# Math-123: Splitting field and algebraic closure

Sebastien Vasey

Harvard University

March 25, 2020

▶ New office hours have been announced (see course website).

- ▶ New office hours have been announced (see course website).
- Assignment 7 is due Friday, midnight, and assignment 8 is due next Tuesday, midnight.

### Administrivia

- ▶ New office hours have been announced (see course website).
- Assignment 7 is due Friday, midnight, and assignment 8 is due next Tuesday, midnight.
- Recordings: please do *not* share them.

### Administrivia

- ▶ New office hours have been announced (see course website).
- Assignment 7 is due Friday, midnight, and assignment 8 is due next Tuesday, midnight.
- Recordings: please do *not* share them.
- Recordings: you may use a pseudonym (let me know what it is!) or turn off your webcam if you are concerned about privacy.

### A question from last class

Asked last time: can we prove that these geometric constructions are impossible without using field theory?

Asked last time: can we prove that these geometric constructions are impossible without using field theory?

At least for trisecting the angle we can! See Terrence Tao's proof linked on the course website.

## Splitting fields

Last time, we started talking about the splitting field:

#### Definition

An extension K of a field F is called a *splitting field* for a polynomial  $p(x) \in F[x]$  if p(x) factors into linear factors in K[x] (we say that p(x) *splits completely in* K[x]), and does not split completely over any proper subfield of K containing F.

## Splitting fields

Last time, we started talking about the splitting field:

#### Definition

An extension K of a field F is called a *splitting field* for a polynomial  $p(x) \in F[x]$  if p(x) factors into linear factors in K[x] (we say that p(x) *splits completely in* K[x]), and does not split completely over any proper subfield of K containing F.

Essentially, the splitting field of a polynomial is the smallest field extension containing *all* the roots of that polynomial.

# Splitting fields

Last time, we started talking about the splitting field:

#### Definition

An extension K of a field F is called a *splitting field* for a polynomial  $p(x) \in F[x]$  if p(x) factors into linear factors in K[x] (we say that p(x) *splits completely in* K[x]), and does not split completely over any proper subfield of K containing F.

Essentially, the splitting field of a polynomial is the smallest field extension containing *all* the roots of that polynomial.

We say "the" splitting field because it is unique up to isomorphism.

### Uniqueness of splitting fields

Lemma (Uniqueness of simple extensions, 13.1.8 in DF)

Let  $\phi : F \cong F'$  be an isomorphism. Let  $p(x) \in F[x]$  be an irreducible polynomial and let  $p'(x) \in F'[x]$  be the polynomial obtained by applying  $\phi$  to the coefficients of p.

Let  $\alpha$  be a root of p(x) (in some extension of F) and let  $\alpha'$  be a root of p'(x) (in some extension of F'). Then there exists an isomorphism  $\sigma : F(\alpha) \cong F'(\alpha')$  such that  $\sigma \upharpoonright F = \phi$ .

$$F(\alpha) \xrightarrow{\cong} F'(\alpha')$$

$$| \qquad |$$

$$F \xrightarrow{\cong} F'$$

#### Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let  $\phi : F \cong F'$  be an isomorphism. Let  $p(x) \in F[x]$  be a polynomial and let  $p'(x) \in F'[x]$  be the corresponding polynomial. Let K be a splitting field for p(x) over F, and let K' be a splitting field for p'(x) over F'. Then  $\phi$  extends to  $\sigma : K \cong K'$ .

$$\begin{array}{ccc} K & \stackrel{\cong}{\longrightarrow} & K' \\ & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

#### Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let  $\phi: F \cong F'$  be an isomorphism. Let  $p(x) \in F[x]$  be a polynomial and let  $p'(x) \in F'[x]$  be the corresponding polynomial. Let K be a splitting field for p(x) over F, and let K' be a splitting field for p'(x) over F'. Then  $\phi$  extends to  $\sigma: K \cong K'$ .

$$\begin{array}{ccc} K & \stackrel{\cong}{\longrightarrow} & K' \\ & & \\ & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

#### Proof.

By induction on the degree, *n*, of p(x). If n = 1, F = K and F' = K', so we can take  $\sigma = \phi$ .

#### Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let  $\phi: F \cong F'$  be an isomorphism. Let  $p(x) \in F[x]$  be a polynomial and let  $p'(x) \in F'[x]$  be the corresponding polynomial. Let K be a splitting field for p(x) over F, and let K' be a splitting field for p'(x) over F'. Then  $\phi$  extends to  $\sigma: K \cong K'$ .

$$\begin{array}{ccc} K & \stackrel{\cong}{\longrightarrow} & K' \\ & & \\ & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

#### Proof.

By induction on the degree, n, of p(x). If n = 1, F = K and F' = K', so we can take  $\sigma = \phi$ . If  $n \ge 2$ , let f(x) be an irreducible factor of p(x). Add a root  $\alpha \in K$  for f,  $\alpha' \in K'$  for f'. Get  $\phi' : F(\alpha) \cong F(\alpha')$ . Apply the IH to  $p(x)/(x - \alpha)$ .

That is, apply the induction hypothesis to the top part of this diagram and the polynomial  $p(x)/(x - \alpha)$ , of degree n - 1.

$$\begin{array}{c} \mathsf{K} & \xrightarrow{\cong} & \mathsf{K}' \\ | & | \\ \mathsf{F}(\alpha) & \xrightarrow{\cong} & \mathsf{F}'(\alpha') \\ | & | \\ \mathsf{F} & \xrightarrow{\cong} & \mathsf{F}' \end{array}$$

That is, apply the induction hypothesis to the top part of this diagram and the polynomial  $p(x)/(x - \alpha)$ , of degree n - 1.

$$\begin{array}{ccc} K & \xrightarrow{\cong} & K' \\ & & & \\ F(\alpha) & \xrightarrow{\cong} & F'(\alpha') \\ & & & \\ F & \xrightarrow{\cong} & F' \end{array}$$

Note the special case where F = F' and  $\phi$  is the identity. Then we get that any two splitting fields of p(x) over F are isomorphic (and the isomorphism fixes the elements of F).

# Splitting field of $x^n - 1$

The roots of the polynomial  $x^n - 1 \in \mathbb{Q}[x]$  are called the *nth roots of unity*.

# Splitting field of $x^n - 1$

The roots of the polynomial  $x^n - 1 \in \mathbb{Q}[x]$  are called the *nth roots of unity*.

They are of the form  $e^{2\pi i k/n}$ , k = 1, 2, ..., n.

## Splitting field of $x^n - 1$

The roots of the polynomial  $x^n - 1 \in \mathbb{Q}[x]$  are called the *nth roots* of unity.

They are of the form  $e^{2\pi i k/n}$ , k = 1, 2, ..., n. Drawing for n = 5:



# Roots of unity

We usually consider the roots of unity inside  $\mathbb{C}$ , but we can more generally look at them inside *any* field *F*.

Observation: for a fixed *n*, the *n*th roots of unity form a group under multiplication (if  $\alpha^n = 1$  and  $\beta^n = 1$ , then  $(\alpha\beta)^n = 1$ ).

# Roots of unity

We usually consider the roots of unity inside  $\mathbb{C}$ , but we can more generally look at them inside *any* field *F*.

Observation: for a fixed *n*, the *n*th roots of unity form a group under multiplication (if  $\alpha^n = 1$  and  $\beta^n = 1$ , then  $(\alpha\beta)^n = 1$ ).

In fact it is a cyclic group (inside any field, not just  $\mathbb{C}).$  This follows from the more general:

# Roots of unity

We usually consider the roots of unity inside  $\mathbb{C}$ , but we can more generally look at them inside *any* field *F*.

Observation: for a fixed *n*, the *n*th roots of unity form a group under multiplication (if  $\alpha^n = 1$  and  $\beta^n = 1$ , then  $(\alpha\beta)^n = 1$ ).

In fact it is a cyclic group (inside any field, not just  $\mathbb{C}$ ). This follows from the more general:

#### Lemma

If F is a field and  $F^{\times}$  is its group of units, then any finite subgroup G of  $F^{\times}$  is cyclic.

#### Lemma

If F is a field and  $F^{\times}$  is its group of units, then any finite subgroup G of  $F^{\times}$  is cyclic.

#### Proof.

 $F^{\times}$  is abelian, so *G* is also abelian. By the structure theorem for finitely generated  $\mathbb{Z}$ -modules, *G* is isomorphic to  $Z_{n_1} \times Z_{n_2} \times Z_{n_3} \times \ldots \times Z_{n_k}$ , where  $2 \leq n_1 |n_2| \ldots |n_k$ , and we have written  $Z_{\ell} = \mathbb{Z}/\ell\mathbb{Z}$ .

#### Lemma

If F is a field and  $F^{\times}$  is its group of units, then any finite subgroup G of  $F^{\times}$  is cyclic.

