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Last time

Define a polynomial to be separable if it has no multiple roots.

Theorem

A root α of f (x) is multiple if and only if it is also a root of the
derivative f ′(x). In particular, a polynomial is separable if and only
if it is coprime to its derivative.

Corollary

In characteristic zero, irreducible implies separable.

Proof.

If f (x) is irreducible of degree n ≥ 1, its derivative f ′(x) has
degree n − 1, hence is not zero. Since f is irreducible, f ′ must be
coprime to f .
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Where did we use that the underlying field had characteristic zero?

Precisely to prove that the derivative of a nonconstant polynomial
is not zero!

Example

Let F be a field of prime characteristic p. Let f (x) = xn − 1.

I The derivative is nxn−1.

I If n divides p, this is zero! In particular, any pth root of unity
is multiple.

I If n does not divide p, this is nonzero, and the only roots of
the derivative are zero. Thus f is separable: the roots of unity
are all distinct.

We can fix the previous corollary to work for all characteristics:

Corollary

An irreducible polynomial with nonzero derivative is separable.
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When is the derivative zero?

Let F be a field of characteristic p 6= 0, let
f (x) = anx

n + . . .+ a0 ∈ F [x ]. If the derivative of f is zero, then
ai 6= 0 implies p must divide i .

The converse is true as well, so a polynomial has zero derivative if
and only if its only nonzero coefficients are coefficients of x raised
to a multiple of p.

So we can write f (x) = bmx
pm + bm−1x

p(m−1) + . . .+ b0. Thus
f (x) = f1(xp), where f1(x) = bmx

m + . . .+ b0.

In words, if f ′(x) = 0, then f (x) is a polynomial in xp.
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Separable and inseparable degree

Let F be a field of characteristic p 6= 0. Let f (x) be an irreducible
polynomial.

If its derivative is nonzero, f is separable. If not, it is of the form
f (x) = f1(xp), for some f1 ∈ F [x ]. f1 is itself irreducible.

Is f1 separable? If not, it can be written f1(x) = f2(xp), so
f (x) = f2(xp

2
).

Continuing in this way, we see there is a unique k ≥ 0 and a
separable fsep(x) such that f (x) = fsep(xp

k
).

Definition

The degree of fsep is called the separable degree of f (x), denoted
degs f (x). The integer pk is called the inseparability degree of
f (x), denoted degi f (x).

We have that deg f (x) = degs f (x) degi f (x).
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Separable and inseparable degree: examples

Let p be a prime.

I f (x) = xp − t (as a polynomial with coefficients from the field
Fp(t)) is irreducible (seen last time), but its derivative is zero.

So fsep(x) = x − t, the separable degree of f is 1, its
inseparability degree is p. Exercise: check that f (x) has a
single root of multiplicity p.

I More generally, f (x) = xp
n − t has fsep(x) = x − t and

inseparability degree pn.
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pth power: the Frobenius map

Theorem

Let F be a field of characteristic p 6= 0. For any a, b ∈ F ,
(a+ b)p = ap + bp and (ab)p = apbp.

In fact the map a 7→ ap is an
injective homomorphism from F to F (called the Frobenius map).

Proof.

(ab)p = apbp is straightforward to see. For the other equation, use
the binomial theorem (where

(p
k

)
= p!

k!(p−k)!):

(a + b)p =

p∑
k=0

(
p

k

)
akbp−k

Note p divides
(p
k

)
if 0 < k < p, so we are left with just ap + bp.

For injectivity, check that the kernel of the Frobenius map is
{0}.
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It is natural to ask whether the Frobenius map is surjective.

Fields
like this are called perfect:

Definition

A field F of characteristic p is perfect if either p = 0, or if any
element is a pth power: for every a ∈ F , a = bp for some b ∈ F .

Example

Any finite field F is perfect: the Frobenius map is injective, hence
since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

This shows for example that any irreducible polynomial over Fp[x ]
is separable. This is why we had to look at Fp(t)[x ] to find
counterexamples.



It is natural to ask whether the Frobenius map is surjective. Fields
like this are called perfect:

Definition

A field F of characteristic p is perfect if either p = 0, or if any
element is a pth power: for every a ∈ F , a = bp for some b ∈ F .

Example

Any finite field F is perfect: the Frobenius map is injective, hence
since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

This shows for example that any irreducible polynomial over Fp[x ]
is separable. This is why we had to look at Fp(t)[x ] to find
counterexamples.



It is natural to ask whether the Frobenius map is surjective. Fields
like this are called perfect:

Definition

A field F of characteristic p is perfect if either p = 0, or if any
element is a pth power: for every a ∈ F , a = bp for some b ∈ F .

Example

Any finite field F is perfect: the Frobenius map is injective, hence
since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

This shows for example that any irreducible polynomial over Fp[x ]
is separable. This is why we had to look at Fp(t)[x ] to find
counterexamples.



It is natural to ask whether the Frobenius map is surjective. Fields
like this are called perfect:

Definition

A field F of characteristic p is perfect if either p = 0, or if any
element is a pth power: for every a ∈ F , a = bp for some b ∈ F .

