Math-123: Basic definitions of Galois theory

Sebastien Vasey

Harvard University

April 1, 2020

It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").

- It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").
- I updated the syllabus to describe how I will determine your grade.
- It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").
- I updated the syllabus to describe how I will determine your grade.
- If your class score is at least 70%, you get SEM.
- It was decided last week that every class at Harvard this semester will be evaluated Sat/Unsat ("SEM/UEM").
- I updated the syllabus to describe how I will determine your grade.
- If your class score is at least 70%, you get SEM.
- If you are below 70%, you may or may not get SEM depending on class performance, participation, special circumstances, etc.

Finishing the proof from last time

Recall $\zeta_n := e^{2\pi i/n}$.

Finishing the proof from last time

Recall $\zeta_n := e^{2\pi i/n}$.

Definition

The nth cyclotomic polynomial, $\Phi_n(x)$ is the polynomial whose roots are the primitive nth roots of unity:

$$
\Phi_n(x) := \prod_{1 \leq k \leq n, (k,n)=1} (x - \zeta_n^k)
$$

Finishing the proof from last time

Recall $\zeta_n := e^{2\pi i/n}$.

Definition

The *nth cyclotomic polynomial*, $\Phi_n(x)$ is the polynomial whose roots are the primitive nth roots of unity:

$$
\Phi_n(x) := \prod_{1 \leq k \leq n, (k,n)=1} (x - \zeta_n^k)
$$

We proved that $\Phi_n(x)$ is a monic polynomial of degree $\phi(n)$, with integer coefficients.

If
$$
g(x) \in \mathbb{F}_p[x]
$$
, then $g(x^p) = (g(x))^p$.

If
$$
g(x) \in \mathbb{F}_p[x]
$$
, then $g(x^p) = (g(x))^p$.

Proof.

Say $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$. By properties of the Frobenius map, $g(x)^p = a_n^p x^{pn} + a_n^p$ $_{n-1}^{p}x^{p(n-1)}+\ldots+a_0^{p}$ \int_0^p

If
$$
g(x) \in \mathbb{F}_p[x]
$$
, then $g(x^p) = (g(x))^p$.

Proof.

Say $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$. By properties of the Frobenius map, $g(x)^p = a_n^p x^{pn} + a_n^p$ $_{n-1}^{p}x^{p(n-1)}+\ldots+a_0^{p}$ \int_0^p

Now use that $a^p = a$ for every $a \in \mathbb{F}_p$ (Lagrange's theorem applied to the group of units \mathbb{F}_p^\times – also called Fermat's little theorem).

If
$$
g(x) \in \mathbb{F}_p[x]
$$
, then $g(x^p) = (g(x))^p$.

Proof.

Say $g(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$. By properties of the Frobenius map, $g(x)^p = a_n^p x^{pn} + a_n^p$ $_{n-1}^{p}x^{p(n-1)}+\ldots+a_0^{p}$ \int_0^p Now use that $a^p = a$ for every $a \in \mathbb{F}_p$ (Lagrange's theorem applied to the group of units \mathbb{F}_p^\times – also called Fermat's little theorem). Get $g(x)^p = a_n x^{pn} + a_{n-1} x^{p(n-1)} + \ldots + a_0 = g(x^p)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over $\mathbb Q$ is $\phi(n)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since $f(x)$ is the minimal polynomial of ζ , $f(x)$ divides $g(x^p)$ in $\mathbb{Z}[x]$:

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since $f(x)$ is the minimal polynomial of ζ , $f(x)$ divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$
g(x^p) = f(x)h(x)
$$

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since $f(x)$ is the minimal polynomial of ζ , $f(x)$ divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$
g(x^p) = f(x)h(x)
$$

Reducing modulo p, we get $\bar{g}(x^p) = (\bar{g}(x))^p = \bar{f}(x)\bar{g}(x)$.

 $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$. Thus the degree of $\mathbb{Q}(\zeta_n)$ over \mathbb{Q} is $\phi(n)$.

Proof: Write $\Phi_n(x) = f(x)g(x)$, for f, g monic in $\mathbb{Z}[x]$, f irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζ^p is a primitive root of unity. Either $f(\zeta^p) = 0$ or $g(\zeta^p) = 0$.

