Math-123: Basic definitions of Galois theory

Sebastien Vasey

Harvard University

April 1, 2020

It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").

- It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").
- I updated the syllabus to describe how I will determine your grade.

- It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").
- I updated the syllabus to describe how I will determine your grade.
- If your class score is at least 70%, you get SEM.

- It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").
- I updated the syllabus to describe how I will determine your grade.
- If your class score is at least 70%, you get SEM.
- If you are below 70%, you may or may not get SEM depending on class performance, participation, special circumstances, etc.

Finishing the proof from last time

Recall
$$\zeta_n := e^{2\pi i/n}$$
.

Finishing the proof from last time

Recall $\zeta_n := e^{2\pi i/n}$.

Definition

The *nth cyclotomic polynomial*, $\Phi_n(x)$ is the polynomial whose roots are the *primitive nth* roots of unity:

$$\Phi_n(x) := \prod_{1 \le k \le n, (k,n)=1} (x - \zeta_n^k)$$

Finishing the proof from last time

Recall $\zeta_n := e^{2\pi i/n}$.

Definition

The *nth cyclotomic polynomial*, $\Phi_n(x)$ is the polynomial whose roots are the *primitive nth* roots of unity:

$$\Phi_n(x) := \prod_{1 \le k \le n, (k,n)=1} (x - \zeta_n^k)$$

We proved that $\Phi_n(x)$ is a monic polynomial of degree $\phi(n)$, with integer coefficients.

If
$$g(x) \in \mathbb{F}_p[x]$$
, then $g(x^p) = (g(x))^p$.

If
$$g(x) \in \mathbb{F}_p[x]$$
, then $g(x^p) = (g(x))^p$.

Proof.

Say $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$. By properties of the Frobenius map, $g(x)^p = a_n^p x^{pn} + a_{n-1}^p x^{p(n-1)} + \ldots + a_0^p$.

If
$$g(x) \in \mathbb{F}_p[x]$$
, then $g(x^p) = (g(x))^p$.

Proof.

Say $g(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$. By properties of the Frobenius map, $g(x)^p = a_n^p x^{pn} + a_{n-1}^p x^{p(n-1)} + ... + a_0^p$.

Now use that $a^p = a$ for every $a \in \mathbb{F}_p$ (Lagrange's theorem applied to the group of units \mathbb{F}_p^{\times} – also called Fermat's little theorem).

If
$$g(x) \in \mathbb{F}_p[x]$$
, then $g(x^p) = (g(x))^p$.

Proof.

Say $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$. By properties of the Frobenius map, $g(x)^p = a_n^p x^{pn} + a_{n-1}^p x^{p(n-1)} + \ldots + a_0^p$. Now use that $a^p = a$ for every $a \in \mathbb{F}_p$ (Lagrange's theorem applied to the group of units \mathbb{F}_p^{\times} – also called Fermat's little theorem). Get $g(x)^p = a_n x^{pn} + a_{n-1} x^{p(n-1)} + \ldots + a_0 = g(x^p)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since f(x) is the minimal polynomial of ζ , f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since f(x) is the minimal polynomial of ζ , f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

 $g(x^p) = f(x)h(x)$

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since f(x) is the minimal polynomial of ζ , f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$g(x^p)=f(x)h(x)$$

Reducing modulo p, we get $\bar{g}(x^p) = (\bar{g}(x))^p = \bar{f}(x)\bar{g}(x)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since f(x) is the minimal polynomial of ζ , f(x) divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$g(x^p) = f(x)h(x)$$

Reducing modulo p, we get $\bar{g}(x^p) = (\bar{g}(x))^p = \bar{f}(x)\bar{g}(x)$. So \bar{f} and \bar{g} have an irreducible factor in common in $\mathbb{F}_p[x]$!

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide n, $x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide n, $x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to n. Thus $k = p_1 p_2 \dots p_m$, with the p_i 's primes not dividing n.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to n. Thus $k = p_1 p_2 \dots p_m$, with the p_i 's primes not dividing n.

