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Three classical problems from Greek geometry

Can the following be done, using just straightedge and compass?

1. (Doubling the cube) Given a line segment L, construct
another line segment L′ so that a cube with side L′ has
exactly twice the volume of a cube with side L.

2. (Trisecting an angle) Given an angle θ, construct the angle
θ/3.

3. (Squaring the circle) Given a circle, construct a square with
the same area as this circle.

Today, we will show they are all impossible to do, by translating to
algebra!

[Note: Why is it “straightedge and compass” rather than “ruler
and compass”? Because rulers have markings, and we are not
allowed to use them. In fact it is possible to trisect an angle using
a ruler’s markings. See the book!]
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Constructible real numbers: geometric definition

Definition

Let S be a set of points in the plane. A line is S-constructed if it
contains two distinct points of S . A circle is S-constructed if it
contains a point in S , and its center is also in S .

Definition

The set of constructible points of the plane is the smallest subset
S of R2 with the following properties:

1. (0, 0) ∈ S and (1, 0) ∈ S .

2. If two non-parallel S-constructed lines intersect at the point
P, then P ∈ S .

3. If C1 and C2 are distinct S-constructed circles which intersect
at a point P, then P ∈ S .

4. If C is an S-constructed circle and L is an S-constructed line
which intersects C at a point P, then P ∈ S .
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Geometric definition of the constructible numbers, contd

In words, a point of the plane is constructible if it can be obtained
from (0, 0) and (1, 0) using straightedge and compass operations:

1. Drawing a line between already constructed points.

2. Drawing a circle with center a constructed point and also
passing through a constructed point.

3. Finding points of intersections of two non-parallel lines, or of
two distinct circles, or of a line and a circle.

Example

The point (2, 0) is constructible: draw the line L between (0, 0)
and (1, 0), find the intersection with the circle with center (1, 0)
passing through (0, 0). Similarly, (n, 0) is constructible for n ∈ Z.
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Definition

A line is constructible if it passes through two distinct constructible
points, and a circle is constructible if its center is constructible and
it passes through a constructible point.

Lemma (Exercise)

Assume L is a constructible line and P is a constructible point.
Then:

I The line L⊥ perpendicular to L and passing through P is
constructible.

I The line L‖ parallel to L and passing through P is
constructible.

It follows that (0, 1) is constructible: draw a line L from (0, 0) to
(1, 0), draw the perpendicular line L⊥ through (0, 0), and find its
intersection with a circle of radius 1 centered at (0, 0).
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Constructible numbers

Definition

A real number r is constructible if |r | is the length of a segment
between two constructible points.

Lemma (Exercise)

I r is a constructible number if and only if (r , 0) is constructible.

I A point (x , y) is constructible if and only if both x and y are
constructible.

I A circle is constructible if and only if its center is a
constructible point and its radius is a constructible number.
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From geometry to algebra

Lemma

If a and b are constructible numbers, then a + b, −a, a · b, a−1

(a 6= 0), and
√
a (a ≥ 0) are constructible.

Proof.

| − a| = a, and a + b is the distance between (b, 0) and (−a, 0).
For products and inverses, use similar triangles. For roots, use a
circle of diameter 1 + a (pictures to follow).
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From geometry to algebra
Thus a real number is constructible if and only if it can be
obtained from 0 and 1 using field operations and square roots.

In
field-theoretic terminology:

Theorem

A real number x is constructible if and only if it is contained in an
extension K of Q which is an iteration of quadratic extensions:
there are subfields Q = F1 ⊆ F2 ⊆ . . . ⊆ Fk = K such that F1 = Q
and for all i < k , Fi+1 = Fi (

√
αi ), for αi a non-negative real

number in Fi .

Proof sketch.

We just saw that numbers arising from iterated quadratic
extensions are constructible. Conversely, any constructible number
arises from taking sums, products, and finding root of degree two
polynomials using the quadratic formula (to find intersection
points of lines and circles).
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Because the degree of an extension must divide the degree of a
bigger extension, we have:

Corollary

If x is constructible, then [Q(x) : Q] = 2k for some k .
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Corollary

If x is constructible, [Q(x) : Q] = 2k for some k .

Thus we cannot double the cube: take a cube of side length 1,
which has volume 1. A cube of double that volume would have side
length 3

√
2, which has degree 3, which is not a power of 2.

We also cannot square the circle: a circle of unit radius has area π,
and since π (so also

√
π) is transcendental, its degree is infinite,

hence not a power of 2.
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Trisecting the angle

By “an angle θ can be constructed” we mean (by definition) that a
point in the plane with θ as part of its polar coordinates can be
constructed.

