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A question from last class

Asked last time: can we prove that these geometric constructions
are impossible without using field theory?

At least for trisecting the angle we can! See Terrence Tao’s proof
linked on the course website.
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Splitting fields

Last time, we started talking about the splitting field:

Definition

An extension K of a field F is called a splitting field for a
polynomial p(x) ∈ F [x ] if p(x) factors into linear factors in K [x ]
(we say that p(x) splits completely in K [x ]), and does not split
completely over any proper subfield of K containing F .

Essentially, the splitting field of a polynomial is the smallest field
extension containing all the roots of that polynomial.

We say “the” splitting field because it is unique up to isomorphism.
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Uniqueness of splitting fields

Lemma (Uniqueness of simple extensions, 13.1.8 in DF)

Let φ : F ∼= F ′ be an isomorphism. Let p(x) ∈ F [x ] be an
irreducible polynomial and let p′(x) ∈ F ′[x ] be the polynomial
obtained by applying φ to the coefficients of p.

Let α be a root of p(x) (in some extension of F ) and let α′ be a
root of p′(x) (in some extension of F ′). Then there exists an
isomorphism σ : F (α) ∼= F ′(α′) such that σ � F = φ.

F (α) F ′(α′)

F F ′

∼=
σ

∼=
φ



Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let φ : F ∼= F ′ be an isomorphism. Let p(x) ∈ F [x ] be a
polynomial and let p′(x) ∈ F ′[x ] be the corresponding polynomial.
Let K be a splitting field for p(x) over F , and let K ′ be a splitting
field for p′(x) over F ′. Then φ extends to σ : K ∼= K ′.

K K ′

F F ′

∼=
σ

∼=
φ

Proof.

By induction on the degree, n, of p(x). If n = 1, F = K and
F ′ = K ′, so we can take σ = φ. If n ≥ 2, let f (x) be an irreducible
factor of p(x). Add a root α ∈ K for f , α′ ∈ K ′ for f ′. Get
φ′ : F (α) ∼= F (α′). Apply the IH to p(x)/(x − α).
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That is, apply the induction hypothesis to the top part of this
diagram and the polynomial p(x)/(x − α), of degree n − 1.

K K ′

F (α) F ′(α′)

F F ′

∼=
σ

∼=
φ′

∼=
φ

Note the special case where F = F ′ and φ is the identity. Then we
get that any two splitting fields of p(x) over F are isomorphic (and
the isomorphism fixes the elements of F ).
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Splitting field of xn − 1
The roots of the polynomial xn − 1 ∈ Q[x ] are called the nth roots
of unity.

They are of the form e2πik/n, k = 1, 2, . . . , n. Drawing for n = 5:
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Roots of unity

We usually consider the roots of unity inside C, but we can more
generally look at them inside any field F .

Observation: for a fixed n, the nth roots of unity form a group
under multiplication (if αn = 1 and βn = 1, then (αβ)n = 1).

In fact it is a cyclic group (inside any field, not just C). This
follows from the more general:

Lemma

If F is a field and F× is its group of units, then any finite subgroup
G of F× is cyclic.
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Lemma

If F is a field and F× is its group of units, then any finite subgroup
G of F× is cyclic.

Proof.

F× is abelian, so G is also abelian. By the structure theorem for
finitely generated Z-modules, G is isomorphic to
Zn1 × Zn2 × Zn3 × . . .× Znk , where 2 ≤ n1|n2| . . . |nk , and we have
written Z` = Z/`Z.

In particular, any member of G is a root of the polynomial xnk − 1.
Thus n1 · n2 · . . . · nk = |G | ≤ nk , so k = 1, so G is cyclic.
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Roots of unity, continued

The group of nth roots of unity is cyclic. A generator is called a
primitive nth root of unity.

1 = e2πin/n is not a primitive root of unity (for n ≥ 2), but e2πi/n

is a primitive nth root of unity.

In general, e2πik/n is a primitive root of unity if and only if k is
coprime to n. Thus there are exactly φ(n) primitive roots of unity
(φ is Euler’s Totient function: it gives the number of k coprime to
n with 1 ≤ k ≤ n).