We showed $f(\zeta^{p_1}) = 0$. Thus applying the previous observation to $\rho = \zeta^{p_1}$ and $p = p_2$, $f(\zeta^{p_1 p_2}) = 0$.

We know also $\overline{f}\overline{g} = \overline{\Phi_n}(x)$. Since \overline{f} and \overline{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to n. Thus $k = p_1 p_2 \dots p_m$, with the p_i 's primes not dividing n.

We showed $f(\zeta^{p_1}) = 0$. Thus applying the previous observation to $\rho = \zeta^{p_1}$ and $p = p_2$, $f(\zeta^{p_1 p_2}) = 0$.

Continuing in this way, we get that $f(\zeta^{p_1p_2...p_m}) = 0$. Thus f has *all* primitive roots of unity as roots, so $f = \Phi_n$, as desired.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

An isomorphism σ of a field K to itself is called an automorphism of K.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

- An isomorphism σ of a field K to itself is called an automorphism of K.
- We write Aut(K) for the set of all automorphisms of K.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

- An isomorphism σ of a field K to itself is called an automorphism of K.
- We write Aut(K) for the set of all automorphisms of K.
- An automorphism σ of K fixes an element a if σ(a) = a. We say σ fixes a set A if σ(a) = a for all a ∈ A.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

- An isomorphism σ of a field K to itself is called an automorphism of K.
- We write Aut(K) for the set of all automorphisms of K.
- An automorphism σ of K fixes an element a if σ(a) = a. We say σ fixes a set A if σ(a) = a for all a ∈ A.
- ► If K is an extension of F, we write Aut(K/F) for the set of all automorphisms of K which fix F.

Two key observations

1. Aut(K) is a group under composition, and Aut(K/F) is a subgroup.

Two key observations

- 1. Aut(K) is a group under composition, and Aut(K/F) is a subgroup.
- 2. If K/F is an extension, $f(x) \in F[x]$, $\alpha \in K$ is a root of f, then for any $\sigma \in Aut(K/F)$, $\sigma(\alpha)$ is also a root of f.

Two key observations

- Aut(K) is a group under composition, and Aut(K/F) is a subgroup.
- 2. If K/F is an extension, $f(x) \in F[x]$, $\alpha \in K$ is a root of f, then for any $\sigma \in Aut(K/F)$, $\sigma(\alpha)$ is also a root of f.

The second observation says that automorphisms *permute* the roots of a polynomial. Abstractly: the group Aut(K/F) acts on these roots.

Examples

► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.

Examples

- ► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.
- Similarly, Aut(𝑘_p) = {1}. In general, any automorphism fixes the prime field.
- ► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.
- Similarly, Aut(𝑘_p) = {1}. In general, any automorphism fixes the prime field.

► Let
$$F = \mathbb{Q}$$
, $K = \mathbb{Q}(\sqrt{2})$. Note $Aut(K) = Aut(K/F)$. Let $\sigma \in Aut(K)$.

- ► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.
- Similarly, Aut(𝑘) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$. Note $\operatorname{Aut}(K) = \operatorname{Aut}(K/F)$. Let $\sigma \in \operatorname{Aut}(K)$.
 - ▶ $\sqrt{2}$ is a root of $x^2 2$, so $\tau(\sqrt{2})$ is a root of $x^2 2$. Thus $\tau(\sqrt{2}) = \pm\sqrt{2}$.

- ► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.
- Similarly, Aut(𝔽_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$. Note $\operatorname{Aut}(K) = \operatorname{Aut}(K/F)$. Let $\sigma \in \operatorname{Aut}(K)$.
 - ▶ $\sqrt{2}$ is a root of $x^2 2$, so $\tau(\sqrt{2})$ is a root of $x^2 2$. Thus $\tau(\sqrt{2}) = \pm\sqrt{2}$.
 - Any element of K is of the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so $\tau(\alpha) = a + b\tau(\sqrt{2})$, so τ is determined by its value on $\sqrt{2}$.

- ► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.
- Similarly, Aut(𝑘_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$. Note $\operatorname{Aut}(K) = \operatorname{Aut}(K/F)$. Let $\sigma \in \operatorname{Aut}(K)$.
 - ▶ $\sqrt{2}$ is a root of $x^2 2$, so $\tau(\sqrt{2})$ is a root of $x^2 2$. Thus $\tau(\sqrt{2}) = \pm\sqrt{2}$.
 - Any element of K is of the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so $\tau(\alpha) = a + b\tau(\sqrt{2})$, so τ is determined by its value on $\sqrt{2}$.
 - If $\tau(\sqrt{2}) = \sqrt{2}$, τ is the identity. On the other hand $\tau(\sqrt{2}) = -\sqrt{2}$ is an automorphism (can check directly, or use uniqueness of simple extensions).

- ► Aut(Q) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut(Q) = {1}.
- Similarly, Aut(𝑘_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$. Note Aut(K) = Aut(K/F). Let $\sigma \in Aut(K)$.
 - ▶ $\sqrt{2}$ is a root of $x^2 2$, so $\tau(\sqrt{2})$ is a root of $x^2 2$. Thus $\tau(\sqrt{2}) = \pm\sqrt{2}$.
 - Any element of K is of the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so $\tau(\alpha) = a + b\tau(\sqrt{2})$, so τ is determined by its value on $\sqrt{2}$.
 - If $\tau(\sqrt{2}) = \sqrt{2}$, τ is the identity. On the other hand $\tau(\sqrt{2}) = -\sqrt{2}$ is an automorphism (can check directly, or use uniqueness of simple extensions).
 - Thus Aut(K/F) = {1, σ}, where σ sends √2 to −√2. It is the cyclic group of order 2.

One more example

Let
$$F = \mathbb{Q}$$
, $K = \mathbb{Q}(\sqrt[3]{2})$.

One more example

Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt[3]{2})$.

As before, any automorphism is determined by what it does to $\sqrt[3]{2}$.

Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt[3]{2})$.

As before, any automorphism is determined by what it does to $\sqrt[3]{2}$. If $\tau \in \operatorname{Aut}(K/F)$, $\tau(\sqrt[3]{2})$ must be a root of $x^3 - 2$. However the other roots of $x^3 - 2$ are not real numbers, so are not in K. Thus $\tau(\sqrt[3]{2}) = \sqrt[3]{2}$. Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt[3]{2})$.

As before, any automorphism is determined by what it does to $\sqrt[3]{2}$. If $\tau \in \operatorname{Aut}(K/F)$, $\tau(\sqrt[3]{2})$ must be a root of $x^3 - 2$. However the other roots of $x^3 - 2$ are not real numbers, so are not in K. Thus $\tau(\sqrt[3]{2}) = \sqrt[3]{2}$.

This shows that $Aut(K/F) = \{1\}$, the trivial group.

Fix a field K.

Given a subfield F, we get a group Aut(K/F).

Fix a field K.

```
Given a subfield F, we get a group Aut(K/F).
```

```
Going back, if we fix a subgroup H of Aut(K), we can get a subfield:
```

Fix a field K.

```
Given a subfield F, we get a group Aut(K/F).
```

```
Going back, if we fix a subgroup H of Aut(K), we can get a subfield:
```

Definition

The *fixed field of H* is the subfield of K of all elements fixed by every automorphism in H.

Fix a field K.

```
Given a subfield F, we get a group Aut(K/F).
```

```
Going back, if we fix a subgroup H of Aut(K), we can get a subfield:
```

Definition

The *fixed field of H* is the subfield of K of all elements fixed by every automorphism in H.

(one can check it is indeed a subfield: if *a* and *b* are fixed, *ab*, a + b, a/b are fixed too!).

Going from subfield to groups, and back, give *inclusion-reversing operations*:

Going from subfield to groups, and back, give *inclusion-reversing operations*:

1. If $F_1 \subseteq F_2 \subseteq K$, then $\operatorname{Aut}(K/F_2) \subseteq \operatorname{Aut}(K/F_1)$. [The fewer things to fix, the more automorphisms].

