Math-123: Splitting field and algebraic closure

Sebastien Vasey

Harvard University

March 25, 2020

 \triangleright New office hours have been announced (see course website).

- \triangleright New office hours have been announced (see course website).
- \triangleright Assignment 7 is due Friday, midnight, and assignment 8 is due next Tuesday, midnight.

Administrivia

- \triangleright New office hours have been announced (see course website).
- \triangleright Assignment 7 is due Friday, midnight, and assignment 8 is due next Tuesday, midnight.
- Recordings: please do *not* share them.

Administrivia

- \triangleright New office hours have been announced (see course website).
- \triangleright Assignment 7 is due Friday, midnight, and assignment 8 is due next Tuesday, midnight.
- Recordings: please do *not* share them.
- Recordings: you may use a pseudonym (let me know what it is!) or turn off your webcam if you are concerned about privacy.

A question from last class

Asked last time: can we prove that these geometric constructions are impossible without using field theory?

Asked last time: can we prove that these geometric constructions are impossible without using field theory?

At least for trisecting the angle we can! See Terrence Tao's proof linked on the course website.

Splitting fields

Last time, we started talking about the splitting field:

Definition

An extension K of a field F is called a *splitting field* for a polynomial $p(x) \in F[x]$ if $p(x)$ factors into linear factors in $K[x]$ (we say that $p(x)$ splits completely in $K[x]$), and does not split completely over any proper subfield of K containing F .

Splitting fields

Last time, we started talking about the splitting field:

Definition

An extension K of a field F is called a *splitting field* for a polynomial $p(x) \in F[x]$ if $p(x)$ factors into linear factors in $K[x]$ (we say that $p(x)$ splits completely in $K[x]$), and does not split completely over any proper subfield of K containing F .

Essentially, the splitting field of a polynomial is the smallest field extension containing *all* the roots of that polynomial.

Splitting fields

Last time, we started talking about the splitting field:

Definition

An extension K of a field F is called a *splitting field* for a polynomial $p(x) \in F[x]$ if $p(x)$ factors into linear factors in $K[x]$ (we say that $p(x)$ splits completely in $K[x]$), and does not split completely over any proper subfield of K containing F .

Essentially, the splitting field of a polynomial is the smallest field extension containing *all* the roots of that polynomial.

We say "the" splitting field because it is unique up to isomorphism.

Uniqueness of splitting fields

Lemma (Uniqueness of simple extensions, 13.1.8 in DF)

Let $\phi : F \cong F'$ be an isomorphism. Let $p(x) \in F[x]$ be an irreducible polynomial and let $p'(x) \in F'[x]$ be the polynomial obtained by applying ϕ to the coefficients of p.

Let α be a root of $p(x)$ (in some extension of $F)$ and let α' be a root of $p'(x)$ (in some extension of F'). Then there exists an isomorphism σ : $F(\alpha) \cong F'(\alpha')$ such that $\sigma \restriction F = \phi$.

$$
F(\alpha) \xrightarrow[\sigma]{\cong} F'(\alpha')
$$

\n
$$
F \xrightarrow[\phi]{\cong} F'
$$

Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let $\phi : F \cong F'$ be an isomorphism. Let $p(x) \in F[x]$ be a polynomial and let $p'(x) \in F'[x]$ be the corresponding polynomial. Let K be a splitting field for $p(x)$ over F, and let K' be a splitting field for $p'(x)$ over F'. Then ϕ extends to $\sigma : K \cong K'.$

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let $\phi : F \cong F'$ be an isomorphism. Let $p(x) \in F[x]$ be a polynomial and let $p'(x) \in F'[x]$ be the corresponding polynomial. Let K be a splitting field for $p(x)$ over F, and let K' be a splitting field for $p'(x)$ over F'. Then ϕ extends to $\sigma : K \cong K'.$

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

Proof.

By induction on the degree, n, of $p(x)$. If $n = 1$, $F = K$ and $F' = K'$, so we can take $\sigma = \phi$.

Theorem (Uniqueness of splitting field, 13.1.27 in DF)

Let $\phi : F \cong F'$ be an isomorphism. Let $p(x) \in F[x]$ be a polynomial and let $p'(x) \in F'[x]$ be the corresponding polynomial. Let K be a splitting field for $p(x)$ over F, and let K' be a splitting field for $p'(x)$ over F'. Then ϕ extends to $\sigma : K \cong K'.$

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

Proof.