#### Proof.

 $F^{\times}$  is abelian, so *G* is also abelian. By the structure theorem for finitely generated  $\mathbb{Z}$ -modules, *G* is isomorphic to  $Z_{n_1} \times Z_{n_2} \times Z_{n_3} \times \ldots \times Z_{n_k}$ , where  $2 \leq n_1 |n_2| \ldots |n_k$ , and we have written  $Z_{\ell} = \mathbb{Z}/\ell\mathbb{Z}$ .

In particular, any member of G is a root of the polynomial  $x^{n_k} - 1$ . Thus  $n_1 \cdot n_2 \cdot \ldots \cdot n_k = |G| \le n_k$ , so k = 1, so G is cyclic.

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

 $1 = e^{2\pi i n/n}$  is not a primitive root of unity (for  $n \ge 2$ ), but  $e^{2\pi i/n}$  is a primitive *n*th root of unity.

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

 $1 = e^{2\pi i n/n}$  is not a primitive root of unity (for  $n \ge 2$ ), but  $e^{2\pi i/n}$  is a primitive *n*th root of unity.

In general,  $e^{2\pi i k/n}$  is a primitive root of unity if and only if k is coprime to n.

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

 $1 = e^{2\pi i n/n}$  is not a primitive root of unity (for  $n \ge 2$ ), but  $e^{2\pi i/n}$  is a primitive *n*th root of unity.

In general,  $e^{2\pi i k/n}$  is a primitive root of unity if and only if k is coprime to n. Thus there are exactly  $\phi(n)$  primitive roots of unity  $(\phi \text{ is Euler's Totient function: it gives the number of k coprime to n with <math>1 \le k \le n$ ).

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

 $1 = e^{2\pi i n/n}$  is not a primitive root of unity (for  $n \ge 2$ ), but  $e^{2\pi i/n}$  is a primitive *n*th root of unity.

In general,  $e^{2\pi i k/n}$  is a primitive root of unity if and only if k is coprime to n. Thus there are exactly  $\phi(n)$  primitive roots of unity  $(\phi \text{ is Euler's Totient function: it gives the number of k coprime to n with <math>1 \le k \le n$ ).

We will write  $\zeta_n$  instead of  $e^{2\pi i/n}$ . Any other root of unity is of the form  $\zeta_n^k$ , and it is primitive if and only if k is coprime to n.

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

 $1 = e^{2\pi i n/n}$  is not a primitive root of unity (for  $n \ge 2$ ), but  $e^{2\pi i/n}$  is a primitive *n*th root of unity.

In general,  $e^{2\pi i k/n}$  is a primitive root of unity if and only if k is coprime to n. Thus there are exactly  $\phi(n)$  primitive roots of unity  $(\phi \text{ is Euler's Totient function: it gives the number of k coprime to n with <math>1 \le k \le n$ ).

We will write  $\zeta_n$  instead of  $e^{2\pi i/n}$ . Any other root of unity is of the form  $\zeta_n^k$ , and it is primitive if and only if k is coprime to n.

We have shown in particular  $\mathbb{Q}(\zeta_n)$  is the splitting field of  $x^n - 1$ .

The group of *n*th roots of unity is cyclic. A generator is called a *primitive n*th root of unity.

 $1 = e^{2\pi i n/n}$  is not a primitive root of unity (for  $n \ge 2$ ), but  $e^{2\pi i/n}$  is a primitive *n*th root of unity.

In general,  $e^{2\pi i k/n}$  is a primitive root of unity if and only if k is coprime to n. Thus there are exactly  $\phi(n)$  primitive roots of unity  $(\phi \text{ is Euler's Totient function: it gives the number of k coprime to n with <math>1 \le k \le n$ ).

We will write  $\zeta_n$  instead of  $e^{2\pi i/n}$ . Any other root of unity is of the form  $\zeta_n^k$ , and it is primitive if and only if k is coprime to n.

We have shown in particular  $\mathbb{Q}(\zeta_n)$  is the splitting field of  $x^n - 1$ .

#### Definition

The field  $\mathbb{Q}(\zeta_n)$  is called the *cyclotomic field of nth roots of unity*.

#### Degree of the cyclotomic field

We will see later that  $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$ .

#### Degree of the cyclotomic field

We will see later that  $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$ .

We can prove it now for n = p a prime. First factor:

$$x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \ldots + 1)$$

Since  $\zeta_p \neq 1$ , it is a root of  $f(x) = x^{p-1} + x^{p-2} + \ldots + 1$ . This polynomial is irreducible, so  $\zeta_p$  has degree  $p - 1 = \phi(p)$ .