Going from subfield to groups, and back, give *inclusion-reversing operations*:

- 1. If $F_1 \subseteq F_2 \subseteq K$, then $\operatorname{Aut}(K/F_2) \subseteq \operatorname{Aut}(K/F_1)$. [The fewer things to fix, the more automorphisms].
- 2. If $H_1 \subseteq H_2 \subseteq Aut(K)$, with fixed fields F_1 , F_2 , then $F_2 \subseteq F_1$ [Fewer automorphisms fix more things].

$$K = \mathbb{Q}(\sqrt{2}), F = \mathbb{Q}.$$

 $K = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}$. The fixed field of Aut(K/F) is the set of elements of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ fixed by *all* automorphisms.

 $K = \mathbb{Q}(\sqrt{2}), F = \mathbb{Q}$. The fixed field of Aut(K/F) is the set of elements of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ fixed by *all* automorphisms.

In particular we need $a + b\sqrt{2} = a - b\sqrt{2}$, so b = 0. Any automorphism fixes the rationals, so the fixed field of Aut(K/F) is \mathbb{Q} .

 $K = \mathbb{Q}(\sqrt{2}), F = \mathbb{Q}$. The fixed field of Aut(K/F) is the set of elements of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ fixed by *all* automorphisms.

In particular we need $a + b\sqrt{2} = a - b\sqrt{2}$, so b = 0. Any automorphism fixes the rationals, so the fixed field of Aut(K/F) is \mathbb{Q} .

The fixed field of $\{1\}$ is $\mathbb{Q}(\sqrt{2})$.

 $K = \mathbb{Q}(\sqrt{2}), F = \mathbb{Q}$. The fixed field of Aut(K/F) is the set of elements of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ fixed by *all* automorphisms.

In particular we need $a + b\sqrt{2} = a - b\sqrt{2}$, so b = 0. Any automorphism fixes the rationals, so the fixed field of Aut(K/F) is \mathbb{Q} .

The fixed field of $\{1\}$ is $\mathbb{Q}(\sqrt{2})$.

Suppose now $K = \mathbb{Q}(\sqrt[3]{2})$, $F = \mathbb{Q}$. The fixed field of Aut $(K/F) = \{1\}$ is just $\mathbb{Q}(\sqrt[3]{2})$: there is only one automorphism, the identity, which fixes everything.

 $K = \mathbb{Q}(\sqrt{2}), F = \mathbb{Q}$. The fixed field of Aut(K/F) is the set of elements of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ fixed by *all* automorphisms.

In particular we need $a + b\sqrt{2} = a - b\sqrt{2}$, so b = 0. Any automorphism fixes the rationals, so the fixed field of Aut(K/F) is \mathbb{Q} .

The fixed field of $\{1\}$ is $\mathbb{Q}(\sqrt{2})$.

Suppose now $K = \mathbb{Q}(\sqrt[3]{2})$, $F = \mathbb{Q}$. The fixed field of Aut $(K/F) = \{1\}$ is just $\mathbb{Q}(\sqrt[3]{2})$: there is only one automorphism, the identity, which fixes everything.

So in this case, \mathbb{Q} is not the fixed field of any subgroup. Intuitively, we are "missing roots" for $x^3 - 2$.

Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial $f(x) \in F[x]$. Then Aut(K/F) has at most [K : F] elements, with equality if f is separable.

Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial $f(x) \in F[x]$. Then Aut(K/F) has at most [K : F] elements, with equality if f is separable.

Proof: We more generally ask: given an isomorphism $\phi : F \cong F'$, K a splitting field of f(x), K' a splitting field of the corresponding polynomial $f' = \phi(f)$, how many isomorphisms $\sigma : K \cong K'$ does ϕ extend to?

$$\begin{array}{ccc} K & \stackrel{\cong}{\longrightarrow} & K' \\ & & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial $f(x) \in F[x]$. Then Aut(K/F) has at most [K : F] elements, with equality if f is separable.