By induction on the degree, *n*, of $p(x)$. If $n = 1$, $F = K$ and $F' = K'$, so we can take $\sigma = \phi$. If $n \geq 2$, let $f(x)$ be an irreducible factor of $p(x)$. Add a root $\alpha \in K$ for f , $\alpha' \in K'$ for f' . Get $\phi':\mathit{F}(\alpha)\cong\mathit{F}(\alpha').$ Apply the IH to $p(x)/(x-\alpha).$

That is, apply the induction hypothesis to the top part of this diagram and the polynomial $p(x)/(x - \alpha)$, of degree $n - 1$.

$$
K \xrightarrow{\cong} K'
$$
\n
$$
F(\alpha) \xrightarrow{\cong} F'(\alpha')
$$
\n
$$
F \xrightarrow{\cong} F'
$$
\n
$$
F \xrightarrow{\cong} F'
$$

That is, apply the induction hypothesis to the top part of this diagram and the polynomial $p(x)/(x - \alpha)$, of degree $n - 1$.

$$
K \xrightarrow{\cong} K'
$$
\n
$$
F(\alpha) \xrightarrow{\cong} F'(\alpha')
$$
\n
$$
F \xrightarrow{\cong} F'
$$
\n
$$
F \xrightarrow{\cong} F'
$$

Note the special case where $F = F'$ and ϕ is the identity. Then we get that any two splitting fields of $p(x)$ over F are isomorphic (and the isomorphism fixes the elements of F).

Splitting field of $x^n - 1$

The roots of the polynomial $x^n - 1 \in \mathbb{Q}[x]$ are called the nth roots of unity.

Splitting field of $x^n - 1$

The roots of the polynomial $x^n - 1 \in \mathbb{Q}[x]$ are called the nth roots of unity.

They are of the form $e^{2\pi i k/n}$, $k = 1, 2, \ldots, n$.

Splitting field of $x^n - 1$

The roots of the polynomial $x^n - 1 \in \mathbb{Q}[x]$ are called the nth roots of unity.

They are of the form $e^{2\pi i k/n}$, $k = 1, 2, \ldots, n$. Drawing for $n = 5$:

Roots of unity

We usually consider the roots of unity inside $\mathbb C$, but we can more generally look at them inside any field F.

Observation: for a fixed n , the nth roots of unity form a group under multiplication (if $\alpha^n = 1$ and $\beta^n = 1$, then $(\alpha \beta)^n = 1$).

Roots of unity

We usually consider the roots of unity inside $\mathbb C$, but we can more generally look at them inside any field F.

Observation: for a fixed n , the nth roots of unity form a group under multiplication (if $\alpha^n = 1$ and $\beta^n = 1$, then $(\alpha \beta)^n = 1$).

In fact it is a cyclic group (inside any field, not just \mathbb{C}). This follows from the more general:

Roots of unity

We usually consider the roots of unity inside $\mathbb C$, but we can more generally look at them inside any field F.

Observation: for a fixed n , the nth roots of unity form a group under multiplication (if $\alpha^n = 1$ and $\beta^n = 1$, then $(\alpha \beta)^n = 1$).

In fact it is a cyclic group (inside any field, not just \mathbb{C}). This follows from the more general:

Lemma

If F is a field and F^{\times} is its group of units, then any finite subgroup G of F^{\times} is cyclic.

Lemma

If F is a field and F^{\times} is its group of units, then any finite subgroup G of F^{\times} is cyclic.

Proof.

 F^{\times} is abelian, so G is also abelian. By the structure theorem for finitely generated $\mathbb Z$ -modules, G is isomorphic to $Z_{n_1}\times Z_{n_2}\times Z_{n_3}\times \ldots \times Z_{n_k}$, where $2\leq n_1|n_2|\ldots|n_k$, and we have written $Z_{\ell} = \mathbb{Z}/\ell\mathbb{Z}$.

Lemma

If F is a field and F^{\times} is its group of units, then any finite subgroup G of F^{\times} is cyclic.

Proof.

 F^{\times} is abelian, so G is also abelian. By the structure theorem for finitely generated $\mathbb Z$ -modules, G is isomorphic to $Z_{n_1}\times Z_{n_2}\times Z_{n_3}\times \ldots \times Z_{n_k}$, where $2\leq n_1|n_2|\ldots|n_k$, and we have written $Z_{\ell} = \mathbb{Z}/\ell\mathbb{Z}$.