#### Degree of the cyclotomic field

We will see later that  $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$ .

We can prove it now for n = p a prime. First factor:

$$x^{p} - 1 = (x - 1)(x^{p-1} + x^{p-2} + \ldots + 1)$$

Since  $\zeta_p \neq 1$ , it is a root of  $f(x) = x^{p-1} + x^{p-2} + \ldots + 1$ . This polynomial is irreducible, so  $\zeta_p$  has degree  $p - 1 = \phi(p)$ .

Why is f(x) irreducible? Observe  $f(x) = \frac{x^{p}-1}{x-1}$ . Replace x by x + 1, and write  $\binom{p}{k} := \frac{p!}{k!(p-k)!}$ . By the binomial theorem, get:

$$\frac{1}{x} \left( \binom{p}{0} x^{p} + \binom{p}{1} x^{p-1} + \binom{p}{2} x^{p-2} + \dots + \binom{p}{p-1} x \right)$$
$$= x^{p-1} + \binom{p}{1} x^{p-2} + \binom{p}{2} x^{p-3} + \dots + \binom{p}{p-1}$$

Note *p* divides all the non-leading coefficients, but the last coefficient is *p*. Apply Eisenstein's criterion.

## Splitting field of $x^p - 2$ , p a prime

We considered the case p = 3 before. We proceed similarly.

### Splitting field of $x^p - 2$ , p a prime

We considered the case p = 3 before. We proceed similarly. The roots of  $x^p - 2$  are  $\zeta \sqrt[p]{2}$ , for  $\zeta$  any *p*th root of unity.

## Splitting field of $x^p - 2$ , p a prime

We considered the case p = 3 before. We proceed similarly.

The roots of  $x^p - 2$  are  $\zeta \sqrt[p]{2}$ , for  $\zeta$  any *p*th root of unity.

Note  $\zeta_{\rho} = (\zeta_{\rho} \sqrt[\rho]{2})/(\sqrt[\rho]{2})$ , so  $\mathbb{Q}(\sqrt[\rho]{2}, \zeta_{\rho})$  is contained in the splitting field.

### Splitting field of $x^p - 2$ , p a prime

We considered the case p = 3 before. We proceed similarly.

The roots of  $x^p - 2$  are  $\zeta \sqrt[p]{2}$ , for  $\zeta$  any *p*th root of unity.

Note  $\zeta_p = (\zeta_p \sqrt[p]{2})/(\sqrt[p]{2})$ , so  $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$  is contained in the splitting field.

On the other hand if  $\zeta$  is a *p*th root of unity,  $\zeta \sqrt[p]{2} = \zeta_p^k \sqrt[p]{2}$  for some *k*, so  $\zeta \sqrt[p]{2} \in \mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ , so  $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$  is the splitting field.

### Splitting field of $x^p - 2$ , p a prime

We considered the case p = 3 before. We proceed similarly.

The roots of  $x^p - 2$  are  $\zeta \sqrt[p]{2}$ , for  $\zeta$  any *p*th root of unity.

Note  $\zeta_p = (\zeta_p \sqrt[p]{2})/(\sqrt[p]{2})$ , so  $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$  is contained in the splitting field.

On the other hand if  $\zeta$  is a *p*th root of unity,  $\zeta \sqrt[p]{2} = \zeta_p^k \sqrt[p]{2}$  for some *k*, so  $\zeta \sqrt[p]{2} \in \mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ , so  $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$  is the splitting field. What is the degree of the splitting field? Well  $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$  is the composite of  $\mathbb{Q}(\sqrt[p]{2})$  and  $\mathbb{Q}(\zeta_p)$ . The first has degree *p*, the second degree p - 1. Since *p* and p - 1 are relatively prime, the degree of the splitting field is p(p - 1).

A simple algebraic extension adds one root of one polynomial.

A simple algebraic extension adds one root of one polynomial.

The splitting field adds *all* roots of *one* polynomial.

A simple algebraic extension adds one root of one polynomial.

The splitting field adds *all* roots of *one* polynomial.

Why not add all roots of all polynomials?

A simple algebraic extension adds one root of one polynomial.

The splitting field adds *all* roots of *one* polynomial.

Why not add all roots of all polynomials?

Definition

The field  $\overline{F}$  is called an *algebraic closure* of F if  $\overline{F}$  is an algebraic extension of F and *every* polynomial  $p(x) \in F[x]$  splits completely over  $\overline{F}$  [recall this means that p has only linear factors in  $\overline{F}[x]$ ].