If $g(\zeta^p) = 0$, then ζ is a root of $g(x^p)$, so since $f(x)$ is the minimal polynomial of ζ , $f(x)$ divides $g(x^p)$ in $\mathbb{Z}[x]$:

$$
g(x^p) = f(x)h(x)
$$

Reducing modulo p, we get $\bar{g}(x^p) = (\bar{g}(x))^p = \bar{f}(x)\bar{g}(x)$. So \bar{f} and \bar{g} have an irreducible factor in common in $\mathbb{F}_p[\boldsymbol{\mathrm{x}}]!$

We know also $\bar{f}\bar{g} = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

We know also $\bar{f}\bar{g} = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We know also $\bar{f}\bar{g} = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

We know also $\bar{f}\bar{g} = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

We know also $\bar{f}\bar{g} = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to $n.$ Thus $k=p_1p_2\ldots p_m,$ with the p_i 's primes not dividing n.

We know also $\bar{f}\bar{g} = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to $n.$ Thus $k=p_1p_2\ldots p_m,$ with the p_i 's primes not dividing n.

We showed $f(\zeta^{p_1}) = 0$. Thus applying the previous observation to $\rho = \zeta^{p_1}$ and $p = p_2$, $f(\zeta^{p_1 p_2}) = 0$.

We know also $\bar{f}g = \overline{\Phi_n}(x)$. Since \bar{f} and \bar{g} have a factor in common, $\overline{\Phi_n}(x)$ has a multiple root in $\mathbb{F}_p[x]$.

Thus $x^n - 1$ also has a multiple root in $\mathbb{F}_p[x]$. We saw before that if p does not divide $n, x^n - 1$ is separable, contradiction.

We had that $\Phi_n(x) = f(x)g(x)$, f irreducible, and we took ζ a root of f. We showed $g(\zeta^p) \neq 0$ for any prime p not dividing n.

Thus $f(\rho^p) = 0$ for any root ρ of f and any prime p not dividing n.

If ζ is a root of f, any other primitive root of unity is of the form ζ^k , k coprime to $n.$ Thus $k=p_1p_2\ldots p_m,$ with the p_i 's primes not dividing n.

We showed $f(\zeta^{p_1}) = 0$. Thus applying the previous observation to $\rho = \zeta^{p_1}$ and $p = p_2$, $f(\zeta^{p_1 p_2}) = 0$.

Continuing in this way, we get that $f(\zeta^{p_1p_2...p_m}) = 0$. Thus f has all primitive roots of unity as roots, so $f = \Phi_n$, as desired.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

An isomorphism σ of a field K to itself is called an automorphism of K.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

- An isomorphism σ of a field K to itself is called an automorphism of K.
- \triangleright We write Aut(K) for the set of all automorphisms of K.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

- An isomorphism σ of a field K to itself is called an automorphism of K.
- \blacktriangleright We write Aut(K) for the set of all automorphisms of K.
- An automorphism σ of K fixes an element a if $\sigma(a) = a$. We say σ fixes a set A if $\sigma(a) = a$ for all $a \in A$.

The idea: study automorphisms of fields, and how they permute roots of polynomials.

Definition

- An isomorphism σ of a field K to itself is called an automorphism of K.
- \triangleright We write Aut(K) for the set of all automorphisms of K.
- An automorphism σ of K fixes an element a if $\sigma(a) = a$. We say σ fixes a set A if $\sigma(a) = a$ for all $a \in A$.
- If K is an extension of F, we write $Aut(K/F)$ for the set of all automorphisms of K which fix F .

Two key observations

1. Aut(K) is a group under composition, and $Aut(K/F)$ is a subgroup.

Two key observations

- 1. Aut(K) is a group under composition, and Aut(K/F) is a subgroup.
- 2. If K/F is an extension, $f(x) \in F[x]$, $\alpha \in K$ is a root of f, then for any $\sigma \in$ Aut (K/F) , $\sigma(\alpha)$ is also a root of f.

Two key observations

- 1. Aut(K) is a group under composition, and Aut(K/F) is a subgroup.
- 2. If K/F is an extension, $f(x) \in F[x]$, $\alpha \in K$ is a root of f, then for any $\sigma \in$ Aut (K/F) , $\sigma(\alpha)$ is also a root of f.

The second observation says that automorphisms permute the roots of a polynomial. Abstractly: the group $Aut(K/F)$ acts on these roots.

