Math-123: separability and finite fields

Sebastien Vasey

Harvard University

March 27, 2020

Define a polynomial to be *separable* if it has no multiple roots.

Define a polynomial to be *separable* if it has no multiple roots.

Theorem

A root α of f(x) is multiple if and only if it is also a root of the derivative f'(x).

Define a polynomial to be *separable* if it has no multiple roots.

Theorem

A root α of f(x) is multiple if and only if it is also a root of the derivative f'(x). In particular, a polynomial is separable if and only if it is coprime to its derivative.

Define a polynomial to be *separable* if it has no multiple roots.

Theorem

A root α of f(x) is multiple if and only if it is also a root of the derivative f'(x). In particular, a polynomial is separable if and only if it is coprime to its derivative.

Corollary

In characteristic zero, irreducible implies separable.

Proof.

If f(x) is irreducible of degree $n \ge 1$, its derivative f'(x) has degree n - 1, hence is not zero. Since f is irreducible, f' must be coprime to f.

Where did we use that the underlying field had characteristic zero? Precisely to prove that the derivative of a nonconstant polynomial is not zero!

Precisely to prove that the derivative of a nonconstant polynomial is not zero!

Example

Let F be a field of prime characteristic p. Let $f(x) = x^n - 1$.

• The derivative is nx^{n-1} .

Precisely to prove that the derivative of a nonconstant polynomial is not zero!

Example

Let F be a field of prime characteristic p. Let $f(x) = x^n - 1$.

- The derivative is nx^{n-1} .
- If n divides p, this is zero!

Precisely to prove that the derivative of a nonconstant polynomial is not zero!

Example

Let F be a field of prime characteristic p. Let $f(x) = x^n - 1$.

- The derivative is nx^{n-1} .
- If n divides p, this is zero! In particular, any pth root of unity is multiple.

Precisely to prove that the derivative of a nonconstant polynomial is not zero!

Example

Let F be a field of prime characteristic p. Let $f(x) = x^n - 1$.

- The derivative is nx^{n-1} .
- If n divides p, this is zero! In particular, any pth root of unity is multiple.
- ► If n does not divide p, this is nonzero, and the only roots of the derivative are zero. Thus f is separable: the roots of unity are all distinct.

Precisely to prove that the derivative of a nonconstant polynomial is not zero!

Example

Let F be a field of prime characteristic p. Let $f(x) = x^n - 1$.

- The derivative is nx^{n-1} .
- If n divides p, this is zero! In particular, any pth root of unity is multiple.
- ► If n does not divide p, this is nonzero, and the only roots of the derivative are zero. Thus f is separable: the roots of unity are all distinct.

We can fix the previous corollary to work for all characteristics:

Corollary

An irreducible polynomial with nonzero derivative is separable.

Let *F* be a field of characteristic $p \neq 0$, let $f(x) = a_n x^n + \ldots + a_0 \in F[x]$. If the derivative of *f* is zero, then $a_i \neq 0$ implies *p* must divide *i*.

Let *F* be a field of characteristic $p \neq 0$, let $f(x) = a_n x^n + \ldots + a_0 \in F[x]$. If the derivative of *f* is zero, then $a_i \neq 0$ implies *p* must divide *i*.

The converse is true as well, so a polynomial has zero derivative if and only if its only nonzero coefficients are coefficients of x raised to a multiple of p.

Let *F* be a field of characteristic $p \neq 0$, let $f(x) = a_n x^n + \ldots + a_0 \in F[x]$. If the derivative of *f* is zero, then $a_i \neq 0$ implies *p* must divide *i*.

The converse is true as well, so a polynomial has zero derivative if and only if its only nonzero coefficients are coefficients of x raised to a multiple of p.

So we can write $f(x) = b_m x^{pm} + b_{m-1} x^{p(m-1)} + ... + b_0$. Thus $f(x) = f_1(x^p)$, where $f_1(x) = b_m x^m + ... + b_0$.

Let *F* be a field of characteristic $p \neq 0$, let $f(x) = a_n x^n + \ldots + a_0 \in F[x]$. If the derivative of *f* is zero, then $a_i \neq 0$ implies *p* must divide *i*.

The converse is true as well, so a polynomial has zero derivative if and only if its only nonzero coefficients are coefficients of x raised to a multiple of p.