In particular, any member of G is a root of the polynomial $x^{n_k} - 1$. Thus $n_1 \cdot n_2 \cdot \ldots \cdot n_k = |G| \le n_k$, so $k = 1$, so G is cyclic.

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

 $1=e^{2\pi i n/n}$ is not a primitive root of unity (for $n\geq 2$), but $e^{2\pi i/n}$ is a primitive nth root of unity.

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

 $1=e^{2\pi i n/n}$ is not a primitive root of unity (for $n\geq 2$), but $e^{2\pi i/n}$ is a primitive nth root of unity.

In general, $e^{2\pi i k/n}$ is a primitive root of unity if and only if k is coprime to n.

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

 $1=e^{2\pi i n/n}$ is not a primitive root of unity (for $n\geq 2$), but $e^{2\pi i/n}$ is a primitive nth root of unity.

In general, $e^{2\pi i k/n}$ is a primitive root of unity if and only if k is coprime to n. Thus there are exactly $\phi(n)$ primitive roots of unity (ϕ is Euler's Totient function: it gives the number of k coprime to *n* with $1 \leq k \leq n$).

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

 $1=e^{2\pi i n/n}$ is not a primitive root of unity (for $n\geq 2$), but $e^{2\pi i/n}$ is a primitive nth root of unity.

In general, $e^{2\pi i k/n}$ is a primitive root of unity if and only if k is coprime to n. Thus there are exactly $\phi(n)$ primitive roots of unity (ϕ is Euler's Totient function: it gives the number of k coprime to *n* with $1 \leq k \leq n$).

We will write ζ_n instead of $e^{2\pi i/n}.$ Any other root of unity is of the form ζ_n^k , and it is primitive if and only if k is coprime to n.

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

 $1=e^{2\pi i n/n}$ is not a primitive root of unity (for $n\geq 2$), but $e^{2\pi i/n}$ is a primitive nth root of unity.

In general, $e^{2\pi i k/n}$ is a primitive root of unity if and only if k is coprime to n. Thus there are exactly $\phi(n)$ primitive roots of unity (ϕ is Euler's Totient function: it gives the number of k coprime to *n* with $1 \leq k \leq n$).

We will write ζ_n instead of $e^{2\pi i/n}.$ Any other root of unity is of the form ζ_n^k , and it is primitive if and only if k is coprime to n.

We have shown in particular $\mathbb{Q}(\zeta_n)$ is the splitting field of $x^n - 1$.

The group of nth roots of unity is cyclic. A generator is called a primitive nth root of unity.

 $1=e^{2\pi i n/n}$ is not a primitive root of unity (for $n\geq 2$), but $e^{2\pi i/n}$ is a primitive nth root of unity.

In general, $e^{2\pi i k/n}$ is a primitive root of unity if and only if k is coprime to n. Thus there are exactly $\phi(n)$ primitive roots of unity (ϕ is Euler's Totient function: it gives the number of k coprime to *n* with $1 \leq k \leq n$).

We will write ζ_n instead of $e^{2\pi i/n}.$ Any other root of unity is of the form ζ_n^k , and it is primitive if and only if k is coprime to n.

We have shown in particular $\mathbb{Q}(\zeta_n)$ is the splitting field of $x^n - 1$.

Definition

The field $\mathbb{Q}(\zeta_n)$ is called the cyclotomic field of nth roots of unity.

Degree of the cyclotomic field

We will see later that $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$.

Degree of the cyclotomic field

We will see later that $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$.

We can prove it now for $n = p$ a prime. First factor:

$$
x^{p}-1=(x-1)(x^{p-1}+x^{p-2}+\ldots+1)
$$

Since $\zeta_p \neq 1$, it is a root of $f(x) = x^{p-1} + x^{p-2} + \ldots + 1$. This polynomial is irreducible, so ζ_p has degree $p - 1 = \phi(p)$.

Degree of the cyclotomic field

We will see later that $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \phi(n)$.

We can prove it now for $n = p$ a prime. First factor:

$$
x^{p}-1=(x-1)(x^{p-1}+x^{p-2}+\ldots+1)
$$

Since $\zeta_p \neq 1$, it is a root of $f(x) = x^{p-1} + x^{p-2} + \ldots + 1$. This polynomial is irreducible, so ζ_p has degree $p - 1 = \phi(p)$.