A simple algebraic extension adds one root of one polynomial.

The splitting field adds *all* roots of *one* polynomial.

Why not add all roots of all polynomials?

### Definition

The field  $\overline{F}$  is called an *algebraic closure* of F if  $\overline{F}$  is an algebraic extension of F and *every* polynomial  $p(x) \in F[x]$  splits completely over  $\overline{F}$  [recall this means that p has only linear factors in  $\overline{F}[x]$ ].

We can go even further:

### Definition

A field K is algebraically closed if every polynomial in K[x] has a root in K.

A simple algebraic extension adds one root of one polynomial.

The splitting field adds *all* roots of *one* polynomial.

Why not add all roots of all polynomials?

### Definition

The field  $\overline{F}$  is called an *algebraic closure* of F if  $\overline{F}$  is an algebraic extension of F and *every* polynomial  $p(x) \in F[x]$  splits completely over  $\overline{F}$  [recall this means that p has only linear factors in  $\overline{F}[x]$ ].

We can go even further:

### Definition

A field K is algebraically closed if every polynomial in K[x] has a root in K.

Note that if K is algebraically closed, then every  $p(x) \in K[x]$  has *all* its roots in K: use repeated division.

► K is algebraically closed if and only if  $\overline{K} = K$  (K is its own algebraic closure).

- K is algebraically closed if and only if  $\overline{K} = K$  (K is its own algebraic closure).
- An algebraic closure  $\overline{F}$  of F is algebraically closed.

- ► K is algebraically closed if and only if  $\overline{K} = K$  (K is its own algebraic closure).
- An algebraic closure F of F is algebraically closed. [Why? let p(x) ∈ F[x]. Let F(α) be an extension with a root α for p. F(α) is algebraic over F, and F is algebraic over F, hence F(α) is algebraic over F, so α is algebraic over F, but that means α ∈ F, as desired.]

- ► K is algebraically closed if and only if  $\overline{K} = K$  (K is its own algebraic closure).
- An algebraic closure F of F is algebraically closed. [Why? let p(x) ∈ F[x]. Let F(α) be an extension with a root α for p. F(α) is algebraic over F, and F is algebraic over F, hence F(α) is algebraic over F, so α is algebraic over F, but that means α ∈ F, as desired.]
- Any field has an algebraic closure

- ▶ *K* is algebraically closed if and only if  $\overline{K} = K$  (*K* is its own algebraic closure).
- An algebraic closure F of F is algebraically closed. [Why? let p(x) ∈ F[x]. Let F(α) be an extension with a root α for p. F(α) is algebraic over F, and F is algebraic over F, hence F(α) is algebraic over F, so α is algebraic over F, but that means α ∈ F, as desired.]
- Any field has an algebraic closure [Proof idea: iterate through all polynomials and keep adding roots. The precise version uses Zorn's lemma. There is another proof in the book.]

- ► K is algebraically closed if and only if  $\overline{K} = K$  (K is its own algebraic closure).
- An algebraic closure F of F is algebraically closed. [Why? let p(x) ∈ F[x]. Let F(α) be an extension with a root α for p. F(α) is algebraic over F, and F is algebraic over F, hence F(α) is algebraic over F, so α is algebraic over F, but that means α ∈ F, as desired.]
- Any field has an algebraic closure [Proof idea: iterate through all polynomials and keep adding roots. The precise version uses Zorn's lemma. There is another proof in the book.]
- Any two algebraic closures of a given field are isomorphic (as for the splitting field).

- ▶ *K* is algebraically closed if and only if  $\overline{K} = K$  (*K* is its own algebraic closure).
- An algebraic closure F of F is algebraically closed. [Why? let p(x) ∈ F[x]. Let F(α) be an extension with a root α for p. F(α) is algebraic over F, and F is algebraic over F, hence F(α) is algebraic over F, so α is algebraic over F, but that means α ∈ F, as desired.]
- Any field has an algebraic closure [Proof idea: iterate through all polynomials and keep adding roots. The precise version uses Zorn's lemma. There is another proof in the book.]
- Any two algebraic closures of a given field are isomorphic (as for the splitting field). [Proof idea: similar to the proof of uniqueness of splitting field. Build the isomorphism "polynomial by polynomial".]

The complex numbers  $\mathbb C$  are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

The complex numbers  $\mathbb{C}$  are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of  $\mathbb{Q}$  is *not*  $\mathbb{C}$ , since  $\mathbb{C}$  is not an algebraic extension of  $\mathbb{Q}$ . Intuitively, the algebraic closure is the *smallest* algebraically closed extension.