Exercise: an angle θ can be constructed if and only if cos(θ) is a
constructible real number.

Thus the problem of trisecting the angle asks whether cos(θ)
constructible implies cos(θ/3) constructible.

Note that cos(θ) = 2 cos2(θ/2)− 1 (double angle formula), so if
we know cos(θ), we can get cos(θ/2) by solving a quadratic. Thus
bisecting the angle is possible (try to find a geometric
construction!)
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Trisecting the angle is impossible

By contrast, cos(θ) = 4 cos3(θ/3)− 3 cos(θ/3) (triple angle
formula). Set θ = π/3 (60 degrees). Recall that cos(θ) = 1

2 , so if
β = cos(θ/3), then we must have 4β3 − 3β − 1

2 = 0, or
8β3 − 6β − 1 = 0.

Set α = 2β to clarify things. Then the above equation becomes
α3 − 3α− 1 = 0. The left hand side is an irreducible polynomial in
α (it has no rational roots, check it!), so α, hence β, has degree 3,
hence is not constructible.

We just saw that cos(19π) is not constructible. Coming up
eventually: for which rational numbers r is cos(rπ) constructible?
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More field theory

If F is a field and p(x) ∈ F [x ], we saw we can find an extension of
F with a root for p. If p is irreducible, the minimal such extension
is unique. We now generalize this:

Definition

An extension K of a field F is called a splitting field for a
polynomial p(x) ∈ F [x ] if p(x) factors into linear factors in K [x ]
(we say that p(x) splits completely in K [x ]), and does not split
completely over any proper subfield of K containing F .

After adding enough roots, we see that every polynomial has a
splitting field (13.4.25 in DF). We will also see that splitting fields
are unique up to isomorphism, so we talk about “the” splitting
field of a polynomial p(x) over F .
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Examples of splitting fields

I The splitting field of x2 − 2 over Q is just Q(
√

2).

I The splitting field of (x2 − 2)(x2 − 3) is Q(
√

2,
√

3).

I The splitting field of x3 − 2 is not Q( 3
√

2): it is missing the
complex roots! In fact the roots are α1 = 3

√
2, α2 = 3

√
2e2πi/3,

α3 = 3
√

2e4πi/3 and the splitting field K is the smallest
containing all these roots.

I We could describe it as K = Q(α1, α2, α3), but we have seen
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Picture of the splitting field of x3 − 2, and known subfields:
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2 2 2
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In general, what can we say about the degree of a splitting field of
a polynomial of degree n?

Lemma

The splitting field of a polynomial p(x) of degree n has degree at
most n!.

Proof.

Add a root α to p. This is an extension of degree at most n.
Dividing p(x) by (x − α), we get a polynomial of degree n − 1.
Add a root to this one, and continue. At the end we have built an
extension of degree at most n(n − 1) . . . 1 = n!.

We could have figured out the degree d of the splitting field of
x3 − 2 this way: We know d ≤ 3! = 6, and must strictly contain
Q( 3
√

2) which has degree 3, so 3 < d ≤ 6, and 3 divides d : d = 6
is the only possibility.



In general, what can we say about the degree of a splitting field of
a polynomial of degree n?

Lemma

The splitting field of a polynomial p(x) of degree n has degree at
most n!.

Proof.

Add a root α to p. This is an extension of degree at most n.
Dividing p(x) by (x − α), we get a polynomial of degree n − 1.
Add a root to this one, and continue. At the end we have built an
extension of degree at most n(n − 1) . . . 1 = n!.

We could have figured out the degree d of the splitting field of
x3 − 2 this way: We know d ≤ 3! = 6, and must strictly contain
Q( 3
√

2) which has degree 3, so 3 < d ≤ 6, and 3 divides d : d = 6
is the only possibility.



In general, what can we say about the degree of a splitting field of
a polynomial of degree n?

Lemma

The splitting field of a polynomial p(x) of degree n has degree at
most n!.

Proof.

Add a root α to p. This is an extension of degree at most n.
Dividing p(x) by (x − α), we get a polynomial of degree n − 1.
Add a root to this one, and continue. At the end we have built an
extension of degree at most n(n − 1) . . . 1 = n!.

We could have figured out the degree d of the splitting field of
x3 − 2 this way:

We know d ≤ 3! = 6, and must strictly contain
Q( 3
√

2) which has degree 3, so 3 < d ≤ 6, and 3 divides d : d = 6
is the only possibility.



In general, what can we say about the degree of a splitting field of
a polynomial of degree n?