Proof: We more generally ask: given an isomorphism $\phi : F \cong F'$, K a splitting field of f(x), K' a splitting field of the corresponding polynomial $f' = \phi(f)$, how many isomorphisms $\sigma : K \cong K'$ does ϕ extend to?

$$\begin{array}{ccc} & K & \stackrel{\cong}{\longrightarrow} & K' \\ & & & \\ & & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

The special case we care about is when F = F', ϕ is the identity, K = K'.

$$\begin{array}{ccc} K & \stackrel{\cong}{\longrightarrow} & K' \\ | & & | \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

$$\begin{array}{ccc} & K & \stackrel{\cong}{\longrightarrow} & K' \\ & & & \\ & & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

We proceed by induction on n := [K : F]. If n = 1, $\sigma = \phi$ is the only extension. Assume now $n \ge 2$.

$$\begin{array}{ccc} & K & \xrightarrow{\cong} & K' \\ & & & \\ & & & \\ F & \xrightarrow{\cong} & F' \end{array}$$

We proceed by induction on n := [K : F]. If n = 1, $\sigma = \phi$ is the only extension. Assume now $n \ge 2$.

Let p(x) be an irreducible factor of f(x), p'(x) the corresponding irreducible factor of f'(x). Fix a root α of p(x). For any root α' of p'(x), we get a picture like below with $\phi'(\alpha) = \alpha'$.

$$\begin{array}{ccc} K & \stackrel{\cong}{\longrightarrow} & K' \\ & & \\ & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

We proceed by induction on n := [K : F]. If n = 1, $\sigma = \phi$ is the only extension. Assume now $n \ge 2$.

Let p(x) be an irreducible factor of f(x), p'(x) the corresponding irreducible factor of f'(x). Fix a root α of p(x). For any root α' of p'(x), we get a picture like below with $\phi'(\alpha) = \alpha'$.

$$\begin{array}{ccc} & K & \stackrel{\cong}{\longrightarrow} & K' \\ & & & \\ F(\alpha) & \stackrel{\cong}{\longrightarrow} & F'(\alpha') \\ & & \\ & & \\ F & \stackrel{\cong}{\longrightarrow} & F' \end{array}$$

By the induction hypothesis, there are (at most) $[K : F(\alpha)]$ -many ways to extend each ϕ' to a σ , with equality if $\frac{f(x)}{x-\alpha}$ is separable.

By the induction hypothesis, there are (at most) $[K : F(\alpha)]$ -many ways to extend each ϕ' to a σ , with equality if $\frac{f(x)}{x-\alpha}$ is separable.

There are as many ways to extend ϕ to ϕ' as there are roots for p(x). This number of roots is at most the degree of p(x), with equality if p(x) is separable.

By the induction hypothesis, there are (at most) $[K : F(\alpha)]$ -many ways to extend each ϕ' to a σ , with equality if $\frac{f(x)}{x-\alpha}$ is separable.

There are as many ways to extend ϕ to ϕ' as there are roots for p(x). This number of roots is at most the degree of p(x), with equality if p(x) is separable.

In total, there are at most $[F(\alpha) : F] \cdot [K : F(\alpha)] = [K : F]$ extensions, with equality if f(x) is separable.

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is Galois if |Aut(K/F)| = [K : F]. If K/F is Galois, we call Aut(K/F) the Galois group of K/F.

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is Galois if |Aut(K/F)| = [K : F]. If K/F is Galois, we call Aut(K/F) the Galois group of K/F.

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in F[x], then K/F is Galois.
Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is Galois if |Aut(K/F)| = [K : F]. If K/F is Galois, we call Aut(K/F) the Galois group of K/F.

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in F[x], then K/F is Galois.

The converse is also true (to be proven later).

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is Galois if |Aut(K/F)| = [K : F]. If K/F is Galois, we call Aut(K/F) the Galois group of K/F.

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in F[x], then K/F is Galois.

The converse is also true (to be proven later).

Example: $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is Galois, but $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois.

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is Galois if |Aut(K/F)| = [K : F]. If K/F is Galois, we call Aut(K/F) the Galois group of K/F.

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in F[x], then K/F is Galois.

The converse is also true (to be proven later).

Example: $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is Galois, but $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois.