The complex numbers  $\mathbb{C}$  are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of  $\mathbb{Q}$  is *not*  $\mathbb{C}$ , since  $\mathbb{C}$  is not an algebraic extension of  $\mathbb{Q}$ . Intuitively, the algebraic closure is the *smallest* algebraically closed extension.

The algebraic closure of  $\mathbb{Q}$  is in fact (by construction) the set  $\overline{\mathbb{Q}}$  of all algebraic elements over  $\mathbb{Q}$ .

The complex numbers  $\mathbb{C}$  are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of  $\mathbb{Q}$  is *not*  $\mathbb{C}$ , since  $\mathbb{C}$  is not an algebraic extension of  $\mathbb{Q}$ . Intuitively, the algebraic closure is the *smallest* algebraically closed extension.

The algebraic closure of  $\mathbb{Q}$  is in fact (by construction) the set  $\overline{\mathbb{Q}}$  of all algebraic elements over  $\mathbb{Q}$ .

Bottom line: this clarifies what it means to, given a field F and an irreducible polynomial p(x), "add a root  $\alpha$  for p(x), and get  $F(\alpha)$ ".

The complex numbers  $\mathbb{C}$  are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of  $\mathbb{Q}$  is *not*  $\mathbb{C}$ , since  $\mathbb{C}$  is not an algebraic extension of  $\mathbb{Q}$ . Intuitively, the algebraic closure is the *smallest* algebraically closed extension.

The algebraic closure of  $\mathbb{Q}$  is in fact (by construction) the set  $\overline{\mathbb{Q}}$  of all algebraic elements over  $\mathbb{Q}$ .

Bottom line: this clarifies what it means to, given a field F and an irreducible polynomial p(x), "add a root  $\alpha$  for p(x), and get  $F(\alpha)$ ". Technically this means we look at F[x]/(p(x)), identify  $\alpha$  with  $\bar{x}$ , identify F with its image inside this field, etc.

The complex numbers  $\mathbb{C}$  are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of  $\mathbb{Q}$  is *not*  $\mathbb{C}$ , since  $\mathbb{C}$  is not an algebraic extension of  $\mathbb{Q}$ . Intuitively, the algebraic closure is the *smallest* algebraically closed extension.

The algebraic closure of  $\mathbb{Q}$  is in fact (by construction) the set  $\overline{\mathbb{Q}}$  of all algebraic elements over  $\mathbb{Q}$ .

Bottom line: this clarifies what it means to, given a field F and an irreducible polynomial p(x), "add a root  $\alpha$  for p(x), and get  $F(\alpha)$ ". Technically this means we look at F[x]/(p(x)), identify  $\alpha$  with  $\bar{x}$ , identify F with its image inside this field, etc.

Another way to think about it: we fix once and for all an extension K of F containing an algebraic closure  $\overline{F}$  of F, then can assume all roots of polynomial in F[x] are in K. We did this already for  $F = \mathbb{Q}$  by working in  $K = \mathbb{C}$ .

Let F be a field,  $f(x) \in F[x]$  be a polynomial with leading coefficient  $a_n \neq 0$ .

Let F be a field,  $f(x) \in F[x]$  be a polynomial with leading coefficient  $a_n \neq 0$ .

In the splitting field K of f(x) over F, we can write:

$$f(x) = a_n(x - \alpha_1)^{n_1}(x - \alpha_2)^{n_2} \dots (x - \alpha_k)^{n_k}$$

where  $\alpha_1, \ldots, \alpha_k \in K$  are distinct, and  $n_i \geq 1$  for all *i*.

Let F be a field,  $f(x) \in F[x]$  be a polynomial with leading coefficient  $a_n \neq 0$ .

In the splitting field K of f(x) over F, we can write:

$$f(x) = a_n(x - \alpha_1)^{n_1}(x - \alpha_2)^{n_2} \dots (x - \alpha_k)^{n_k}$$

where  $\alpha_1, \ldots, \alpha_k \in K$  are distinct, and  $n_i \geq 1$  for all *i*.

#### Definition

The number  $n_i$  is called the *multiplicity* of the root  $\alpha_i$ . If  $n_i = 1$ ,  $\alpha_i$  is called a *simple root*. Otherwise it is called a *multiple root*.

Let F be a field,  $f(x) \in F[x]$  be a polynomial with leading coefficient  $a_n \neq 0$ .