So we can write $f(x) = b_m x^{pm} + b_{m-1} x^{p(m-1)} + \ldots + b_0$. Thus $f(x) = f_1(x^p)$, where $f_1(x) = b_m x^m + \ldots + b_0$.

In words, if f'(x) = 0, then f(x) is a polynomial in x^p .

Let F be a field of characteristic $p \neq 0$. Let f(x) be an *irreducible* polynomial.

Let F be a field of characteristic $p \neq 0$. Let f(x) be an *irreducible* polynomial.

If its derivative is nonzero, f is separable. If not, it is of the form $f(x) = f_1(x^p)$, for some $f_1 \in F[x]$. f_1 is itself irreducible.

Let F be a field of characteristic $p \neq 0$. Let f(x) be an *irreducible* polynomial.

If its derivative is nonzero, f is separable. If not, it is of the form $f(x) = f_1(x^p)$, for some $f_1 \in F[x]$. f_1 is itself irreducible.

Is f_1 separable? If not, it can be written $f_1(x) = f_2(x^p)$, so $f(x) = f_2(x^{p^2})$.

Let F be a field of characteristic $p \neq 0$. Let f(x) be an *irreducible* polynomial.

If its derivative is nonzero, f is separable. If not, it is of the form $f(x) = f_1(x^p)$, for some $f_1 \in F[x]$. f_1 is itself irreducible.

Is f_1 separable? If not, it can be written $f_1(x) = f_2(x^p)$, so $f(x) = f_2(x^{p^2})$.

Continuing in this way, we see there is a unique $k \ge 0$ and a separable $f_{sep}(x)$ such that $f(x) = f_{sep}(x^{p^k})$.

Definition

The degree of f_{sep} is called the *separable degree* of f(x), denoted deg_s f(x). The integer p^k is called the *inseparability degree* of f(x), denoted deg_i f(x).

We have that deg
$$f(x) = \deg_s f(x) \deg_i f(x)$$
.

Separable and inseparable degree: examples

Let p be a prime.

 f(x) = x^p − t (as a polynomial with coefficients from the field F_p(t)) is irreducible (seen last time), but its derivative is zero.
 Separable and inseparable degree: examples

Let p be a prime.

 f(x) = x^p − t (as a polynomial with coefficients from the field F_p(t)) is irreducible (seen last time), but its derivative is zero. So f_{sep}(x) = x − t, the separable degree of f is 1, its inseparability degree is p. Exercise: check that f(x) has a single root of multiplicity p.
 Separable and inseparable degree: examples

Let p be a prime.

- f(x) = x^p − t (as a polynomial with coefficients from the field F_p(t)) is irreducible (seen last time), but its derivative is zero. So f_{sep}(x) = x − t, the separable degree of f is 1, its inseparability degree is p. Exercise: check that f(x) has a single root of multiplicity p.
- More generally, f(x) = x^{pⁿ} − t has f_{sep}(x) = x − t and inseparability degree pⁿ.

Theorem

Let F be a field of characteristic $p \neq 0$. For any $a, b \in F$, $(a+b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$.

Theorem

Let F be a field of characteristic $p \neq 0$. For any $a, b \in F$, $(a+b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$. In fact the map $a \mapsto a^p$ is an injective homomorphism from F to F (called the *Frobenius map*).

Theorem

Let F be a field of characteristic $p \neq 0$. For any $a, b \in F$, $(a+b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$. In fact the map $a \mapsto a^p$ is an injective homomorphism from F to F (called the *Frobenius map*).

Proof.

 $(ab)^p = a^p b^p$ is straightforward to see.

Theorem

Let F be a field of characteristic $p \neq 0$. For any $a, b \in F$, $(a+b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$. In fact the map $a \mapsto a^p$ is an injective homomorphism from F to F (called the *Frobenius map*).

Proof.

 $(ab)^{p} = a^{p}b^{p}$ is straightforward to see. For the other equation, use the binomial theorem (where $\binom{p}{k} = \frac{p!}{k!(p-k)!}$):

$$(a+b)^{p} = \sum_{k=0}^{p} {p \choose k} a^{k} b^{p-k}$$

Theorem

Let F be a field of characteristic $p \neq 0$. For any $a, b \in F$, $(a+b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$. In fact the map $a \mapsto a^p$ is an injective homomorphism from F to F (called the *Frobenius map*).

Proof.