In general, the splitting field of *any* polynomial in $\mathbb{Q}[x]$ is Galois over \mathbb{Q} : consider the product of its distinct irreducible factors.

Slogan: to do Galois theory, we need to have "enough roots", so work over splitting fields!

Slogan: to do Galois theory, we need to have "enough roots", so work over splitting fields!

Definition

The Galois group of a polynomial $f(x) \in F[x]$ is the Galois group of a splitting field for f(x) over F.

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

What is its Galois group?

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

What is its Galois group? Proceed in several steps:

1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}.$

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}.$
- 2. Any automorphism sends $\sqrt{2}$ to $\pm\sqrt{2},$ and $\sqrt{3}$ to $\pm\sqrt{3}.$

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}.$
- 2. Any automorphism sends $\sqrt{2}$ to $\pm\sqrt{2},$ and $\sqrt{3}$ to $\pm\sqrt{3}.$
- 3. Thus there are four candidates for automorphisms: the identity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{3}$ constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$ constant, and $\sigma\tau$ ($\sqrt{2} \mapsto -\sqrt{2}$; $\sqrt{3} \mapsto -\sqrt{3}$).

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}.$
- 2. Any automorphism sends $\sqrt{2}$ to $\pm\sqrt{2},$ and $\sqrt{3}$ to $\pm\sqrt{3}.$
- 3. Thus there are four candidates for automorphisms: the identity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{3}$ constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$ constant, and $\sigma\tau$ ($\sqrt{2} \mapsto -\sqrt{2}$; $\sqrt{3} \mapsto -\sqrt{3}$).
- We have to see which of these possibilities really gives an automorphism. Here it is easy: |Aut(K/F)| = [K : F] = 4, so there are four automorphisms, so all of them give automorphisms.

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

K is the splitting field of $(x^2 - 2)(x^2 - 3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}.$
- 2. Any automorphism sends $\sqrt{2}$ to $\pm\sqrt{2},$ and $\sqrt{3}$ to $\pm\sqrt{3}.$
- 3. Thus there are four candidates for automorphisms: the identity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{3}$ constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$ constant, and $\sigma\tau$ ($\sqrt{2} \mapsto -\sqrt{2}$; $\sqrt{3} \mapsto -\sqrt{3}$).
- We have to see which of these possibilities really gives an automorphism. Here it is easy: |Aut(K/F)| = [K : F] = 4, so there are four automorphisms, so all of them give automorphisms.
- 5. The Galois group is $\{1, \sigma, \tau, \sigma\tau\}$. All elements have order 2, so it is isomorphic to $Z_2 \times Z_2$ (the Klein 4-group).

$$F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

For each subgroup of Aut(K/F), there corresponds a fixed field.

$$F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

For each subgroup of Aut(K/F), there corresponds a fixed field.

To compute it, use that 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6} = \sqrt{2}\sqrt{3}$ is a basis for the extension.

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$

For each subgroup of Aut(K/F), there corresponds a fixed field.

To compute it, use that 1, $\sqrt{2},$ $\sqrt{3},$ $\sqrt{6}=\sqrt{2}\sqrt{3}$ is a basis for the extension.

Subgroup	Fixed field
$\{1\}$	$\mathbb{Q}(\sqrt{2},\sqrt{3})$
$\{1,\sigma\}$	$\mathbb{Q}(\sqrt{3})$
$\{1, \sigma \tau\}$	$\mathbb{Q}(\sqrt{6})$
$\{1, au\}$	$\mathbb{Q}(\sqrt{2})$
$\{1, \sigma, \tau, \sigma \tau\}$	\mathbb{Q}

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$. We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho\sqrt[3]{2}$, $\rho^2\sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}$.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$. We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho\sqrt[3]{2}$, $\rho^2\sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}$.

The splitting field is $\mathbb{Q}(\sqrt[3]{2}, \rho)$, and has degree 6 (computed earlier).

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho\sqrt[3]{2}$, $\rho^2\sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}$.

The splitting field is $\mathbb{Q}(\sqrt[3]{2}, \rho)$, and has degree 6 (computed earlier).

