Math-123: finitely generated field extensions

Sebastien Vasey

Harvard University

March 11, 2020

 \triangleright Use the chat at any point to ask stuff or tell me your thoughts.

- \triangleright Use the chat at any point to ask stuff or tell me your thoughts.
- \blacktriangleright The midterm is canceled.

- \triangleright Use the chat at any point to ask stuff or tell me your thoughts.
- \blacktriangleright The midterm is canceled.
- \blacktriangleright I updated the syllabus to describe how your grade will be computed:
	- \blacktriangleright 35 % final, 65 % assignments.
	- \triangleright 2 worst assignments dropped.

- \triangleright Use the chat at any point to ask stuff or tell me your thoughts.
- \blacktriangleright The midterm is canceled.
- \blacktriangleright I updated the syllabus to describe how your grade will be computed:
	- \blacktriangleright 35 % final, 65 % assignments.
	- \triangleright 2 worst assignments dropped.
- \triangleright Feel free to email me or the CAs at any point. You can also use the Canvas discussion board.

- \triangleright Use the chat at any point to ask stuff or tell me your thoughts.
- \blacktriangleright The midterm is canceled.
- \blacktriangleright I updated the syllabus to describe how your grade will be computed:
	- \blacktriangleright 35 % final, 65 % assignments.
	- \triangleright 2 worst assignments dropped.
- \triangleright Feel free to email me or the CAs at any point. You can also use the Canvas discussion board.
- \triangleright Office hours and class meeting will be held with Zoom. Regular class meetings will be recorded. These slides will be on the course webpage.

 \triangleright Read ahead of class. The reading for a given week is posted on the course website by the end of the previous week.

- \triangleright Read ahead of class. The reading for a given week is posted on the course website by the end of the previous week.
- If you do not have a copy of Dummit and Foote, you can read about the same topics in one of the free resources on the class website (I added a link to some good notes on field theory).

- \triangleright Read ahead of class. The reading for a given week is posted on the course website by the end of the previous week.
- If you do not have a copy of Dummit and Foote, you can read about the same topics in one of the free resources on the class website (I added a link to some good notes on field theory).
- \triangleright Ask yourself what the main points are. Try to summarize what you read.

- \triangleright Read ahead of class. The reading for a given week is posted on the course website by the end of the previous week.
- If you do not have a copy of Dummit and Foote, you can read about the same topics in one of the free resources on the class website (I added a link to some good notes on field theory).
- \triangleright Ask yourself what the main points are. Try to summarize what you read.
- \triangleright The classes will not always cover proofs systematically, but focus on understanding the main points, and how it all fits together.

- \triangleright Read ahead of class. The reading for a given week is posted on the course website by the end of the previous week.
- If you do not have a copy of Dummit and Foote, you can read about the same topics in one of the free resources on the class website (I added a link to some good notes on field theory).
- \triangleright Ask yourself what the main points are. Try to summarize what you read.
- \triangleright The classes will not always cover proofs systematically, but focus on understanding the main points, and how it all fits together.
- \triangleright Use the chat to ask anything, anytime.

An extension K/F has a *degree*, written $[K : F]$, the dimension of K as an F -vector space. An extension is *finite* if its degree is finite.

An extension K/F has a *degree*, written $[K : F]$, the dimension of K as an F -vector space. An extension is *finite* if its degree is finite.

An important property of finite extensions: they are algebraic: every element α is the root of a polynomial in $\mathcal{F}[\mathsf{x}]$ (consider $1,\alpha,\alpha^2,...).$

An extension K/F has a *degree*, written $[K : F]$, the dimension of K as an F -vector space. An extension is *finite* if its degree is finite.

An important property of finite extensions: they are algebraic: every element α is the root of a polynomial in $\mathcal{F}[\mathsf{x}]$ (consider $1,\alpha,\alpha^2,...).$

If K/F is an extension and $\alpha \in K$, $F(\alpha)$ is called a simple extension of F. If α is algebraic, the degree of the extension is the degree of the minimal polynomial of α (the monic poly of min degree that α is a root of).

An extension K/F has a *degree*, written $[K : F]$, the dimension of K as an F -vector space. An extension is *finite* if its degree is finite.

An important property of finite extensions: they are algebraic: every element α is the root of a polynomial in $\mathcal{F}[\mathsf{x}]$ (consider $1,\alpha,\alpha^2,...).$

If K/F is an extension and $\alpha \in K$, $F(\alpha)$ is called a simple extension of F. If α is algebraic, the degree of the extension is the degree of the minimal polynomial of α (the monic poly of min degree that α is a root of).