 $(ab)^p = a^p b^p$ is straightforward to see. For the other equation, use the binomial theorem (where $\binom{p}{k} = \frac{p!}{k!(p-k)!}$):

$$(a+b)^{p} = \sum_{k=0}^{p} {p \choose k} a^{k} b^{p-k}$$

Note p divides $\binom{p}{k}$ if 0 < k < p, so we are left with just $a^p + b^p$.

Theorem

Let F be a field of characteristic $p \neq 0$. For any $a, b \in F$, $(a+b)^p = a^p + b^p$ and $(ab)^p = a^p b^p$. In fact the map $a \mapsto a^p$ is an injective homomorphism from F to F (called the *Frobenius map*).

Proof.

 $(ab)^{p} = a^{p}b^{p}$ is straightforward to see. For the other equation, use the binomial theorem (where $\binom{p}{k} = \frac{p!}{k!(p-k)!}$):

$$(a+b)^{p} = \sum_{k=0}^{p} {p \choose k} a^{k} b^{p-k}$$

Note p divides $\binom{p}{k}$ if 0 < k < p, so we are left with just $a^p + b^p$. For injectivity, check that the kernel of the Frobenius map is $\{0\}$. It is natural to ask whether the Frobenius map is *surjective*.

Definition

A field F of characteristic p is *perfect* if either p = 0, or if any element is a pth power: for every $a \in F$, $a = b^p$ for some $b \in F$.

Definition

A field F of characteristic p is perfect if either p = 0, or if any element is a pth power: for every $a \in F$, $a = b^p$ for some $b \in F$.

Example

Any finite field F is perfect: the Frobenius map is injective, hence since F is finite must also be surjective!

Definition

A field F of characteristic p is perfect if either p = 0, or if any element is a pth power: for every $a \in F$, $a = b^p$ for some $b \in F$.

Example

Any finite field F is perfect: the Frobenius map is injective, hence since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

Definition

A field F of characteristic p is *perfect* if either p = 0, or if any element is a pth power: for every $a \in F$, $a = b^p$ for some $b \in F$.

Example

Any finite field F is perfect: the Frobenius map is injective, hence since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

This shows for example that any irreducible polynomial over $\mathbb{F}_p[x]$ is separable. This is why we had to look at $\mathbb{F}_p(t)[x]$ to find counterexamples.

Theorem

Irreducible polynomials over a perfect field F are separable.

Proof.

Let $f(x) \in F[x]$ be irreducible. If its derivative is zero, then $f(x) = g(x^p)$, for some $g(x) = a_m x^m + \ldots + a_0$.

Theorem

Irreducible polynomials over a perfect field F are separable.

Proof.

Let $f(x) \in F[x]$ be irreducible. If its derivative is zero, then $f(x) = g(x^p)$, for some $g(x) = a_m x^m + \ldots + a_0$.

For each *i*, we know that $a_i = b_i^p$ for some b_i , since the field is perfect.
Theorem

Irreducible polynomials over a perfect field F are separable.

Proof.

Let $f(x) \in F[x]$ be irreducible. If its derivative is zero, then $f(x) = g(x^p)$, for some $g(x) = a_m x^m + \ldots + a_0$.

For each *i*, we know that $a_i = b_i^p$ for some b_i , since the field is perfect.

Thus $f(x) = b_m^p x^{pm} + b_{m-1}^p x^{p(m-1)} + \ldots + b_0^p$, so $f(x) = (b_m x^m + \ldots + b_0)^p$, contradicting irreducibility.

What we know so far about finite fields:

What we know so far about finite fields:

1. For any prime p, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a field with p elements.

What we know so far about finite fields:

1. For any prime p, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a field with p elements.

2. Any finite field has characteristic a prime *p*.

What we know so far about finite fields:

- 1. For any prime p, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a field with p elements.
- 2. Any finite field has characteristic a prime *p*.
- If F is a finite field with characteristic p, then |F| = pⁿ for some n ≥ 1 (assignment 6).

What we know so far about finite fields:

- 1. For any prime p, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a field with p elements.
- 2. Any finite field has characteristic a prime *p*.
- If F is a finite field with characteristic p, then |F| = pⁿ for some n ≥ 1 (assignment 6).
- 4. Finite fields are perfect.

What we know so far about finite fields:

- 1. For any prime p, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a field with p elements.
- 2. Any finite field has characteristic a prime p.
- If F is a finite field with characteristic p, then |F| = pⁿ for some n ≥ 1 (assignment 6).
- 4. Finite fields are perfect.