In the splitting field K of f(x) over F, we can write:

$$f(x) = a_n(x - \alpha_1)^{n_1}(x - \alpha_2)^{n_2} \dots (x - \alpha_k)^{n_k}$$

where  $\alpha_1, \ldots, \alpha_k \in K$  are distinct, and  $n_i \geq 1$  for all *i*.

#### Definition

The number  $n_i$  is called the *multiplicity* of the root  $\alpha_i$ . If  $n_i = 1$ ,  $\alpha_i$  is called a *simple root*. Otherwise it is called a *multiple root*.

#### Definition

We call f(x) separable if it has no multiple roots (i.e.  $n_i = 1$  for all *i*). We call f(x) inseparable otherwise.

•  $x^2 - 2 \in \mathbb{Q}[x]$  is separable: it has distinct roots  $\sqrt{2}$  and  $-\sqrt{2}$ .

x<sup>2</sup> - 2 ∈ Q[x] is separable: it has distinct roots √2 and -√2.
 (x<sup>2</sup> - 2)<sup>3</sup> is inseparable: √2 and -√2 have multiplicity 3.

- $x^2 2 \in \mathbb{Q}[x]$  is separable: it has distinct roots  $\sqrt{2}$  and  $-\sqrt{2}$ .
- $(x^2 2)^3$  is inseparable:  $\sqrt{2}$  and  $-\sqrt{2}$  have multiplicity 3.
- A nontrivial example: take F = 𝔽<sub>2</sub>(t), the field of rational functions in t. Consider x<sup>2</sup> − t ∈ F[x].

- $x^2 2 \in \mathbb{Q}[x]$  is separable: it has distinct roots  $\sqrt{2}$  and  $-\sqrt{2}$ .
- $(x^2 2)^3$  is inseparable:  $\sqrt{2}$  and  $-\sqrt{2}$  have multiplicity 3.
- A nontrivial example: take F = 𝔽<sub>2</sub>(t), the field of rational functions in t. Consider x<sup>2</sup> − t ∈ 𝔅[x]. It is irreducible (!) by Eisenstein: t is a prime element of 𝔽<sub>2</sub>[t].

- $x^2 2 \in \mathbb{Q}[x]$  is separable: it has distinct roots  $\sqrt{2}$  and  $-\sqrt{2}$ .
- $(x^2 2)^3$  is inseparable:  $\sqrt{2}$  and  $-\sqrt{2}$  have multiplicity 3.
- A nontrivial example: take F = F₂(t), the field of rational functions in t. Consider x² t ∈ F[x]. It is irreducible (!) by Eisenstein: t is a prime element of F₂[t]. Let √t denote a root (in some extension). Then (x √t)² = x² + t = x² t (because 2 = 0 in this field!). Thus x² t is inseparable: √t has multiplicity 2.

# Testing for multiple roots

Definition

If  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \in F[x]$ , the *derivative* of f(x) is the polynomial  $D_x f(x) := na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + 2a_2 x + a_1 \in F[x]$ .

# Testing for multiple roots

Definition

If  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \in F[x]$ , the *derivative* of f(x) is the polynomial  $D_x f(x) := na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + 2a_2 x + a_1 \in F[x]$ .

Exercise: check that the sum and product rules for derivatives hold in this context.

#### Theorem

A polynomial f(x) has multiple root  $\alpha$  if and only if  $\alpha$  is a root of both f(x) and  $D_x f(x)$ .

### Corollary

f(x) has multiple root  $\alpha$  if and only if f(x) and  $D_x f(x)$  are both divisible by the minimal polynomial of  $\alpha$  (over the base field). In particular, f(x) is separable if and only if it is coprime to  $D_x f(x)$ .

f(x) is separable if and only if it is coprime to  $D_x f(x)$ .

Corollary

Every irreducible polynomial f(x) over a field of characteristic 0 is separable.

f(x) is separable if and only if it is coprime to  $D_x f(x)$ .

### Corollary

Every irreducible polynomial f(x) over a field of characteristic 0 is separable.

### Proof.

If f has degree  $n \ge 1$ , then  $D_x f(x)$  has degree n - 1. In particular, it is not zero. The only divisors of f are 1 and f(x), and by degree consideration, f(x) does not divide  $D_x f(x)$ .

f(x) is separable if and only if it is coprime to  $D_x f(x)$ .

### Corollary

Every irreducible polynomial f(x) over a field of characteristic 0 is separable.

### Proof.

If f has degree  $n \ge 1$ , then  $D_x f(x)$  has degree n - 1. In particular, it is not zero. The only divisors of f are 1 and f(x), and by degree consideration, f(x) does not divide  $D_x f(x)$ .