Why is $f(x)$ irreducible? Observe $f(x) = \frac{x^p-1}{x-1}$ $\frac{x^{\nu}-1}{x-1}$. Replace x by $x + 1$, and write $\binom{p}{k}$ $\binom{p}{k} := \frac{p!}{k!(p-k)!}$. By the binomial theorem, get:

$$
\frac{1}{x}\left(\binom{p}{0}x^p + \binom{p}{1}x^{p-1} + \binom{p}{2}x^{p-2} + \ldots + \binom{p}{p-1}x\right)
$$
\n
$$
= x^{p-1} + \binom{p}{1}x^{p-2} + \binom{p}{2}x^{p-3} + \ldots + \binom{p}{p-1}
$$

Note p divides all the non-leading coefficients, but the last coefficient is p. Apply Eisenstein's criterion.

Splitting field of $x^p - 2$, p a prime

We considered the case $p = 3$ before. We proceed similarly.

Splitting field of $x^p - 2$, p a prime

We considered the case $p = 3$ before. We proceed similarly. The roots of $x^p - 2$ are $\zeta \sqrt[p]{2}$, for ζ any p th root of unity.
Splitting field of $x^p - 2$, p a prime

We considered the case $p = 3$ before. We proceed similarly.

The roots of $x^p - 2$ are $\zeta \sqrt[p]{2}$, for ζ any p th root of unity.

Note $\zeta_p = (\zeta_p \sqrt[p]{2})/(\sqrt[p]{2})$, so $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ is contained in the splitting field.

Splitting field of $x^p - 2$, p a prime

We considered the case $p = 3$ before. We proceed similarly.

The roots of $x^p - 2$ are $\zeta \sqrt[p]{2}$, for ζ any p th root of unity.

Note $\zeta_p = (\zeta_p \sqrt[p]{2})/(\sqrt[p]{2})$, so $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ is contained in the splitting field.

On the other hand if ζ is a p th root of unity, $\zeta \sqrt[p]{2} = \zeta_p^k$ √p 2 for some k, so $\zeta \sqrt[p]{2} \in \mathbb{Q}(\sqrt[p]{2}, \zeta_p)$, so $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ is the splitting field.

Splitting field of $x^p - 2$, p a prime

We considered the case $p = 3$ before. We proceed similarly.

The roots of $x^p - 2$ are $\zeta \sqrt[p]{2}$, for ζ any p th root of unity.

Note $\zeta_p = (\zeta_p \sqrt[p]{2})/(\sqrt[p]{2})$, so $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ is contained in the splitting field.

On the other hand if ζ is a p th root of unity, $\zeta \sqrt[p]{2} = \zeta_p^k$ √p 2 for some k, so $\zeta \sqrt[p]{2} \in \mathbb{Q}(\sqrt[p]{2}, \zeta_p)$, so $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ is the splitting field. What is the degree of the splitting field? Well $\mathbb{Q}(\sqrt[p]{2}, \zeta_p)$ is the vinat is the degree of the splitting held! Well $\mathcal{Q}(\nabla Z, \zeta_p)$ is the
composite of $\mathbb{Q}(\sqrt[p]{2})$ and $\mathbb{Q}(\zeta_p)$. The first has degree p, the second degree $p - 1$. Since p and $p - 1$ are relatively prime, the degree of the splitting field is $p(p-1)$.

A simple algebraic extension adds one root of one polynomial.

A simple algebraic extension adds one root of one polynomial.

The splitting field adds all roots of one polynomial.

A simple algebraic extension adds one root of one polynomial.

The splitting field adds all roots of one polynomial.

Why not add *all* roots of *all* polynomials?

A simple algebraic extension adds one root of one polynomial.

The splitting field adds all roots of one polynomial.

Why not add *all* roots of *all* polynomials?

Definition

The field \bar{F} is called an *algebraic closure* of F if \bar{F} is an algebraic extension of F and every polynomial $p(x) \in F[x]$ splits completely over \bar{F} [recall this means that p has only linear factors in $\bar{F}[x]$].

A simple algebraic extension adds one root of one polynomial.

The splitting field adds all roots of one polynomial.

Why not add *all* roots of *all* polynomials?

Definition

The field \bar{F} is called an *algebraic closure* of F if \bar{F} is an algebraic extension of F and every polynomial $p(x) \in F[x]$ splits completely over \bar{F} [recall this means that p has only linear factors in $\bar{F}[x]$].

We can go even further:

Definition

A field K is algebraically closed if every polynomial in $K[x]$ has a root in K.

A simple algebraic extension adds one root of one polynomial.

The splitting field adds all roots of one polynomial.