Example

Example $(K=\mathbb{C})$: $\mathbb{Q}(\sqrt[3]{2})$ has degree 3. The minimal polynomial Example ($\lambda = \emptyset$
of $\sqrt[3]{2}$ is $x^3 - 2$.

We now want to analyze potentially more complicated extensions, vve now
like ℚ(√ want to analyze potentially more complicated extensions $(2, \sqrt[3]{2})$. Such extensions (of the form $F(A)$, for A finite) are called finitely generated.

We now want to analyze potentially more complicated extensions, we now want to analyze potentially more complicated extensions
like $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$. Such extensions (of the form $F(A)$, for A finite) are called finitely generated.

Observe that $F(\alpha, \beta) = (F(\alpha))(\beta)$ (exercise!). So any finitely generated extension can be obtained by iterating simple extensions.

We now want to analyze potentially more complicated extensions, we now want to analyze potentially more complicated extensions
like $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$. Such extensions (of the form $F(A)$, for A finite) are called finitely generated.

Observe that $F(\alpha, \beta) = (F(\alpha))(\beta)$ (exercise!). So any finitely generated extension can be obtained by iterating simple extensions.

More precisely, if $K = F(\alpha_1, \ldots, \alpha_n)$, then letting $F_0 = F$, $F_{i+1} = F_i(\alpha_{i+1})$, we get a chain of extensions $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_n$, where $F_i = F(\alpha_1, \ldots, \alpha_i)$. In particular, $F_n = K$.

We now want to analyze potentially more complicated extensions, we now want to analyze potentially more complicated extensions
like $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$. Such extensions (of the form $F(A)$, for A finite) are called finitely generated.

Observe that $F(\alpha, \beta) = (F(\alpha))(\beta)$ (exercise!). So any finitely generated extension can be obtained by iterating simple extensions.

More precisely, if $K = F(\alpha_1, \ldots, \alpha_n)$, then letting $F_0 = F$, $F_{i+1} = F_i(\alpha_{i+1})$, we get a chain of extensions $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_n$, where $F_i = F(\alpha_1, \ldots, \alpha_i)$. In particular, $F_n = K$.

Theorem (Multiplicativity of degrees)

If $F \subseteq K \subseteq L$ are field extensions, then $[L : F] = [K : F][L : K]$.

Thus if we have $K = F(\alpha_1, \ldots, \alpha_n)$, then letting $F_0 = F$, $F_{i+1} = F_i(\alpha_{i+1})$, and the chain of extensions $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ as before, we have:

$$
[K : F] = [F_k : F_{k-1}][F_{k-1} : F_{k-2}] \dots [F_1 : F_0]
$$

Thus if we have $K = F(\alpha_1, \ldots, \alpha_n)$, then letting $F_0 = F$, $F_{i+1} = F_i(\alpha_{i+1})$, and the chain of extensions $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ as before, we have:

$$
[K : F] = [F_k : F_{k-1}][F_{k-1} : F_{k-2}] \dots [F_1 : F_0]
$$

So if for each i , α_{i+1} is algebraic over F , and of degree n_i , then K/F is algebraic of degree at most $n_1 \cdot n_2 \cdot \ldots n_k$.

Thus if we have $K = F(\alpha_1, \ldots, \alpha_n)$, then letting $F_0 = F$, $F_{i+1} = F_i(\alpha_{i+1})$, and the chain of extensions $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ as before, we have:

$$
[K : F] = [F_k : F_{k-1}][F_{k-1} : F_{k-2}] \dots [F_1 : F_0]
$$

So if for each i , α_{i+1} is algebraic over F , and of degree n_i , then K/F is algebraic of degree at most $n_1 \cdot n_2 \cdot \ldots n_k$.

Example

It could be strictly less: take $F = \mathbb{Q}$, $\alpha_1 = \sqrt{2}$ $\overline{2}, \ \alpha_2 = \sqrt[6]{2}.$ Then $n_1 = 2$, $n_2 = 6$, but $\mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\alpha_2)$ has degree $6 < 2 \cdot 6$.

Thus if we have $K = F(\alpha_1, \ldots, \alpha_n)$, then letting $F_0 = F$, $F_{i+1} = F_i(\alpha_{i+1})$, and the chain of extensions $F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k$ as before, we have:

$$
[K : F] = [F_k : F_{k-1}][F_{k-1} : F_{k-2}] \dots [F_1 : F_0]
$$

So if for each i , α_{i+1} is algebraic over F , and of degree n_i , then K/F is algebraic of degree at most $n_1 \cdot n_2 \cdot \ldots n_k$.