Example

Any finite field F is perfect: the Frobenius map is injective, hence
since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

This shows for example that any irreducible polynomial over Fp[x ]
is separable. This is why we had to look at Fp(t)[x ] to find
counterexamples.



It is natural to ask whether the Frobenius map is surjective. Fields
like this are called perfect:

Definition

A field F of characteristic p is perfect if either p = 0, or if any
element is a pth power: for every a ∈ F , a = bp for some b ∈ F .

Example

Any finite field F is perfect: the Frobenius map is injective, hence
since F is finite must also be surjective!

Theorem

Irreducible polynomials over a perfect field are separable.

This shows for example that any irreducible polynomial over Fp[x ]
is separable. This is why we had to look at Fp(t)[x ] to find
counterexamples.



Theorem

Irreducible polynomials over a perfect field F are separable.

Proof.

Let f (x) ∈ F [x ] be irreducible. If its derivative is zero, then
f (x) = g(xp), for some g(x) = amx

m + . . .+ a0.

For each i , we know that ai = bpi for some bi , since the field is
perfect.

Thus f (x) = bpmxpm + bpm−1x
p(m−1) + . . .+ bp0 , so

f (x) = (bmx
m + . . .+ b0)p, contradicting irreducibility.
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Finite fields

What we know so far about finite fields:

1. For any prime p, Fp := Z/pZ is a field with p elements.

2. Any finite field has characteristic a prime p.

3. If F is a finite field with characteristic p, then |F | = pn for
some n ≥ 1 (assignment 6).

4. Finite fields are perfect.

You also constructed some other fields, for example with
cardinality 9 or 8. In general, the problem was to find appropriate
irreducibile polynomials.

We can now avoid this issue and construct finite fields of all
possible sizes.
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Finite fields: existence

Let n ≥ 1 and let p be a prime. Let f (x) = xp
n − x ∈ Fp[x ]. The

derivative is −1, so f is separable: it has pn distinct roots in its
splitting field.

Let F be the set of all these distinct roots (so |F | = pn). We can
check that F is a subfield of the splitting field! If α, β ∈ F then
αpn = α, βp

n
= β, so f (α + β) = α + β − α− β = 0. Similarly,

f (αβ) = 0. Thus α+β, αβ ∈ F . Also, 0 ∈ F , 1 ∈ F , and α−1 ∈ F .

Thus F is a finite field with pn elements. It has degree n over Fp.
By construction, it is the splitting field of f .
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n − x ∈ Fp[x ]. The

derivative is −1, so f is separable: it has pn distinct roots in its
splitting field.

Let F be the set of all these distinct roots (so |F | = pn). We can
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Finite fields: uniqueness
Let F be any finite field. Let p be its characteristic. The prime
subfield is then Fp. Let n be the degree of F over Fp (as F is
finite, n exists). By basic counting, F has pn elements.

Consider the group F× of units of F . It has pn − 1 elements, hence
by Lagrange’s theorem ap

n−1 = 1 for all a ∈ F×.

Multiply both sides by a to get ap
n

= a. Thus every element of F×

is a root of f (x) = xp
n − x (and of course 0 also is a root).

This shows that F must be the splitting field of f (x) over Fp.
Since splitting fields are unique, we get that any two finite fields
with pn elements are isomorphic. We have just proven:

Theorem

For any prime p and any natural number n ≥ 1, there exists a
unique (up to isomorphism) field with pn elements.

We write Fpn for this field.
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And now for something completely different...

Back to cyclotomic extensions: recall if ζn := e2πi/n, we call the
extension Q(ζn)/Q the cyclotomic extension of nth root of unity.
It is the splitting field of xn − 1.

Theorem

The degree of Q(ζn) over Q is φ(n).

Here, φ(n) is the number of elements k ∈ {1, 2, . . . , n} such that k
is coprime to n.
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Groups of roots of unity
Recall: the roots of xn − 1 (in C) are called nth roots of unity.
They are of the form ζkn , 1 ≤ k ≤ n.

For each n, the nth roots of unity form a group under
multiplication. It is a cylic group, generated by ζn. Let µn denote
that group.

Lemma

d divides n if and only if µd is a subgroup of µn.

Proof.

If d divides n, say n = kd , and ζ is a dth root of unity, then

ζn = ζkd =
(
ζd
)k

= 1. Thus ζ is an nth root of unity.

If µd ⊆ µn, then ζd ∈ µn and it has order d . By Lagrange’s
theorem, the order of any element of µn must divide the order n of
µn.
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Cyclotomic polynomials

Recall that an nth root of unity is primitive if it generates µn. We
have that ζkn is primitive if and only if k and n are coprime.

Definition

The nth cyclotomic polynomial, Φn(x) is the polynomial whose
roots are the primitive nth roots of unity:

Φn(x) :=
∏

1≤k≤n,(k,n)=1

(x − ζkn )

Note Φn is a monic polynomial of degree φ(n), which has ζn as a
root.