You also constructed some other fields, for example with cardinality 9 or 8. In general, the problem was to find appropriate irreducibile polynomials.

What we know so far about finite fields:

- 1. For any prime p, $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ is a field with p elements.
- 2. Any finite field has characteristic a prime p.
- 3. If F is a finite field with characteristic p, then $|F| = p^n$ for some $n \ge 1$ (assignment 6).
- 4. Finite fields are perfect.

You also constructed some other fields, for example with cardinality 9 or 8. In general, the problem was to find appropriate irreducibile polynomials.

We can now avoid this issue and construct finite fields of all possible sizes.

Let $n \ge 1$ and let p be a prime. Let $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$. The derivative is -1, so f is separable: it has p^n distinct roots in its splitting field.

Let $n \ge 1$ and let p be a prime. Let $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$. The derivative is -1, so f is separable: it has p^n distinct roots in its splitting field.

Let F be the set of all these distinct roots (so $|F| = p^n$). We can check that F is a subfield of the splitting field!

Let $n \ge 1$ and let p be a prime. Let $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$. The derivative is -1, so f is separable: it has p^n distinct roots in its splitting field.

Let *F* be the set of all these distinct roots (so $|F| = p^n$). We can check that *F* is a subfield of the splitting field! If $\alpha, \beta \in F$ then $\alpha^{p^n} = \alpha, \beta^{p^n} = \beta$, so $f(\alpha + \beta) = \alpha + \beta - \alpha - \beta = 0$. Similarly, $f(\alpha\beta) = 0$. Thus $\alpha + \beta, \alpha\beta \in F$. Also, $0 \in F$, $1 \in F$, and $\alpha^{-1} \in F$.

Let $n \ge 1$ and let p be a prime. Let $f(x) = x^{p^n} - x \in \mathbb{F}_p[x]$. The derivative is -1, so f is separable: it has p^n distinct roots in its splitting field.

Let *F* be the set of all these distinct roots (so $|F| = p^n$). We can check that *F* is a subfield of the splitting field! If $\alpha, \beta \in F$ then $\alpha^{p^n} = \alpha, \beta^{p^n} = \beta$, so $f(\alpha + \beta) = \alpha + \beta - \alpha - \beta = 0$. Similarly, $f(\alpha\beta) = 0$. Thus $\alpha + \beta, \alpha\beta \in F$. Also, $0 \in F$, $1 \in F$, and $\alpha^{-1} \in F$.

Thus *F* is a finite field with p^n elements. It has degree *n* over \mathbb{F}_p . By construction, it is the splitting field of *f*.

Let F be any finite field. Let p be its characteristic. The prime subfield is then \mathbb{F}_p . Let n be the degree of F over \mathbb{F}_p (as F is finite, n exists). By basic counting, F has p^n elements.

Let F be any finite field. Let p be its characteristic. The prime subfield is then \mathbb{F}_p . Let n be the degree of F over \mathbb{F}_p (as F is finite, n exists). By basic counting, F has p^n elements.

Consider the group F^{\times} of units of F. It has $p^n - 1$ elements, hence by Lagrange's theorem $a^{p^n-1} = 1$ for all $a \in F^{\times}$.

Let F be any finite field. Let p be its characteristic. The prime subfield is then \mathbb{F}_p . Let n be the degree of F over \mathbb{F}_p (as F is finite, n exists). By basic counting, F has p^n elements.

Consider the group F^{\times} of units of F. It has $p^n - 1$ elements, hence by Lagrange's theorem $a^{p^n-1} = 1$ for all $a \in F^{\times}$.

Multiply both sides by a to get $a^{p^n} = a$. Thus every element of F^{\times} is a root of $f(x) = x^{p^n} - x$ (and of course 0 also is a root).

Let F be any finite field. Let p be its characteristic. The prime subfield is then \mathbb{F}_p . Let n be the degree of F over \mathbb{F}_p (as F is finite, n exists). By basic counting, F has p^n elements.

Consider the group F^{\times} of units of F. It has $p^n - 1$ elements, hence by Lagrange's theorem $a^{p^n-1} = 1$ for all $a \in F^{\times}$.

Multiply both sides by a to get $a^{p^n} = a$. Thus every element of F^{\times} is a root of $f(x) = x^{p^n} - x$ (and of course 0 also is a root).