Why not add *all* roots of *all* polynomials?

Definition

The field \bar{F} is called an *algebraic closure* of F if \bar{F} is an algebraic extension of F and every polynomial $p(x) \in F[x]$ splits completely over \bar{F} [recall this means that p has only linear factors in $\bar{F}[x]$].

We can go even further:

Definition

A field K is algebraically closed if every polynomial in $K[x]$ has a root in K.

Note that if K is algebraically closed, then every $p(x) \in K[x]$ has all its roots in K : use repeated division.

► K is algebraically closed if and only if $\overline{K} = K$ (K is its own algebraic closure).

- ► K is algebraically closed if and only if $\overline{K} = K$ (K is its own algebraic closure).
- An algebraic closure \bar{F} of F is algebraically closed.

- ► K is algebraically closed if and only if $\bar{K} = K$ (K is its own algebraic closure).
- An algebraic closure \bar{F} of F is algebraically closed. [Why? let $p(x) \in \bar{F}[x]$. Let $\bar{F}(\alpha)$ be an extension with a root α for p. $\bar{F}(\alpha)$ is algebraic over \bar{F} , and \bar{F} is algebraic over F, hence $\bar{F}(\alpha)$ is algebraic over F, so α is algebraic over F, but that means $\alpha \in \bar{F}$, as desired.]

- ► K is algebraically closed if and only if $\overline{K} = K$ (K is its own algebraic closure).
- An algebraic closure \bar{F} of F is algebraically closed. [Why? let $p(x) \in \bar{F}[x]$. Let $\bar{F}(\alpha)$ be an extension with a root α for p. $\bar{F}(\alpha)$ is algebraic over \bar{F} , and \bar{F} is algebraic over F, hence $\bar{F}(\alpha)$ is algebraic over F, so α is algebraic over F, but that means $\alpha \in \bar{F}$, as desired.]
- \blacktriangleright Any field has an algebraic closure

- ► K is algebraically closed if and only if $\overline{K} = K$ (K is its own algebraic closure).
- An algebraic closure \bar{F} of F is algebraically closed. [Why? let $p(x) \in \overline{F}[x]$. Let $\overline{F}(\alpha)$ be an extension with a root α for p. $\bar{F}(\alpha)$ is algebraic over \bar{F} , and \bar{F} is algebraic over F, hence $F(\alpha)$ is algebraic over F, so α is algebraic over F, but that means $\alpha \in \bar{F}$, as desired.]
- Any field has an algebraic closure $[Proof$ idea: iterate through all polynomials and keep adding roots. The precise version uses Zorn's lemma. There is another proof in the book.]

- ► K is algebraically closed if and only if $\overline{K} = K$ (K is its own algebraic closure).
- An algebraic closure \bar{F} of F is algebraically closed. [Why? let $p(x) \in \overline{F}[x]$. Let $\overline{F}(\alpha)$ be an extension with a root α for p. $\bar{F}(\alpha)$ is algebraic over \bar{F} , and \bar{F} is algebraic over F, hence $F(\alpha)$ is algebraic over F, so α is algebraic over F, but that means $\alpha \in \bar{F}$, as desired.]
- Any field has an algebraic closure $[Proof$ idea: iterate through all polynomials and keep adding roots. The precise version uses Zorn's lemma. There is another proof in the book.]
- \triangleright Any two algebraic closures of a given field are isomorphic (as for the splitting field).

- ► K is algebraically closed if and only if $\overline{K} = K$ (K is its own algebraic closure).
- An algebraic closure \bar{F} of F is algebraically closed. [Why? let $p(x) \in \bar{F}[x]$. Let $\bar{F}(\alpha)$ be an extension with a root α for p. $\bar{F}(\alpha)$ is algebraic over \bar{F} , and \bar{F} is algebraic over F, hence $F(\alpha)$ is algebraic over F, so α is algebraic over F, but that means $\alpha \in \bar{F}$, as desired.]
- \triangleright Any field has an algebraic closure *[Proof idea: iterate through* all polynomials and keep adding roots. The precise version uses Zorn's lemma. There is another proof in the book.]
- \triangleright Any two algebraic closures of a given field are isomorphic (as for the splitting field). [Proof idea: similar to the proof of uniqueness of splitting field. Build the isomorphism "polynomial by polynomial".]