Example

It could be strictly less: take $F = \mathbb{Q}$, $\alpha_1 = \sqrt{2}$ $\overline{2}, \ \alpha_2 = \sqrt[6]{2}.$ Then $n_1 = 2$, $n_2 = 6$, but $\mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\alpha_2)$ has degree $6 < 2 \cdot 6$.

We saw last time we can also deduce that $[\mathbb{Q}(\sqrt[6]{2}) : \mathbb{Q}(\sqrt[6]{2})]$ $\mathbb{Q}(\sqrt{2})$] = 3 we saw rast time we can also deduce that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}(\sqrt{2})]=3$
(to do this directly, we would have to show $\sqrt[6]{2} \notin \mathbb{Q}(\sqrt{2})$, which is annoying).

Let K/F be an extension.

 \triangleright (Characterization of finite extensions) K/F is finite if and only if K is generated by finitely-many algebraic elements.

Let K/F be an extension.

 \triangleright (Characterization of finite extensions) K/F is finite if and only if K is generated by finitely-many algebraic elements. $[Why? \Rightarrow: We saw before that finite implies algebraic, so take$ a basis. \Leftarrow : if $\mathcal{K} = \mathcal{F}(\alpha_1, \ldots, \alpha_k)$ and each α_i is algebraic of degree n_i , K/F has degree at most $n_1 \ldots n_k$, which is finite]

Let K/F be an extension.

- \triangleright (Characterization of finite extensions) K/F is finite if and only if K is generated by finitely-many algebraic elements. $[Why? \Rightarrow: We saw before that finite implies algebraic, so take$ a basis. \Leftarrow : if $\mathcal{K} = \mathcal{F}(\alpha_1, \ldots, \alpha_k)$ and each α_i is algebraic of degree n_i , K/F has degree at most $n_1 \ldots n_k$, which is finite]
- Algebraic numbers form a field) If $\alpha, \beta \in K$ are algebraic over \digamma , then $\alpha+\beta$, $\alpha\cdot\beta$, $-\alpha$, and α^{-1} $(\alpha\neq 0)$ are all algebraic over F.

Let K/F be an extension.

- \triangleright (Characterization of finite extensions) K/F is finite if and only if K is generated by finitely-many algebraic elements. $[Why? \Rightarrow: We saw before that finite implies algebraic, so take$ a basis. \Leftarrow : if $\mathcal{K} = \mathcal{F}(\alpha_1, \ldots, \alpha_k)$ and each α_i is algebraic of degree n_i , K/F has degree at most $n_1 \ldots n_k$, which is finite]
- Algebraic numbers form a field) If $\alpha, \beta \in K$ are algebraic over \digamma , then $\alpha+\beta$, $\alpha\cdot\beta$, $-\alpha$, and α^{-1} $(\alpha\neq 0)$ are all algebraic over F.

[Why? because all these numbers are in $F(\alpha, \beta)$, which is finite by the previous part, hence algebraic.]

Let K/F be an extension.

- \triangleright (Characterization of finite extensions) K/F is finite if and only if K is generated by finitely-many algebraic elements. $[Why? \Rightarrow: We saw before that finite implies algebraic, so take$ a basis. \Leftarrow : if $\mathcal{K} = \mathcal{F}(\alpha_1, \ldots, \alpha_k)$ and each α_i is algebraic of degree n_i , K/F has degree at most $n_1 \ldots n_k$, which is finitej
- Algebraic numbers form a field) If $\alpha, \beta \in K$ are algebraic over \digamma , then $\alpha+\beta$, $\alpha\cdot\beta$, $-\alpha$, and α^{-1} $(\alpha\neq 0)$ are all algebraic over F.

[Why? because all these numbers are in $F(\alpha, \beta)$, which is finite by the previous part, hence algebraic.]

 \triangleright (Transitivity of being algebraic) If K is algebraic over F and L is algebraic over K , then L is algebraic over F .

(Transitivity of being algebraic) If K is algebraic over F and L is algebraic over K , then L is algebraic over F .

(Transitivity of being algebraic) If K is algebraic over F and L is algebraic over K , then L is algebraic over F .