We will write ζn instead of e2πi/n. Any other root of unity is of the
form ζkn , and it is primitive if and only if k is coprime to n.

We have shown in particular Q(ζn) is the splitting field of xn − 1.

Definition

The field Q(ζn) is called the cyclotomic field of nth roots of unity.
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Degree of the cyclotomic field
We will see later that [Q(ζn) : Q] = φ(n).

We can prove it now for n = p a prime. First factor:

xp − 1 = (x − 1)(xp−1 + xp−2 + . . .+ 1)

Since ζp 6= 1, it is a root of f (x) = xp−1 + xp−2 + . . .+ 1. This
polynomial is irreducible, so ζp has degree p − 1 = φ(p).

Why is f (x) irreducible? Observe f (x) = xp−1
x−1 . Replace x by x + 1,

and write
(p
k

)
:= p!

k!(p−k)! . By the binomial theorem, get:

1

x

((
p

0

)
xp +

(
p

1

)
xp−1 +

(
p

2

)
xp−2 + . . .+

(
p

p − 1

)
x

)
= xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + . . .+

(
p

p − 1

)
Note p divides all the non-leading coefficients, but the last
coefficient is p. Apply Eisenstein’s criterion.
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Splitting field of xp − 2, p a prime

We considered the case p = 3 before. We proceed similarly.

The roots of xp − 2 are ζ p
√

2, for ζ any pth root of unity.

Note ζp = (ζp
p
√

2)/( p
√

2), so Q( p
√

2, ζp) is contained in the splitting
field.

On the other hand if ζ is a pth root of unity, ζ p
√

2 = ζkp
p
√

2 for

some k , so ζ p
√

2 ∈ Q( p
√

2, ζp), so Q( p
√

2, ζp) is the splitting field.

What is the degree of the splitting field? Well Q( p
√

2, ζp) is the
composite of Q( p

√
2) and Q(ζp). The first has degree p, the second

degree p − 1. Since p and p − 1 are relatively prime, the degree of
the splitting field is p(p − 1).
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Algebraic closure
A simple algebraic extension adds one root of one polynomial.

The splitting field adds all roots of one polynomial.

Why not add all roots of all polynomials?

Definition

The field F̄ is called an algebraic closure of F if F̄ is an algebraic
extension of F and every polynomial p(x) ∈ F [x ] splits completely
over F̄ [recall this means that p has only linear factors in F̄ [x ]].

We can go even further:

Definition

A field K is algebraically closed if every polynomial in K [x ] has a
root in K .

Note that if K is algebraically closed, then every p(x) ∈ K [x ] has
all its roots in K : use repeated division.
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Properties of the algebraic closure

I K is algebraically closed if and only if K̄ = K (K is its own
algebraic closure).

I An algebraic closure F̄ of F is algebraically closed. [Why? let
p(x) ∈ F̄ [x ]. Let F̄ (α) be an extension with a root α for p.
F̄ (α) is algebraic over F̄ , and F̄ is algebraic over F , hence
F̄ (α) is algebraic over F , so α is algebraic over F , but that
means α ∈ F̄ , as desired.]

I Any field has an algebraic closure [Proof idea: iterate through
all polynomials and keep adding roots. The precise version
uses Zorn’s lemma. There is another proof in the book.]

I Any two algebraic closures of a given field are isomorphic (as
for the splitting field). [Proof idea: similar to the proof of
uniqueness of splitting field. Build the isomorphism
“polynomial by polynomial”.]
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Example

The complex numbers C are an algebraically closed field
(fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of Q is not C, since C is not an
algebraic extension of Q. Intuitively, the algebraic closure is the
smallest algebraically closed extension.

The algebraic closure of Q is in fact (by construction) the set Q̄ of
all algebraic elements over Q.

Bottom line: this clarifies what it means to, given a field F and an
irreducible polynomial p(x), “add a root α for p(x), and get
F (α)”. Technically this means we look at F [x ]/(p(x)), identify α
with x̄ , identify F with its image inside this field, etc.