Any automorphism of K/F must permute the roots of $x^3 - 2$. There are 3! = 6 such permutations and we know $|\operatorname{Aut}(K/F)| = [K : F] = 6$. Thus any permutation of the roots induces an automorphism, and $\operatorname{Aut}(K/F) \cong S_3$.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho\sqrt[3]{2}$, $\rho^2\sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}$.

The splitting field is $\mathbb{Q}(\sqrt[3]{2}, \rho)$, and has degree 6 (computed earlier).

Any automorphism of K/F must permute the roots of $x^3 - 2$. There are 3! = 6 such permutations and we know $|\operatorname{Aut}(K/F)| = [K : F] = 6$. Thus any permutation of the roots induces an automorphism, and $\operatorname{Aut}(K/F) \cong S_3$.

Another way to think about it: It suffices to describe the automorphism on the generators $\sqrt[3]{2}$ and ρ .

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho\sqrt[3]{2}$, $\rho^2\sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}$.

The splitting field is $\mathbb{Q}(\sqrt[3]{2}, \rho)$, and has degree 6 (computed earlier).

Any automorphism of K/F must permute the roots of $x^3 - 2$. There are 3! = 6 such permutations and we know $|\operatorname{Aut}(K/F)| = [K : F] = 6$. Thus any permutation of the roots induces an automorphism, and $\operatorname{Aut}(K/F) \cong S_3$.

Another way to think about it: It suffices to describe the automorphism on the generators $\sqrt[3]{2}$ and ρ .

 $\sqrt[3]{2}$ can be sent to a root of $x^3 - 2$, ρ can be sent to ρ or ρ^2 . All these possibilities give automorphisms by counting.

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^{2}$.

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^2$.

Then Aut(K/F) is generated by σ and τ , and we can again show Aut(K/F) \cong S_3 (see the book for full computation).

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^{2}$.

Then Aut(K/F) is generated by σ and τ , and we can again show Aut(K/F) \cong S_3 (see the book for full computation).

We can also determine the fixed fields...

Fixed fields:

Subgroups of the Galois group:

$$F = \mathbb{F}_p, K = \mathbb{F}_{p^n}.$$

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending a to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending a to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each k < n, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending a to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each k < n, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

Thus σ has order *n*, so the Galois group of F/K is cyclic of order *n*, generated by the Frobenius map.
For finite extensions, we always have that $|Aut(K/F)| \leq [K : F].$

- For finite extensions, we always have that $|Aut(K/F)| \leq [K : F].$
- A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.

- For finite extensions, we always have that $|Aut(K/F)| \leq [K : F].$
- A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.
- The splitting field of a separable polynomial gives a Galois extension.

- For finite extensions, we always have that $|Aut(K/F)| \le [K : F].$
- A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.
- The splitting field of a separable polynomial gives a Galois extension.
- Over Q, the splitting field of any polynomial gives a Galois extension.

- For finite extensions, we always have that $|Aut(K/F)| \le [K : F].$
- A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.
- The splitting field of a separable polynomial gives a Galois extension.
- Over Q, the splitting field of any polynomial gives a Galois extension.
- For each subgroup of the Galois group, there is a corresponding fixed field.

- For finite extensions, we always have that $|Aut(K/F)| \le [K : F].$
- A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.
- The splitting field of a separable polynomial gives a Galois extension.
- Over Q, the splitting field of any polynomial gives a Galois extension.
- For each subgroup of the Galois group, there is a corresponding fixed field.
- ► From now on, to make our work easier, we will adopt the convention that (a + b)ⁿ = aⁿ + bⁿ, in any field of any characteristic.

- For finite extensions, we always have that $|Aut(K/F)| \leq [K : F].$
- A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.
- The splitting field of a separable polynomial gives a Galois extension.
- Over Q, the splitting field of any polynomial gives a Galois extension.
- For each subgroup of the Galois group, there is a corresponding fixed field.
- ► From now on, to make our work easier, we will adopt the convention that (a + b)ⁿ = aⁿ + bⁿ, in any field of any characteristic.
- [That last one is an April's fool].