This shows that F must be the splitting field of f(x) over \mathbb{F}_p .

Let F be any finite field. Let p be its characteristic. The prime subfield is then \mathbb{F}_p . Let n be the degree of F over \mathbb{F}_p (as F is finite, n exists). By basic counting, F has p^n elements.

Consider the group F^{\times} of units of F. It has $p^n - 1$ elements, hence by Lagrange's theorem $a^{p^n-1} = 1$ for all $a \in F^{\times}$.

Multiply both sides by a to get $a^{p^n} = a$. Thus every element of F^{\times} is a root of $f(x) = x^{p^n} - x$ (and of course 0 also is a root).

This shows that F must be the splitting field of f(x) over \mathbb{F}_p . Since splitting fields are unique, we get that any two finite fields with p^n elements are isomorphic.

Let F be any finite field. Let p be its characteristic. The prime subfield is then \mathbb{F}_p . Let n be the degree of F over \mathbb{F}_p (as F is finite, n exists). By basic counting, F has p^n elements.

Consider the group F^{\times} of units of F. It has $p^n - 1$ elements, hence by Lagrange's theorem $a^{p^n-1} = 1$ for all $a \in F^{\times}$.

Multiply both sides by a to get $a^{p^n} = a$. Thus every element of F^{\times} is a root of $f(x) = x^{p^n} - x$ (and of course 0 also is a root).

This shows that F must be the splitting field of f(x) over \mathbb{F}_p . Since splitting fields are unique, we get that any two finite fields with p^n elements are isomorphic. We have just proven:

Theorem

For any prime p and any natural number $n \ge 1$, there exists a unique (up to isomorphism) field with p^n elements.

We write \mathbb{F}_{p^n} for this field.

And now for something completely different...

Back to cyclotomic extensions: recall if $\zeta_n := e^{2\pi i/n}$, we call the extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ the cyclotomic extension of *n*th root of unity. It is the splitting field of $x^n - 1$.

And now for something completely different...

Back to cyclotomic extensions: recall if $\zeta_n := e^{2\pi i/n}$, we call the extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ the cyclotomic extension of *n*th root of unity. It is the splitting field of $x^n - 1$.

Theorem

The degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

And now for something completely different...

Back to cyclotomic extensions: recall if $\zeta_n := e^{2\pi i/n}$, we call the extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ the cyclotomic extension of nth root of unity. It is the splitting field of $x^n - 1$.

Theorem

The degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Here, $\phi(n)$ is the number of elements $k \in \{1, 2, ..., n\}$ such that k is coprime to n.

Recall: the roots of $x^n - 1$ (in \mathbb{C}) are called *nth roots of unity*. They are of the form ζ_n^k , $1 \le k \le n$.

Recall: the roots of $x^n - 1$ (in \mathbb{C}) are called *nth roots of unity*. They are of the form ζ_n^k , $1 \le k \le n$.

For each *n*, the *n*th roots of unity form a group under multiplication. It is a cylic group, generated by ζ_n . Let μ_n denote that group.

Recall: the roots of $x^n - 1$ (in \mathbb{C}) are called *nth roots of unity*. They are of the form ζ_n^k , $1 \le k \le n$.

For each *n*, the *n*th roots of unity form a group under multiplication. It is a cylic group, generated by ζ_n . Let μ_n denote that group.

Lemma

d divides n if and only if μ_d is a subgroup of μ_n .

Recall: the roots of $x^n - 1$ (in \mathbb{C}) are called *nth roots of unity*. They are of the form ζ_n^k , $1 \le k \le n$.

For each *n*, the *n*th roots of unity form a group under multiplication. It is a cylic group, generated by ζ_n . Let μ_n denote that group.

Lemma

d divides n if and only if μ_d is a subgroup of μ_n .

Proof.

If *d* divides *n*, say n = kd, and ζ is a *d*th root of unity, then $\zeta^n = \zeta^{kd} = (\zeta^d)^k = 1$. Thus ζ is an *n*th root of unity.

Recall: the roots of $x^n - 1$ (in \mathbb{C}) are called *nth roots of unity*. They are of the form ζ_n^k , $1 \le k \le n$.

For each *n*, the *n*th roots of unity form a group under multiplication. It is a cylic group, generated by ζ_n . Let μ_n denote that group.