The complex numbers $\mathbb C$ are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

The complex numbers $\mathbb C$ are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of $\mathbb Q$ is not $\mathbb C$, since $\mathbb C$ is not an algebraic extension of Q. Intuitively, the algebraic closure is the smallest algebraically closed extension.

The complex numbers $\mathbb C$ are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of $\mathbb Q$ is not $\mathbb C$, since $\mathbb C$ is not an algebraic extension of Q. Intuitively, the algebraic closure is the smallest algebraically closed extension.

The algebraic closure of $\mathbb Q$ is in fact (by construction) the set $\mathbb Q$ of all algebraic elements over Q.

The complex numbers $\mathbb C$ are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of $\mathbb Q$ is not $\mathbb C$, since $\mathbb C$ is not an algebraic extension of Q. Intuitively, the algebraic closure is the smallest algebraically closed extension.

The algebraic closure of $\mathbb Q$ is in fact (by construction) the set $\mathbb Q$ of all algebraic elements over Q.

Bottom line: this clarifies what it means to, given a field F and an irreducible polynomial $p(x)$, "add a root α for $p(x)$, and get $F(\alpha)$ ".

The complex numbers $\mathbb C$ are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of $\mathbb Q$ is not $\mathbb C$, since $\mathbb C$ is not an algebraic extension of Q. Intuitively, the algebraic closure is the smallest algebraically closed extension.

The algebraic closure of $\mathbb Q$ is in fact (by construction) the set $\mathbb Q$ of all algebraic elements over Q.

Bottom line: this clarifies what it means to, given a field F and an irreducible polynomial $p(x)$, "add a root α for $p(x)$, and get $F(\alpha)$ ". Technically this means we look at $F[x]/(p(x))$, identify α with \bar{x} , identify F with its image inside this field, etc.

The complex numbers $\mathbb C$ are an algebraically closed field (fundamental theorem of algebra). We will give a proof later.

However the algebraic closure of $\mathbb Q$ is not $\mathbb C$, since $\mathbb C$ is not an algebraic extension of Q. Intuitively, the algebraic closure is the smallest algebraically closed extension.

The algebraic closure of $\mathbb Q$ is in fact (by construction) the set $\mathbb Q$ of all algebraic elements over Q.

Bottom line: this clarifies what it means to, given a field F and an irreducible polynomial $p(x)$, "add a root α for $p(x)$, and get $F(\alpha)$ ". Technically this means we look at $F[x]/(p(x))$, identify α with \bar{x} , identify F with its image inside this field, etc.

Another way to think about it: we fix once and for all an extension K of F containing an algebraic closure \bar{F} of F, then can assume all roots of polynomial in $F[x]$ are in K. We did this already for $F = \mathbb{O}$ by working in $K = \mathbb{C}$.

Let F be a field, $f(x) \in F[x]$ be a polynomial with leading coefficient $a_n \neq 0$.

Let F be a field, $f(x) \in F[x]$ be a polynomial with leading coefficient $a_n \neq 0$.

In the splitting field K of $f(x)$ over F, we can write:

$$
f(x) = a_n(x - \alpha_1)^{n_1}(x - \alpha_2)^{n_2}\dots(x - \alpha_k)^{n_k}
$$

where $\alpha_1, \ldots, \alpha_k \in K$ are distinct, and $n_i \geq 1$ for all *i*.

Let F be a field, $f(x) \in F[x]$ be a polynomial with leading coefficient $a_n \neq 0$.

In the splitting field K of $f(x)$ over F, we can write:

$$
f(x) = a_n(x - \alpha_1)^{n_1}(x - \alpha_2)^{n_2}\dots(x - \alpha_k)^{n_k}
$$

where $\alpha_1, \ldots, \alpha_k \in K$ are distinct, and $n_i > 1$ for all i.

Definition

The number n_i is called the *multiplicity* of the root α_i . If $n_i = 1$, α_i is called a *simple root*. Otherwise it is called a *multiple root.*

Let F be a field, $f(x) \in F[x]$ be a polynomial with leading coefficient $a_n \neq 0$.

In the splitting field K of $f(x)$ over F, we can write:

$$
f(x) = a_n(x - \alpha_1)^{n_1}(x - \alpha_2)^{n_2}\dots(x - \alpha_k)^{n_k}
$$

where $\alpha_1, \ldots, \alpha_k \in K$ are distinct, and $n_i > 1$ for all i.

Definition

The number n_i is called the *multiplicity* of the root α_i . If $n_i = 1$, α_i is called a *simple root*. Otherwise it is called a *multiple root.*

Definition

We call $f(x)$ separable if it has no multiple roots (i.e. $n_i = 1$ for all i). We call $f(x)$ inseparable otherwise.

