’s (as the

αi form a basis). Similarly for product of βj ’s.

This implies that (αiβj)i=1...n,j=1...m spans K1K2, so
[K1K2 : F ] ≤ nm = [K1 : F ][K2 : F ].
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Degree of composite extensions: picture

If [K1 : F ] = n, [K2 : F ] = m, then [K1K2 : F ] ≤ nm.

K1K2

K1 K2

F

≤m
≤n

n
m

Note that if gcd(n,m) = 1, then equality holds! [K1K2 : F ] = nm.
We can use this to get another proof that [Q(

√
2, 3
√

2) : Q] = 6.
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Summary

I Finite extensions are exactly the iterations of simple
extensions by algebraic elements.

I Thus finite is equivalent to “generated by finitely-many
algebraic elements”.

I It follows that algebraic elements form a field, and that the
iterations of two algebraic extensions is algebraic.

I We can either think of F (α, β) as (F (α))(β), or as the
composite of the extensions F (α) and F (β). If the degrees of
these are n and m, we get that the degree of the composite is
≤ nm, and equality holds if n and m are coprime.
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