[Why? Let $\alpha \in L$. Since α is algebraic over K, α is the root of a polynomial $a_0 + a_1x + \ldots + a_nx^n$, with each $a_i \in K$. Since K is algebraic over F, each a_i is algebraic over F. Thus the extension $F(a_0, \ldots, a_n)/F$ is finite. The extension $F(a_0, \ldots, a_n)(\alpha) / F(a_0, \ldots, a_n)$ is also finite. Thus $F(a_0, \ldots, a_n, \alpha)$ is finite, so α is algebraic over F.]

Let $F = \mathbb{Q}$, $K = \mathbb{C}$. Let $\bar{\mathbb{Q}}$ denote *all* algebraic complex numbers (over \mathbb{Q}). What is $[\bar{\mathbb{Q}} : \mathbb{Q}]$?

Let $F = \mathbb{Q}$, $K = \mathbb{C}$. Let $\bar{\mathbb{Q}}$ denote *all* algebraic complex numbers (over \mathbb{Q}). What is $[\bar{\mathbb{Q}} : \mathbb{Q}]$?

 $\frac{1}{2}$ Well, for each *n*, $\sqrt[n]{2}$ is algebraic, and its minimal polynomial is $x^n - 2$ (it is irreducible by Eisenstein).

Let $F = \mathbb{Q}$, $K = \mathbb{C}$. Let $\overline{\mathbb{Q}}$ denote all algebraic complex numbers (over \mathbb{Q}). What is $[\bar{\mathbb{Q}} : \mathbb{Q}]$?

 $\frac{1}{2}$ Well, for each *n*, $\sqrt[n]{2}$ is algebraic, and its minimal polynomial is $x^n - 2$ (it is irreducible by Eisenstein).

Thus $[\bar{\mathbb{Q}} : \mathbb{Q}] \geq [\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = n$, for each n , so $\bar{\mathbb{Q}}/\mathbb{Q}$ is an infinite extension.

Let $F = \mathbb{Q}$, $K = \mathbb{C}$. Let $\overline{\mathbb{Q}}$ denote all algebraic complex numbers (over \mathbb{Q}). What is $[\bar{\mathbb{Q}} : \mathbb{Q}]$?

 $\frac{1}{2}$ Well, for each *n*, $\sqrt[n]{2}$ is algebraic, and its minimal polynomial is $x^n - 2$ (it is irreducible by Eisenstein).

Thus $[\bar{\mathbb{Q}} : \mathbb{Q}] \geq [\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = n$, for each n , so $\bar{\mathbb{Q}}/\mathbb{Q}$ is an infinite extension.

However it is algebraic! So finite implies algebraic, but not conversely! We need to assume finitely generated to get the converse.

Let $F = \mathbb{Q}$, $K = \mathbb{C}$. Let $\overline{\mathbb{Q}}$ denote all algebraic complex numbers (over \mathbb{Q}). What is $[\bar{\mathbb{Q}} : \mathbb{Q}]$?

 $\frac{1}{2}$ Well, for each *n*, $\sqrt[n]{2}$ is algebraic, and its minimal polynomial is $x^n - 2$ (it is irreducible by Eisenstein).

Thus $[\bar{\mathbb{Q}} : \mathbb{Q}] \geq [\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = n$, for each n , so $\bar{\mathbb{Q}}/\mathbb{Q}$ is an infinite extension.

However it is algebraic! So finite implies algebraic, but not conversely! We need to assume finitely generated to get the converse.

A fun exercise: prove that \overline{Q} is countable (*hint: see the book*).

Let $F = \mathbb{Q}$, $K = \mathbb{C}$. Let $\overline{\mathbb{Q}}$ denote all algebraic complex numbers (over \mathbb{Q}). What is $[\bar{\mathbb{Q}} : \mathbb{Q}]$?

 $\frac{1}{2}$ Well, for each *n*, $\sqrt[n]{2}$ is algebraic, and its minimal polynomial is $x^n - 2$ (it is irreducible by Eisenstein).

Thus $[\bar{\mathbb{Q}} : \mathbb{Q}] \geq [\mathbb{Q}(\sqrt[n]{2}) : \mathbb{Q}] = n$, for each n , so $\bar{\mathbb{Q}}/\mathbb{Q}$ is an infinite extension.

However it is algebraic! So finite implies algebraic, but not conversely! We need to assume finitely generated to get the converse.

A fun exercise: prove that \overline{Q} is countable (*hint: see the book*). Since $\mathbb C$ (or $\mathbb R$) are uncountable, this shows there are transcendental elements. However proving specific elements (like e or π) are transcendental is much harder.