Another way to think about it: we fix once and for all an extension
K of F containing an algebraic closure F̄ of F , then can assume all
roots of polynomial in F [x ] are in K . We did this already for
F = Q by working in K = C.
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Multiplicity of roots
Let F be a field, f (x) ∈ F [x ] be a polynomial with leading
coefficient an 6= 0.

In the splitting field K of f (x) over F , we can write:

f (x) = an(x − α1)n1(x − α2)n2 . . . (x − αk)nk

where α1, . . . , αk ∈ K are distinct, and ni ≥ 1 for all i .

Definition

The number ni is called the multiplicity of the root αi . If ni = 1,
αi is called a simple root. Otherwise it is called a multiple root.

Definition

We call f (x) separable if it has no multiple roots (i.e. ni = 1 for all
i). We call f (x) inseparable otherwise.
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Example

I x2 − 2 ∈ Q[x ] is separable: it has distinct roots
√

2 and −
√

2.

I (x2 − 2)3 is inseparable:
√

2 and −
√

2 have multiplicity 3.

I A nontrivial example: take F = F2(t), the field of rational
functions in t. Consider x2 − t ∈ F [x ]. It is irreducible (!) by
Eisenstein: t is a prime element of F2[t].
Let
√
t denote a root (in some extension). Then

(x −
√
t)2 = x2 + t = x2 − t (because 2 = 0 in this field!).

Thus x2 − t is inseparable:
√
t has multiplicity 2.
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Testing for multiple roots

Definition

If f (x) = anx
n + an−1x

n−1 + . . .+ a0 ∈ F [x ], the derivative of f (x)
is the polynomial
Dx f (x) := nanx

n−1 + (n − 1)an−1x
n−2 + . . .+ 2a2x + a1 ∈ F [x ].

Exercise: check that the sum and product rules for derivatives hold
in this context.

Theorem

A polynomial f (x) has multiple root α if and only if α is a root of
both f (x) and Dx f (x).

Corollary

f (x) has multiple root α if and only if f (x) and Dx f (x) are both
divisible by the minimal polynomial of α (over the base field). In
particular, f (x) is separable if and only if it is coprime to Dx f (x).
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Corollary

f (x) is separable if and only if it is coprime to Dx f (x).

Corollary

Every irreducible polynomial f (x) over a field of characteristic 0 is
separable.

Proof.

If f has degree n ≥ 1, then Dx f (x) has degree n − 1. In particular,
it is not zero. The only divisors of f are 1 and f (x), and by degree
consideration, f (x) does not divide Dx f (x).

Question to think about: where does this fail in characteristic p?
We will talk more about it next time.
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Theorem

A polynomial f (x) has multiple root α if and only if α is a root of
both f (x) and Dx f (x).

Proof.

Assume α is a root of f (x) of multiplicity n. Then
f (x) = (x − α)ng(x) (in a splitting field), for some n ≥ 1. Take
derivatives, get Dx f (x) = n(x − α)n−1g(x) + (x − α)nDxg(x).

If n ≥ 2, n − 1 ≥ 1 and α is a root of Dx f (x).

If n = 1, then Dx f (x) = g(x) + (x − α)nDxg(x). Evaluating at α,
we get g(α). By definition of multiplicity, g(α) 6= 0, so α is not a
root of Dx f (x).
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Summary

I Splitting fields are unique. Proof: iterate the uniqueness of
simple algebraic extensions.

I The splitting field of xn − 1 is called the cyclotomic field of
nth roots of unity. It is generated by ζn = e2πi/n. When n, is
prime, it has degree n − 1. In general it has degree φ(n) (to
be seen).

I A field is algebraically closed if all polynomials factor into
linear terms. The complex numbers are algebraically closed.

I The algebraic closure is the smallest algebraically closed
extension of a given field. Every field has a unique algebraic
closure.

I A polynomial is separable if it has no multiple roots,
equivalently if it is coprime to its derivative. In characteristic
zero, irreducible implies separable.
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