Question to think about: where does this fail in characteristic p?

f(x) is separable if and only if it is coprime to  $D_x f(x)$ .

### Corollary

Every irreducible polynomial f(x) over a field of characteristic 0 is separable.

### Proof.

If f has degree  $n \ge 1$ , then  $D_x f(x)$  has degree n - 1. In particular, it is not zero. The only divisors of f are 1 and f(x), and by degree consideration, f(x) does not divide  $D_x f(x)$ .

Question to think about: where does this fail in characteristic p? We will talk more about it next time.

A polynomial f(x) has multiple root  $\alpha$  if and only if  $\alpha$  is a root of both f(x) and  $D_x f(x)$ .

A polynomial f(x) has multiple root  $\alpha$  if and only if  $\alpha$  is a root of both f(x) and  $D_x f(x)$ .

#### Proof.

Assume  $\alpha$  is a root of f(x) of multiplicity *n*. Then  $f(x) = (x - \alpha)^n g(x)$  (in a splitting field), for some  $n \ge 1$ . Take derivatives, get  $D_x f(x) = n(x - \alpha)^{n-1} g(x) + (x - \alpha)^n D_x g(x)$ .

A polynomial f(x) has multiple root  $\alpha$  if and only if  $\alpha$  is a root of both f(x) and  $D_x f(x)$ .

#### Proof.

Assume  $\alpha$  is a root of f(x) of multiplicity n. Then  $f(x) = (x - \alpha)^n g(x)$  (in a splitting field), for some  $n \ge 1$ . Take derivatives, get  $D_x f(x) = n(x - \alpha)^{n-1}g(x) + (x - \alpha)^n D_x g(x)$ . If  $n \ge 2$ ,  $n - 1 \ge 1$  and  $\alpha$  is a root of  $D_x f(x)$ .

A polynomial f(x) has multiple root  $\alpha$  if and only if  $\alpha$  is a root of both f(x) and  $D_x f(x)$ .

#### Proof.

Assume  $\alpha$  is a root of f(x) of multiplicity *n*. Then  $f(x) = (x - \alpha)^n g(x)$  (in a splitting field), for some  $n \ge 1$ . Take derivatives, get  $D_x f(x) = n(x - \alpha)^{n-1}g(x) + (x - \alpha)^n D_x g(x)$ . If  $n \ge 2$ ,  $n - 1 \ge 1$  and  $\alpha$  is a root of  $D_x f(x)$ . If n = 1, then  $D_x f(x) = g(x) + (x - \alpha)^n D_x g(x)$ . Evaluating at  $\alpha$ , we get  $g(\alpha)$ . By definition of multiplicity,  $g(\alpha) \ne 0$ , so  $\alpha$  is not a root of  $D_x f(x)$ .

 Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.

- Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of x<sup>n</sup> − 1 is called the *cyclotomic field of nth roots of unity*. It is generated by ζ<sub>n</sub> = e<sup>2πi/n</sup>. When n, is prime, it has degree n − 1. In general it has degree φ(n) (to be seen).

- Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of x<sup>n</sup> − 1 is called the *cyclotomic field of nth roots of unity*. It is generated by ζ<sub>n</sub> = e<sup>2πi/n</sup>. When n, is prime, it has degree n − 1. In general it has degree φ(n) (to be seen).
- A field is algebraically closed if all polynomials factor into linear terms. The complex numbers are algebraically closed.

- Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of x<sup>n</sup> − 1 is called the *cyclotomic field of nth roots of unity*. It is generated by ζ<sub>n</sub> = e<sup>2πi/n</sup>. When n, is prime, it has degree n − 1. In general it has degree φ(n) (to be seen).
- A field is algebraically closed if all polynomials factor into linear terms. The complex numbers are algebraically closed.
- The algebraic closure is the smallest algebraically closed extension of a given field. Every field has a unique algebraic closure.

- Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of x<sup>n</sup> − 1 is called the *cyclotomic field of nth roots of unity*. It is generated by ζ<sub>n</sub> = e<sup>2πi/n</sup>. When n, is prime, it has degree n − 1. In general it has degree φ(n) (to be seen).
- A field is algebraically closed if all polynomials factor into linear terms. The complex numbers are algebraically closed.
- The algebraic closure is the smallest algebraically closed extension of a given field. Every field has a unique algebraic closure.
- A polynomial is *separable* if it has no multiple roots, equivalently if it is coprime to its derivative. In characteristic zero, irreducible implies separable.