Lemma

d divides n if and only if μ_d is a subgroup of μ_n .

Proof.

If d divides n, say n = kd, and ζ is a dth root of unity, then $\zeta^n = \zeta^{kd} = (\zeta^d)^k = 1$. Thus ζ is an *n*th root of unity.

If $\mu_d \subseteq \mu_n$, then $\zeta_d \in \mu_n$ and it has order d. By Lagrange's theorem, the order of any element of μ_n must divide the order n of μ_n .

Recall that an *n*th root of unity is *primitive* if it generates μ_n . We have that ζ_n^k is primitive if and only if k and n are coprime.

Recall that an *n*th root of unity is *primitive* if it generates μ_n . We have that ζ_n^k is primitive if and only if k and n are coprime.

Definition

The *nth cyclotomic polynomial*, $\Phi_n(x)$ is the polynomial whose roots are the *primitive nth* roots of unity:

$$\Phi_n(x) := \prod_{1 \le k \le n, (k,n)=1} (x - \zeta_n^k)$$

Recall that an *n*th root of unity is *primitive* if it generates μ_n . We have that ζ_n^k is primitive if and only if k and n are coprime.

Definition

The *nth cyclotomic polynomial*, $\Phi_n(x)$ is the polynomial whose roots are the *primitive nth* roots of unity:

$$\Phi_n(x) := \prod_{1 \le k \le n, (k,n)=1} (x - \zeta_n^k)$$

Note Φ_n is a monic polynomial of degree $\phi(n)$, which has ζ_n as a root.

Recall that an *n*th root of unity is *primitive* if it generates μ_n . We have that ζ_n^k is primitive if and only if k and n are coprime.

Definition

The *nth cyclotomic polynomial*, $\Phi_n(x)$ is the polynomial whose roots are the *primitive nth* roots of unity:

$$\Phi_n(x) := \prod_{1 \le k \le n, (k,n)=1} (x - \zeta_n^k)$$

Note Φ_n is a monic polynomial of degree $\phi(n)$, which has ζ_n as a root.

We aim eventually to show it is the minimal polynomial of ζ_n over \mathbb{Q} .

Note that:

$$x^n - 1 = \prod_{1 \le k \le n} (x - \zeta_n^k)$$

Note that:

$$x^n - 1 = \prod_{1 \le k \le n} (x - \zeta_n^k)$$

To go further, observe: if ζ is an element of order d in μ_n , then it is a *primitive dth root of unity*, so:

$$x^{n} - 1 = \prod_{d|n} \left(\prod_{\zeta \in \mu_{d}, \zeta \text{ primitive}} (x - \zeta) \right)$$
$$= \prod_{d|n} \Phi_{d}(x)$$

Note that:

$$x^n - 1 = \prod_{1 \le k \le n} (x - \zeta_n^k)$$

To go further, observe: if ζ is an element of order d in μ_n , then it is a *primitive dth root of unity*, so:

$$x^{n} - 1 = \prod_{d|n} \left(\prod_{\zeta \in \mu_{d}, \zeta \text{ primitive}} (x - \zeta) \right)$$
$$= \prod_{d|n} \Phi_{d}(x)$$

In particular, looking at degrees, we recover a cute formula from number theory: $n = \sum_{d|n} \phi(d)$.

Some examples of cyclotomic polynomials

Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

Some examples of cyclotomic polynomials

Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

•
$$\Phi_1(x) = x - 1$$
.

Some examples of cyclotomic polynomials

Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

•
$$\Phi_1(x) = x - 1.$$

•
$$\Phi_2(x) = x - (-1) = x + 1$$
.
Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

•
$$\Phi_1(x) = x - 1$$
.

•
$$\Phi_2(x) = x - (-1) = x + 1.$$

• Observe $x^3 - 1 = \Phi_1(x)\Phi_3(x)$, so $\Phi_3(x) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1$.

Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

•
$$\Phi_1(x) = x - 1$$
.

•
$$\Phi_2(x) = x - (-1) = x + 1.$$

• Observe $x^3 - 1 = \Phi_1(x)\Phi_3(x)$, so $\Phi_3(x) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1$.

•
$$x^4 - 1 = \Phi_1(x)\Phi_2(x)\Phi_4(x)$$
, so $\Phi_4(x) = \frac{x^4 - 1}{(x - 1)(x + 1)} = x^2 + 1$.

Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

•
$$\Phi_1(x) = x - 1.$$

• $\Phi_2(x) = x - (-1) = x + 1.$
• Observe $x^3 - 1 = \Phi_1(x)\Phi_3(x)$, so $\Phi_3(x) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1.$
• $x^4 - 1 = \Phi_1(x)\Phi_2(x)\Phi_4(x)$, so $\Phi_4(x) = \frac{x^4 - 1}{(x - 1)(x + 1)} = x^2 + 1.$
• If *p* is a prime, $x^p - 1 = \Phi_1(x)\Phi_p(x)$, so $\Phi_p(x) = \frac{x^p - 1}{x - 1} = 1 + x + \dots + x^{p-1}.$

• Continuing, get
$$\Phi_6(x) = x^2 - x + 1$$
.

Just for fun, let's use the formula $x^n - 1 = \prod_{d|n} \Phi_d(x)$ to compute some cyclotomic polynomials.

•
$$\Phi_1(x) = x - 1.$$

• $\Phi_2(x) = x - (-1) = x + 1.$
• Observe $x^3 - 1 = \Phi_1(x)\Phi_3(x)$, so $\Phi_3(x) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1.$
• $x^4 - 1 = \Phi_1(x)\Phi_2(x)\Phi_4(x)$, so $\Phi_4(x) = \frac{x^4 - 1}{(x - 1)(x + 1)} = x^2 + 1.$
• If *p* is a prime, $x^p - 1 = \Phi_1(x)\Phi_p(x)$, so $\Phi_p(x) = \frac{x^p - 1}{x - 1} = 1 + x + \ldots + x^{p-1}.$

• Continuing, get
$$\Phi_6(x) = x^2 - x + 1$$
.

A few more are in Dummit and Foote.

$\Phi_n(x) \in \mathbb{Z}[x]$. That is, a cyclotomic polynomial has integer coefficients!

$\Phi_n(x) \in \mathbb{Z}[x]$. That is, a cyclotomic polynomial has integer coefficients!

Proof.

By induction on *n*. For n = 1, $\Phi_1(x) = x - 1$.

$\Phi_n(x) \in \mathbb{Z}[x]$. That is, a cyclotomic polynomial has integer coefficients!

Proof.

By induction on *n*. For n = 1, $\Phi_1(x) = x - 1$.

Assume $n \ge 2$ and the result holds below n. We have $x^n - 1 = f(x)\Phi_n(x)$, where $f(x) = \prod_{d|n, d \ne n} \Phi_d(x)$.

$\Phi_n(x) \in \mathbb{Z}[x]$. That is, a cyclotomic polynomial has integer coefficients!

Proof.

By induction on *n*. For n = 1, $\Phi_1(x) = x - 1$.

Assume $n \ge 2$ and the result holds below n. We have $x^n - 1 = f(x)\Phi_n(x)$, where $f(x) = \prod_{d|n,d\neq n} \Phi_d(x)$.

By the induction hypothesis, $f(x) \in \mathbb{Z}[x]$.

$\Phi_n(x) \in \mathbb{Z}[x]$. That is, a cyclotomic polynomial has integer coefficients!

Proof.

By induction on *n*. For n = 1, $\Phi_1(x) = x - 1$.

Assume $n \ge 2$ and the result holds below n. We have $x^n - 1 = f(x)\Phi_n(x)$, where $f(x) = \prod_{d|n,d\neq n} \Phi_d(x)$.

By the induction hypothesis, $f(x) \in \mathbb{Z}[x]$.

In $\mathbb{Q}(\zeta_n)[x]$, f(x) divides $x^n - 1$. Both $x^n - 1$ and f(x) have rational coefficients, so the division algorithm must yield a polynomial with rational coefficients. Thus $\Phi_n(x) \in \mathbb{Q}[x]$.

$\Phi_n(x) \in \mathbb{Z}[x]$. That is, a cyclotomic polynomial has integer coefficients!

Proof.

By induction on *n*. For n = 1, $\Phi_1(x) = x - 1$.

Assume $n \ge 2$ and the result holds below n. We have $x^n - 1 = f(x)\Phi_n(x)$, where $f(x) = \prod_{d|n,d\neq n} \Phi_d(x)$.

By the induction hypothesis, $f(x) \in \mathbb{Z}[x]$.