► $x^2 - 2 \in \mathbb{Q}[x]$ is separable: it has distinct roots $\sqrt{2}$ and $-$ √ 2.

► $x^2 - 2 \in \mathbb{Q}[x]$ is separable: it has distinct roots $\sqrt{2}$ and $-$ √ 2. \blacktriangleright $(x^2 - 2)^3$ is inseparable: $\sqrt{2}$ and $-$ √ 2 have multiplicity 3.

- ► $x^2 2 \in \mathbb{Q}[x]$ is separable: it has distinct roots $\sqrt{2}$ and $-$ √ 2. √
- \blacktriangleright $(x^2 2)^3$ is inseparable: $\sqrt{2}$ and $-$ 2 have multiplicity 3.
- A nontrivial example: take $F = \mathbb{F}_2(t)$, the field of rational functions in t. Consider $x^2 - t \in F[x]$.

- ► $x^2 2 \in \mathbb{Q}[x]$ is separable: it has distinct roots $\sqrt{2}$ and $-$ √ 2. √
- \blacktriangleright $(x^2 2)^3$ is inseparable: $\sqrt{2}$ and $-$ 2 have multiplicity 3.
- A nontrivial example: take $F = \mathbb{F}_2(t)$, the field of rational functions in t. Consider $x^2-t\in F[x]$. It is irreducible (!) by Eisenstein: t is a prime element of $\mathbb{F}_2[t]$.

- ► $x^2 2 \in \mathbb{Q}[x]$ is separable: it has distinct roots $\sqrt{2}$ and $-$ √ 2. √
- \blacktriangleright $(x^2 2)^3$ is inseparable: $\sqrt{2}$ and $-$ 2 have multiplicity 3.
- A nontrivial example: take $F = \mathbb{F}_2(t)$, the field of rational functions in t. Consider $x^2-t\in F[x]$. It is irreducible (!) by Eisenstein: t is a prime element of $\mathbb{F}_2[t]$. Lisenstein. *t* is a prime eignent or \mathbb{F}_2 [*t*].
Let \sqrt{t} denote a root (in some extension). Then $(x - \sqrt{t})^2 = x^2 + t = x^2 - t$ (because 2 = 0 in this field!). $(x - \sqrt{t})$ = $x + t = x - t$ (because $z = 0$ in the Thus $x^2 - t$ is inseparable: \sqrt{t} has multiplicity 2.

Testing for multiple roots

Definition

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \in F[x]$, the *derivative* of $f(x)$ is the polynomial $D_x f(x) := na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \ldots + 2a_2x + a_1 \in F[x].$

Testing for multiple roots

Definition

If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \in F[x]$, the *derivative* of $f(x)$ is the polynomial $D_x f(x) := na_n x^{n-1} + (n-1)a_{n-1}x^{n-2} + \ldots + 2a_2x + a_1 \in F[x].$

Exercise: check that the sum and product rules for derivatives hold in this context.

Theorem

A polynomial $f(x)$ has multiple root α if and only if α is a root of both $f(x)$ and $D_x f(x)$.

Corollary

 $f(x)$ has multiple root α if and only if $f(x)$ and $D_x f(x)$ are both divisible by the minimal polynomial of α (over the base field). In particular, $f(x)$ is separable if and only if it is coprime to $D_x f(x)$.

Corollary

 $f(x)$ is separable if and only if it is coprime to $D_x f(x)$.

Corollary

Every irreducible polynomial $f(x)$ over a field of characteristic 0 is separable.

Corollary

 $f(x)$ is separable if and only if it is coprime to $D_x f(x)$.

Corollary

Every irreducible polynomial $f(x)$ over a field of characteristic 0 is separable.

Proof.

If f has degree $n \geq 1$, then $D_x f(x)$ has degree $n-1$. In particular, it is not zero. The only divisors of f are 1 and $f(x)$, and by degree consideration, $f(x)$ does not divide $D_x f(x)$.

Corollary

 $f(x)$ is separable if and only if it is coprime to $D_x f(x)$.

Corollary

Every irreducible polynomial $f(x)$ over a field of characteristic 0 is separable.

Proof.

If f has degree $n \geq 1$, then $D_x f(x)$ has degree $n-1$. In particular, it is not zero. The only divisors of f are 1 and $f(x)$, and by degree consideration, $f(x)$ does not divide $D_x f(x)$.