Examples

Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut $(\mathbb{Q}) = \{1\}.$

Examples

- Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut $(\mathbb{Q}) = \{1\}.$
- Similarly, Aut(\mathbb{F}_p) = {1}. In general, any automorphism fixes the prime field.
- Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so Aut $(\mathbb{Q}) = \{1\}.$
- Similarly, Aut(\mathbb{F}_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$ 2). Note $\mathsf{Aut}(\mathcal{K})=\mathsf{Aut}(\mathcal{K}/\mathit{F})$. Let $\sigma \in$ Aut(K).

- Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so $Aut(Q) = {1}.$
- Similarly, Aut(\mathbb{F}_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$ 2). Note $\mathsf{Aut}(\mathcal{K})=\mathsf{Aut}(\mathcal{K}/\mathit{F})$. Let $\sigma \in$ Aut (K) .
	- \blacksquare $\frac{1}{2}$ is a root of x^2-2 , so $\tau(\sqrt{2})$ $\frac{1}{2}$ is a root of $x^2 - 2$, so $\tau(\sqrt{2})$ is a root of $x^2 - 2$. Thus $\tau(\sqrt{2}) = \pm \sqrt{2}$.

- Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so $Aut(\mathbb{Q}) = \{1\}.$
- Similarly, Aut(\mathbb{F}_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$ 2). Note $\mathsf{Aut}(\mathcal{K})=\mathsf{Aut}(\mathcal{K}/\mathit{F})$. Let $\sigma \in$ Aut (K) .
	- \blacksquare $\frac{1}{2}$ is a root of x^2-2 , so $\tau(\sqrt{2})$ $\frac{1}{2}$ is a root of $x^2 - 2$, so $\tau(\sqrt{2})$ is a root of $x^2 - 2$. Thus $\tau(\sqrt{2}) = \pm \sqrt{2}$.
	- \blacktriangleright Any element of K is of the form $\alpha =$ $a + b$ *K* is of the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so Any element of A is or the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so $\tau(\alpha) = a + b\tau(\sqrt{2})$, so τ is determined by its value on $\sqrt{2}$.

- Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so $Aut(\mathbb{Q}) = \{1\}.$
- Similarly, Aut(\mathbb{F}_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$ 2). Note $\mathsf{Aut}(\mathcal{K})=\mathsf{Aut}(\mathcal{K}/\mathit{F})$. Let $\sigma \in$ Aut (K) .
	- \blacksquare $\frac{1}{2}$ is a root of x^2-2 , so $\tau(\sqrt{2})$ $\frac{1}{2}$ is a root of $x^2 - 2$, so $\tau(\sqrt{2})$ is a root of $x^2 - 2$. Thus $\tau(\sqrt{2}) = \pm \sqrt{2}$.
	- \blacktriangleright Any element of K is of the form $\alpha =$ $a + b$ *K* is of the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so Any element of A is or the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so τ is determined by its value on $\sqrt{2}$.
	- $\tau(\alpha) = a + b\tau(\sqrt{2})$, so τ is determined by its value
• If $\tau(\sqrt{2}) = \sqrt{2}$, τ is the identity. On the other hand $\tau(\surd 2)=-\surd 2$ is an automorphism (can check directly, or use uniqueness of simple extensions).

- Aut(\mathbb{Q}) = {id}, since any automorphism must fix 1 and preserve sums and quotients. We write 1 instead of id, so $Aut(\mathbb{Q}) = \{1\}.$
- Similarly, Aut(\mathbb{F}_p) = {1}. In general, any automorphism fixes the prime field.
- ► Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$ 2). Note $\mathsf{Aut}(\mathcal{K})=\mathsf{Aut}(\mathcal{K}/\mathit{F})$. Let $\sigma \in$ Aut (K) .
	- \blacksquare $\frac{1}{2}$ is a root of x^2-2 , so $\tau(\sqrt{2})$ $\frac{1}{2}$ is a root of $x^2 - 2$, so $\tau(\sqrt{2})$ is a root of $x^2 - 2$. Thus $\tau(\sqrt{2}) = \pm \sqrt{2}$.
	- \blacktriangleright Any element of K is of the form $\alpha =$ $a + b$ *K* is of the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so Any element of A is or the form $\alpha = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$, so τ is determined by its value on $\sqrt{2}$.
	- $\tau(\alpha) = a + b\tau(\sqrt{2})$, so τ is determined by its value
• If $\tau(\sqrt{2}) = \sqrt{2}$, τ is the identity. On the other hand $\tau(\surd 2)=-\surd 2$ is an automorphism (can check directly, or use uniqueness of simple extensions). √
	- $\textsf{uniqueness}$ or simple extensions).
► Thus Aut $(\mathcal{K}/\mathcal{F})=\{1,\sigma\},$ where σ sends $\sqrt{2}$ to $-$ 2. It is the cyclic group of order 2.