In $\mathbb{Q}(\zeta_n)[x]$, f(x) divides $x^n - 1$. Both $x^n - 1$ and f(x) have rational coefficients, so the division algorithm must yield a polynomial with rational coefficients. Thus $\Phi_n(x) \in \mathbb{Q}[x]$.

The factorization of $x^n - 1$ into monic irreducibles in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$ must be the same (Gauss' lemma). In particular, since f(x) divides $x^n - 1$ in $\mathbb{Q}[x]$, it must divide it in $\mathbb{Z}[x]$. Thus $\Phi_n(x) \in \mathbb{Z}[x]$.

$\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof.

Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof.

Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof.

Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof.

Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$g(x^p) = f(x)h(x)$$

Reducing modulo p, we get $\bar{g}(x^p) = (\bar{g}(x))^p = \bar{f}(x)\bar{g}(x)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof.

Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$g(x^p) = f(x)h(x)$$

Reducing modulo p, we get $\bar{g}(x^p) = (\bar{g}(x))^p = \bar{f}(x)\bar{g}(x)$. So \bar{f} and \bar{g} have an irreducible factor in common in $\mathbb{F}_p[x]$!

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide n, $x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide n, $x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to n. Thus $k = p_1 p_2 \dots p_m$, with the p_i 's primes not dividing n.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to n. Thus $k = p_1 p_2 \dots p_m$, with the p_i 's primes not dividing n.

We showed $f(\zeta^{p_1}) = 0$. Thus applying the previous observation to $\rho = \zeta^{p_1}$ and $p = p_2$, $f(\zeta^{p_1 p_2}) = 0$.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to n. Thus $k = p_1 p_2 \dots p_m$, with the p_i 's primes not dividing n.

We showed $f(\zeta^{p_1}) = 0$. Thus applying the previous observation to $\rho = \zeta^{p_1}$ and $p = p_2$, $f(\zeta^{p_1 p_2}) = 0$.

Continuing in this way, we get that $f(\zeta^{p_1p_2...p_m}) = 0$. Thus f has *all* primitive roots of unity as roots, so $f = \Phi_n$, as desired.

In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.

- In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.
- ► A field of characteristic p is called *perfect* if the map is also surjective: any element is a power of p. Fields of characteristic zero are also called perfect.

- In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.
- ► A field of characteristic p is called *perfect* if the map is also surjective: any element is a power of p. Fields of characteristic zero are also called perfect.
- Finite fields are perfect.

- In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.
- ► A field of characteristic p is called *perfect* if the map is also surjective: any element is a power of p. Fields of characteristic zero are also called perfect.
- Finite fields are perfect.
- ► In any perfect field, irreducible polynomials are separable.

- In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.
- ► A field of characteristic p is called *perfect* if the map is also surjective: any element is a power of p. Fields of characteristic zero are also called perfect.
- Finite fields are perfect.
- ► In any perfect field, irreducible polynomials are separable.
- ► In a field of characteristic p, an irreducible polynomial f(x) can always be uniquely written as f(x) = f_{sep}(x^{pⁿ}), for some irreducible separable f_{sep}(x).

- In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.
- A field of characteristic p is called *perfect* if the map is also surjective: any element is a power of p. Fields of characteristic zero are also called perfect.
- Finite fields are perfect.
- ► In any perfect field, irreducible polynomials are separable.
- ► In a field of characteristic p, an irreducible polynomial f(x) can always be uniquely written as f(x) = f_{sep}(x^{pⁿ}), for some irreducible separable f_{sep}(x).
- For any prime p and any n ≥ 1, there is a unique field F_{pⁿ} with pⁿ elements.

- In any field of characteristic p, raising to the pth power gives an injective homomorphism from the field into itself.
- ► A field of characteristic p is called *perfect* if the map is also surjective: any element is a power of p. Fields of characteristic zero are also called perfect.
- Finite fields are perfect.
- ► In any perfect field, irreducible polynomials are separable.
- ► In a field of characteristic p, an irreducible polynomial f(x) can always be uniquely written as f(x) = f_{sep}(x^{pⁿ}), for some irreducible separable f_{sep}(x).
- For any prime p and any n ≥ 1, there is a unique field 𝔽_{pⁿ} with pⁿ elements.
- The *nth cyclotomic polynomial* is the product of (x − ζ) for ζ ranging over all primitive *n*th root of unity. It is a monic irreducible polynomial in Z[x] of degree φ(n).