Question to think about: where does this fail in characteristic p ?
Corollary

 $f(x)$ is separable if and only if it is coprime to $D_x f(x)$.

Corollary

Every irreducible polynomial $f(x)$ over a field of characteristic 0 is separable.

Proof.

If f has degree $n \geq 1$, then $D_x f(x)$ has degree $n-1$. In particular, it is not zero. The only divisors of f are 1 and $f(x)$, and by degree consideration, $f(x)$ does not divide $D_x f(x)$.

Question to think about: where does this fail in characteristic p ? We will talk more about it next time.

A polynomial $f(x)$ has multiple root α if and only if α is a root of both $f(x)$ and $D_x f(x)$.

A polynomial $f(x)$ has multiple root α if and only if α is a root of both $f(x)$ and $D_x f(x)$.

Proof.

Assume α is a root of $f(x)$ of multiplicity n. Then $f(x) = (x - \alpha)^n g(x)$ (in a splitting field), for some $n \ge 1$. Take derivatives, get $D_x f(x) = n(x - \alpha)^{n-1} g(x) + (x - \alpha)^n D_x g(x)$.

A polynomial $f(x)$ has multiple root α if and only if α is a root of both $f(x)$ and $D_x f(x)$.

Proof.

Assume α is a root of $f(x)$ of multiplicity n. Then $f(x) = (x - \alpha)^n g(x)$ (in a splitting field), for some $n \ge 1$. Take derivatives, get $D_x f(x) = n(x - \alpha)^{n-1} g(x) + (x - \alpha)^n D_x g(x)$.

If $n > 2$, $n - 1 > 1$ and α is a root of $D_{\alpha} f(x)$.

A polynomial $f(x)$ has multiple root α if and only if α is a root of both $f(x)$ and $D_x f(x)$.

Proof.

Assume α is a root of $f(x)$ of multiplicity n. Then $f(x) = (x - \alpha)^n g(x)$ (in a splitting field), for some $n \ge 1$. Take derivatives, get $D_x f(x) = n(x - \alpha)^{n-1} g(x) + (x - \alpha)^n D_x g(x)$. If $n > 2$, $n - 1 > 1$ and α is a root of $D_{\alpha} f(x)$. If $n = 1$, then $D_x f(x) = g(x) + (x - \alpha)^n D_x g(x)$. Evaluating at α , we get $g(\alpha)$. By definition of multiplicity, $g(\alpha) \neq 0$, so α is not a root of $D_x f(x)$.

 \triangleright Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.

- \triangleright Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of $x^n 1$ is called the cyclotomic field of *nth roots of unity.* It is generated by $\zeta_n = e^{2\pi i/n}$. When *n*, is prime, it has degree $n-1$. In general it has degree $\phi(n)$ (to be seen).

- \triangleright Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of $x^n 1$ is called the cyclotomic field of *nth roots of unity.* It is generated by $\zeta_n = e^{2\pi i/n}$. When *n*, is prime, it has degree $n-1$. In general it has degree $\phi(n)$ (to be seen).
- \triangleright A field is *algebraically closed* if all polynomials factor into linear terms. The complex numbers are algebraically closed.

- \triangleright Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of $x^n 1$ is called the cyclotomic field of *nth roots of unity.* It is generated by $\zeta_n = e^{2\pi i/n}$. When *n*, is prime, it has degree $n-1$. In general it has degree $\phi(n)$ (to be seen).
- \triangleright A field is *algebraically closed* if all polynomials factor into linear terms. The complex numbers are algebraically closed.
- \triangleright The *algebraic closure* is the smallest algebraically closed extension of a given field. Every field has a unique algebraic closure.

- \triangleright Splitting fields are unique. Proof: iterate the uniqueness of simple algebraic extensions.
- The splitting field of $x^n 1$ is called the cyclotomic field of *nth roots of unity.* It is generated by $\zeta_n = e^{2\pi i/n}$. When *n*, is prime, it has degree $n-1$. In general it has degree $\phi(n)$ (to be seen).
- \triangleright A field is *algebraically closed* if all polynomials factor into linear terms. The complex numbers are algebraically closed.
- \triangleright The *algebraic closure* is the smallest algebraically closed extension of a given field. Every field has a unique algebraic closure.
- \triangleright A polynomial is *separable* if it has no multiple roots, equivalently if it is coprime to its derivative. In characteristic zero, irreducible implies separable.