Let
$$
F = \mathbb{Q}
$$
, $K = \mathbb{Q}(\sqrt[3]{2})$.

Let
$$
F = \mathbb{Q}
$$
, $K = \mathbb{Q}(\sqrt[3]{2})$.

As before, any automorphism is determined by what it does to $\sqrt[3]{2}$.

Let
$$
F = \mathbb{Q}
$$
, $K = \mathbb{Q}(\sqrt[3]{2})$.

As before, any automorphism is determined by what it does to $\sqrt[3]{2}$. If $\tau \in$ Aut (K/F) , $\tau(\sqrt[3]{2})$ must be a root of $x^3 - 2$. However the other roots of x^3-2 are not real numbers, so are not in $K.$ Thus other roots of
 $\tau(\sqrt[3]{2}) = \sqrt[3]{2}$.

Let
$$
F = \mathbb{Q}
$$
, $K = \mathbb{Q}(\sqrt[3]{2})$.

As before, any automorphism is determined by what it does to $\sqrt[3]{2}$. If $\tau \in$ Aut (K/F) , $\tau(\sqrt[3]{2})$ must be a root of $x^3 - 2$. However the other roots of x^3-2 are not real numbers, so are not in $K.$ Thus other roots of
 $\tau(\sqrt[3]{2}) = \sqrt[3]{2}$.

This shows that $Aut(K/F) = \{1\}$, the trivial group.

Fix a field K .

Given a subfield F, we get a group $Aut(K/F)$.

Fix a field K .

```
Given a subfield F, we get a group Aut(K/F).
```

```
Going back, if we fix a subgroup H of Aut(K), we can get a
subfield:
```
Fix a field K.

```
Given a subfield F, we get a group Aut(K/F).
```

```
Going back, if we fix a subgroup H of Aut(K), we can get a
subfield:
```
Definition

The fixed field of H is the subfield of K of all elements fixed by every automorphism in H.

Fix a field K .

```
Given a subfield F, we get a group Aut(K/F).
```

```
Going back, if we fix a subgroup H of Aut(K), we can get a
subfield:
```
Definition

The fixed field of H is the subfield of K of all elements fixed by every automorphism in H.

(one can check it is indeed a subfield: if a and b are fixed, ab , $a + b$, a/b are fixed too!).

Going from subfield to groups, and back, give inclusion-reversing operations:

Going from subfield to groups, and back, give inclusion-reversing operations:

1. If $F_1 \subseteq F_2 \subseteq K$, then $Aut(K/F_2) \subseteq Aut(K/F_1)$. [The fewer things to fix, the more automorphisms].

Going from subfield to groups, and back, give inclusion-reversing operations:

- 1. If $F_1 \subseteq F_2 \subseteq K$, then Aut $(K/F_2) \subseteq$ Aut (K/F_1) . [The fewer things to fix, the more automorphisms].
- 2. If $H_1 \subseteq H_2 \subseteq \text{Aut}(K)$, with fixed fields F_1 , F_2 , then $F_2 \subseteq F_1$ [Fewer automorphisms fix more things].

$$
K=\mathbb{Q}(\sqrt{2}),\ F=\mathbb{Q}.
$$

 $K = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}$. The fixed field of Aut (K/F) is the set of elements of $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ fixed by \emph{all} automorphisms.

 $K = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}$. The fixed field of Aut (K/F) is the set of elements of $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ fixed by \emph{all} automorphisms.

In particular we need $a + b$ √ $2=a-b$ √ 2, so $b=0$. Any automorphism fixes the rationals, so the fixed field of $Aut(K/F)$ is Q.

 $K = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}$. The fixed field of Aut (K/F) is the set of elements of $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ fixed by \emph{all} automorphisms.

In particular we need $a + b$ √ $2=a-b$ √ 2, so $b=0$. Any automorphism fixes the rationals, so the fixed field of $Aut(K/F)$ is $\mathbb{O}.$

The fixed field of $\{1\}$ is $\mathbb{Q}(\sqrt{2})$ 2).

 $K = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}$. The fixed field of Aut (K/F) is the set of elements of $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ fixed by \emph{all} automorphisms.