Lemma

The splitting field of a polynomial p(x) of degree n has degree at
most n!.

Proof.

Add a root α to p. This is an extension of degree at most n.
Dividing p(x) by (x − α), we get a polynomial of degree n − 1.
Add a root to this one, and continue. At the end we have built an
extension of degree at most n(n − 1) . . . 1 = n!.

We could have figured out the degree d of the splitting field of
x3 − 2 this way: We know d ≤ 3! = 6, and must strictly contain
Q( 3
√

2) which has degree 3, so 3 < d ≤ 6, and 3 divides d : d = 6
is the only possibility.



Splitting fields can be smaller than expected.

Example

Consider the polynomial p(x) = x4 + 4.

It factors as
(x2 + 2x + 2)(x2 − 2x + 2). The roots are ±1± i , so in fact the
splitting field is Q(i), of degree 2!
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Summary
We discussed two topics, straightedge and compass constructions,
and splitting fields.

I The numbers that can be constructed using straightedge and
compass are precisely those that can be obtained from Q by
iterating quadratic extensions (that is, iterating taking square
roots and closing under field operations). In particular they
have degree a power of 2.

I This shows immediately that doubling the cube and squaring
the circle is impossible.

I Trisecting an angle θ is equivalent to constructing cos(θ/3).
This is impossible for θ = π/3, because the triple angle
formula shows cos(θ/3) must be the root of an irreducible
polynomial of degree 3.

I The splitting field of a polynomial (over a base) is the
smallest field extension containing all the roots of that
polynomial. If the polynomial has degree n, the splitting field
has degree at most n!.



Summary
We discussed two topics, straightedge and compass constructions,
and splitting fields.

I The numbers that can be constructed using straightedge and
compass are precisely those that can be obtained from Q by
iterating quadratic extensions (that is, iterating taking square
roots and closing under field operations). In particular they
have degree a power of 2.

I This shows immediately that doubling the cube and squaring
the circle is impossible.

I Trisecting an angle θ is equivalent to constructing cos(θ/3).
This is impossible for θ = π/3, because the triple angle
formula shows cos(θ/3) must be the root of an irreducible
polynomial of degree 3.

I The splitting field of a polynomial (over a base) is the
smallest field extension containing all the roots of that
polynomial. If the polynomial has degree n, the splitting field
has degree at most n!.



Summary
We discussed two topics, straightedge and compass constructions,
and splitting fields.

I The numbers that can be constructed using straightedge and
compass are precisely those that can be obtained from Q by
iterating quadratic extensions (that is, iterating taking square
roots and closing under field operations). In particular they
have degree a power of 2.

I This shows immediately that doubling the cube and squaring
the circle is impossible.

I Trisecting an angle θ is equivalent to constructing cos(θ/3).
This is impossible for θ = π/3, because the triple angle
formula shows cos(θ/3) must be the root of an irreducible
polynomial of degree 3.

I The splitting field of a polynomial (over a base) is the
smallest field extension containing all the roots of that
polynomial. If the polynomial has degree n, the splitting field
has degree at most n!.



Summary
We discussed two topics, straightedge and compass constructions,
and splitting fields.

I The numbers that can be constructed using straightedge and
compass are precisely those that can be obtained from Q by
iterating quadratic extensions (that is, iterating taking square
roots and closing under field operations). In particular they
have degree a power of 2.

I This shows immediately that doubling the cube and squaring
the circle is impossible.

I Trisecting an angle θ is equivalent to constructing cos(θ/3).
This is impossible for θ = π/3, because the triple angle
formula shows cos(θ/3) must be the root of an irreducible
polynomial of degree 3.

I The splitting field of a polynomial (over a base) is the
smallest field extension containing all the roots of that
polynomial. If the polynomial has degree n, the splitting field
has degree at most n!.



Summary
We discussed two topics, straightedge and compass constructions,
and splitting fields.

I The numbers that can be constructed using straightedge and
compass are precisely those that can be obtained from Q by
iterating quadratic extensions (that is, iterating taking square
roots and closing under field operations). In particular they
have degree a power of 2.

I This shows immediately that doubling the cube and squaring
the circle is impossible.

I Trisecting an angle θ is equivalent to constructing cos(θ/3).
This is impossible for θ = π/3, because the triple angle
formula shows cos(θ/3) must be the root of an irreducible
polynomial of degree 3.

I The splitting field of a polynomial (over a base) is the
smallest field extension containing all the roots of that
polynomial. If the polynomial has degree n, the splitting field
has degree at most n!.