Composite fields

How do we "put two fields together"?

Definition

For K_1, K_2 subfields of K, let K_1K_2 , the composite field of K_1 and K_2 , be the smallest subfield of K containing K_1 and K_2 .

Composite fields

How do we "put two fields together"?

Definition

For K_1, K_2 subfields of K, let K_1K_2 , the composite field of K_1 and K_2 , be the smallest subfield of K containing K_1 and K_2 .

Example

 $\mathbb{Q}(\sqrt{2})\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt{2})$ $(\overline{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[6]{2}).$ Why is the last equality true?

Composite fields

How do we "put two fields together"?

Definition

For K_1, K_2 subfields of K, let K_1K_2 , the composite field of K_1 and K_2 , be the smallest subfield of K containing K_1 and K_2 .

Example

 $\mathbb{Q}(\sqrt{2})\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}(\sqrt{2})$ $(\overline{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[6]{2}).$ Why is the last equality true?

► ⊆:
$$
\sqrt{2} \in \mathbb{Q}(\sqrt[6]{2})
$$
 as $\sqrt{2} = \sqrt[6]{2}^3$. Similarly, $\sqrt[3]{2} \in \mathbb{Q}(\sqrt[6]{2})$.
\n▶ \supseteq : $\sqrt[6]{2} = 2^{\frac{1}{6}} = 2^{\frac{1}{2} - \frac{1}{3}} = \frac{\sqrt{2}}{\sqrt[3]{2}} \in \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$.

Observe that if K_1, K_2 are finite extensions of F with bases $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m , then $K_1K_2 = F(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m).$

Observe that if K_1, K_2 are finite extensions of F with bases $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m , then $K_1K_2 = F(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m).$

This means that K_1K_2 is generated by product and sums of α_i and β_j 's.

Observe that if K_1, K_2 are finite extensions of F with bases $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m , then $K_1K_2 = F(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m).$

This means that K_1K_2 is generated by product and sums of α_i and β_j 's.

Product of α_i 's (like α_1^2) are F-linear combinations of α_i 's (as the α_i form a basis). Similarly for product of β_j 's.

Observe that if K_1, K_2 are finite extensions of F with bases $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_m , then $K_1K_2 = F(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m).$

This means that K_1K_2 is generated by product and sums of α_i and β_j 's.

Product of α_i 's (like α_1^2) are F-linear combinations of α_i 's (as the α_i form a basis). Similarly for product of β_j 's.

This implies that $(\alpha_i\beta_j)_{i=1...n, j=1...m}$ spans K_1K_2 , so $[K_1K_2 : F] \le nm = [K_1 : F][K_2 : F]$.

Degree of composite extensions: picture

If $[K_1 : F] = n$, $[K_2 : F] = m$, then $[K_1K_2 : F] \le nm$.

Degree of composite extensions: picture

If
$$
[K_1 : F] = n
$$
, $[K_2 : F] = m$, then $[K_1K_2 : F] \le nm$.

Note that if $gcd(n, m) = 1$, then equality holds! $[K_1K_2 : F] = nm$. Note that if $gcd(n, m) = 1$, then equality holds! $[N_1N_2 : r] = m$
We can use this to get another proof that $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) : \mathbb{Q}] = 6$.

 \blacktriangleright Finite extensions are exactly the iterations of simple extensions by algebraic elements.

Summary

- \blacktriangleright Finite extensions are exactly the iterations of simple extensions by algebraic elements.
- \blacktriangleright Thus finite is equivalent to "generated by finitely-many algebraic elements".

Summary

- \triangleright Finite extensions are exactly the iterations of simple extensions by algebraic elements.
- \triangleright Thus finite is equivalent to "generated by finitely-many algebraic elements".
- It follows that algebraic elements form a field, and that the iterations of two algebraic extensions is algebraic.

Summary

- \triangleright Finite extensions are exactly the iterations of simple extensions by algebraic elements.
- \triangleright Thus finite is equivalent to "generated by finitely-many algebraic elements".
- It follows that algebraic elements form a field, and that the iterations of two algebraic extensions is algebraic.
- \triangleright We can either think of $F(\alpha, \beta)$ as $(F(\alpha))(\beta)$, or as the composite of the extensions $F(\alpha)$ and $F(\beta)$. If the degrees of these are n and m , we get that the degree of the composite is \leq nm, and equality holds if n and m are coprime.