In particular we need $a + b$ √ $2=a-b$ √ 2, so $b=0$. Any automorphism fixes the rationals, so the fixed field of Aut(K/F) is $\mathbb{O}.$

The fixed field of $\{1\}$ is $\mathbb{Q}(\sqrt{2})$ 2).

Suppose now $K = \mathbb{Q}(\sqrt[3]{2})$, $F = \mathbb{Q}$. The fixed field of Suppose now $\kappa = \mathbb Q(\sqrt{2})$, $\kappa = \mathbb Q$. The fixed field of
Aut $(K/F) = \{1\}$ is just $\mathbb Q(\sqrt[3]{2})$: there is only one automorphism, the identity, which fixes everything.

 $K = \mathbb{Q}(\sqrt{2})$, $F = \mathbb{Q}$. The fixed field of Aut (K/F) is the set of elements of $a+b\sqrt{2}\in\mathbb{Q}(\sqrt{2})$ fixed by \emph{all} automorphisms.

In particular we need $a + b$ √ $2=a-b$ √ 2, so $b=0$. Any automorphism fixes the rationals, so the fixed field of Aut(K/F) is $\mathbb{O}.$

The fixed field of $\{1\}$ is $\mathbb{Q}(\sqrt{2})$ 2).

Suppose now $K = \mathbb{Q}(\sqrt[3]{2})$, $F = \mathbb{Q}$. The fixed field of Suppose now $\kappa = \mathbb Q(\sqrt{2})$, $\kappa = \mathbb Q$. The fixed field of
Aut $(K/F) = \{1\}$ is just $\mathbb Q(\sqrt[3]{2})$: there is only one automorphism, the identity, which fixes everything.

So in this case, $\mathbb O$ is not the fixed field of any subgroup. Intuitively, we are "missing roots" for $x^3 - 2$.

Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial $f(x) \in F[x]$. Then Aut(K/F) has at most $[K : F]$ elements, with equality if f is separable.

Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial $f(x) \in F[x]$. Then Aut(K/F) has at most $[K : F]$ elements, with equality if f is separable.

Proof: We more generally ask: given an isomorphism ϕ : $F \cong F'$, K a splitting field of $f(x)$, K' a splitting field of the corresponding polynomial $f' = \phi(f)$, how many isomorphisms $\sigma : K \cong K'$ does ϕ extend to?

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\downarrow & & \downarrow \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial $f(x) \in F[x]$. Then Aut(K/F) has at most $[K : F]$ elements, with equality if f is separable.

Proof: We more generally ask: given an isomorphism ϕ : $F \cong F'$, K a splitting field of $f(x)$, K' a splitting field of the corresponding polynomial $f' = \phi(f)$, how many isomorphisms $\sigma : K \cong K'$ does ϕ extend to?

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\downarrow & & \downarrow \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

The special case we care about is when $F = F'$, ϕ is the identity, $K = K'.$

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

We proceed by induction on $n := [K : F]$. If $n = 1$, $\sigma = \phi$ is the only extension. Assume now $n \geq 2$.

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

We proceed by induction on $n := [K : F]$. If $n = 1$, $\sigma = \phi$ is the only extension. Assume now $n > 2$.

Let $p(x)$ be an irreducible factor of $f(x)$, $p'(x)$ the corresponding irreducible factor of $f'(x)$. Fix a root α of $p(x)$. For any root α' of $p'(x)$, we get a picture like below with $\phi'(\alpha) = \alpha'.$

$$
\begin{array}{ccc}\nK & \xrightarrow{\cong} & K' \\
\Big| & & \Big| \\
F & \xrightarrow{\cong} & F'\n\end{array}
$$

We proceed by induction on $n := [K : F]$. If $n = 1$, $\sigma = \phi$ is the only extension. Assume now $n > 2$.

Let $p(x)$ be an irreducible factor of $f(x)$, $p'(x)$ the corresponding irreducible factor of $f'(x)$. Fix a root α of $p(x)$. For any root α' of $p'(x)$, we get a picture like below with $\phi'(\alpha) = \alpha'.$

$$
K \xrightarrow{\cong} K'
$$
\n
$$
F(\alpha) \xrightarrow{\cong} F'(\alpha')
$$
\n
$$
F \xrightarrow{\cong} F'
$$
\n
$$
F \xrightarrow{\cong} F'
$$

$$
K \xrightarrow{\cong} K'
$$
\n
$$
F(\alpha) \xrightarrow{\cong} F'(\alpha')
$$
\n
$$
F \xrightarrow{\cong} F'
$$
\n
$$
F \xrightarrow{\cong} F'
$$

By the induction hypothesis, there are (at most) $[K: F(\alpha)]$ -many ways to extend each ϕ' to a σ , with equality if $\frac{f(x)}{x-\alpha}$ is separable.