We aim eventually to show it is the minimal polynomial of ζn over
Q.
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Note that:

xn − 1 =
∏

1≤k≤n
(x − ζkn )

To go further, observe: if ζ is an element of order d in µn, then it
is a primitive dth root of unity, so:

xn − 1 =
∏
d |n

 ∏
ζ∈µd , ζ primitive

(x − ζ)


=
∏
d |n

Φd(x)

In particular, looking at degrees, we recover a cute formula from
number theory: n =

∑
d |n φ(d).
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Some examples of cyclotomic polynomials

Just for fun, let’s use the formula xn − 1 =
∏

d |n Φd(x) to
compute some cyclotomic polynomials.

I Φ1(x) = x − 1.

I Φ2(x) = x − (−1) = x + 1.

I Observe x3− 1 = Φ1(x)Φ3(x), so Φ3(x) = x3−1
x−1 = x2 + x + 1.

I x4 − 1 = Φ1(x)Φ2(x)Φ4(x), so Φ4(x) = x4−1
(x−1)(x+1) = x2 + 1.

I If p is a prime, xp − 1 = Φ1(x)Φp(x), so
Φp(x) = xp−1

x−1 = 1 + x + . . .+ xp−1.

I Continuing, get Φ6(x) = x2 − x + 1.

I A few more are in Dummit and Foote.
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Lemma

Φn(x) ∈ Z[x ]. That is, a cyclotomic polynomial has integer
coefficients!

Proof.

By induction on n. For n = 1, Φ1(x) = x − 1.

Assume n ≥ 2 and the result holds below n. We have
xn − 1 = f (x)Φn(x), where f (x) =

∏
d |n,d 6=n Φd(x).

By the induction hypothesis, f (x) ∈ Z[x ].

In Q(ζn)[x ], f (x) divides xn − 1. Both xn − 1 and f (x) have
rational coefficients, so the division algorithm must yield a
polynomial with rational coefficients. Thus Φn(x) ∈ Q[x ].

The factorization of xn− 1 into monic irreducibles in Q[x ] and Z[x ]
must be the same (Gauss’ lemma). In particular, since f (x) divides
xn − 1 in Q[x ], it must divide it in Z[x ]. Thus Φn(x) ∈ Z[x ].
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rational coefficients, so the division algorithm must yield a
polynomial with rational coefficients. Thus Φn(x) ∈ Q[x ].

The factorization of xn− 1 into monic irreducibles in Q[x ] and Z[x ]
must be the same (Gauss’ lemma). In particular, since f (x) divides
xn − 1 in Q[x ], it must divide it in Z[x ]. Thus Φn(x) ∈ Z[x ].



Theorem

Φn(x) is irreducible in Z[x ]. Thus the degree of Q(ζn) over Q is
φ(n).

Proof.

Write Φn(x) = f (x)g(x), for f , g monic in Z[x ], f irreducible with
some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζp is a primitive root of
unity. Either f (ζp) = 0 or g(ζp) = 0.

If g(ζp) = 0, then ζ is a root of g(xp), so f (x) divides g(xp) in
Z[x ]:

g(xp) = f (x)h(x)

Reducing modulo p, we get ḡ(xp) = (ḡ(x))p = f̄ (x)ḡ(x).

So f̄ and ḡ have an irreducible factor in common in Fp[x ]!
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Proof of irreducibility of Φn, continued

We know also f̄ ḡ = Φn(x). Since f̄ and ḡ have a factor in
common, Φn(x) has a multiple root in Fp[x ].

Thus xn − 1 also has a multiple root in Fp[x ]. We saw before that
if p does not divide n, xn − 1 is separable, contradiction.

We had that Φn(x) = f (x)g(x), f irreducible, and we took ζ a
root of f . We showed g(ζp) 6= 0 for any prime p not dividing n.

Thus f (ρp) = 0 for any root ρ of f and any prime p not dividing n.

If ζ is a root of f , any other primitive root of unity is of the form
ζk , k coprime to n. Thus k = p1p2 . . . pm, with the pi ’s primes not
dividing n.

We showed f (ζp1) = 0. Thus applying the previous observation to
ρ = ζp1 and p = p2, f (ζp1p2) = 0.

Continuing in this way, we get that f (ζp1p2...pm) = 0. Thus f has
all primitive roots of unity as roots, so f = Φn, as desired.
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Summary

I In any field of characteristic p, raising to the pth power gives
an injective homomorphism from the field into itself.

I A field of characteristic p is called perfect if the map is also
surjective: any element is a power of p. Fields of characteristic
zero are also called perfect.

I Finite fields are perfect.

I In any perfect field, irreducible polynomials are separable.

I In a field of characteristic p, an irreducible polynomial f (x)
can always be uniquely written as f (x) = fsep(xp

n
), for some

irreducible separable fsep(x).

I For any prime p and any n ≥ 1, there is a unique field Fpn

with pn elements.

I The nth cyclotomic polynomial is the product of (x − ζ) for ζ
ranging over all primitive nth root of unity. It is a monic
irreducible polynomial in Z[x ] of degree φ(n).
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