By the induction hypothesis, there are (at most) $[K: F(\alpha)]$ -many ways to extend each ϕ' to a σ , with equality if $\frac{f(x)}{x-\alpha}$ is separable.

There are as many ways to extend ϕ to ϕ' as there are roots for $p(x)$. This number of roots is at most the degree of $p(x)$, with equality if $p(x)$ is separable.

By the induction hypothesis, there are (at most) $[K: F(\alpha)]$ -many ways to extend each ϕ' to a σ , with equality if $\frac{f(x)}{x-\alpha}$ is separable.

There are as many ways to extend ϕ to ϕ' as there are roots for $p(x)$. This number of roots is at most the degree of $p(x)$, with equality if $p(x)$ is separable.

In total, there are at most $[F(\alpha):F] \cdot [K:F(\alpha)] = [K:F]$ extensions, with equality if $f(x)$ is separable.

Exercise: prove more generally that if K/F is a finite extension, then $|\text{Aut}(K/F)| \leq [K : F].$

Exercise: prove more generally that if K/F is a finite extension, then $|\text{Aut}(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is *Galois* if $|Aut(K/F)| = [K : F]$. If K/F is Galois, we call $Aut(K/F)$ the Galois group of K/F .

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| < [K : F]$.

Definition

A finite extension K/F is *Galois* if $|Aut(K/F)| = [K : F]$. If K/F is Galois, we call $Aut(K/F)$ the Galois group of K/F .

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in $F[x]$, then K/F is Galois.
Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| < [K : F]$.

Definition

A finite extension K/F is *Galois* if $|Aut(K/F)| = [K : F]$. If K/F is Galois, we call $Aut(K/F)$ the Galois group of K/F .

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in $F[x]$, then K/F is Galois.

The converse is also true (to be proven later).

Exercise: prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is *Galois* if $|Aut(K/F)| = [K : F]$. If K/F is Galois, we call $Aut(K/F)$ the Galois group of K/F .

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in $F[x]$, then K/F is Galois.

The converse is also true (to be proven later). Example: $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is Galois, but $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois. **Exercise:** prove more generally that if K/F is a finite extension, then $|Aut(K/F)| \leq [K : F]$.

Definition

A finite extension K/F is *Galois* if $|Aut(K/F)| = [K : F]$. If K/F is Galois, we call $Aut(K/F)$ the Galois group of K/F .

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in $F[x]$, then K/F is Galois.

The converse is also true (to be proven later).

Example: $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ is Galois, but $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ is not Galois.

In general, the splitting field of any polynomial in $\mathbb{Q}[x]$ is Galois over Q: consider the product of its distinct irreducible factors.

Slogan: to do Galois theory, we need to have "enough roots", so work over splitting fields!

Slogan: to do Galois theory, we need to have "enough roots", so work over splitting fields!

Definition

The *Galois group* of a polynomial $f(x) \in F[x]$ is the Galois group of a splitting field for $f(x)$ over F.

$$
F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).
$$

$$
F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).
$$

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

What is its Galois group?

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

What is its Galois group? Proceed in several steps:

1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}$.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}$.
- $\sqrt{2}$. Any automorphism sends $\sqrt{2}$ to \pm $\sqrt{2}$, and $\sqrt{3}$ to \pm √ 3.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}$
- $\sqrt{2}$. Any automorphism sends $\sqrt{2}$ to \pm $\sqrt{2}$, and $\sqrt{3}$ to \pm √ 3.
- 3. Thus there are four candidates for automorphisms: the Thus there are four candidates for automorphisms. the
identity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{3}$ constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$
constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$ constant, and $\sigma \tau$ ($\sqrt{2} \mapsto -\sqrt{2}$; $\sqrt{3} \mapsto -\sqrt{3}$).

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}$
- $\sqrt{2}$. Any automorphism sends $\sqrt{2}$ to \pm $\sqrt{2}$, and $\sqrt{3}$ to \pm √ 3.
- 3. Thus there are four candidates for automorphisms: the Thus there are four candidates for automorphisms. the
identity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{3}$ returity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{2}$
constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$ constant, and $\sigma\tau$ ($\sqrt{2} \mapsto -\sqrt{2}$; $\sqrt{3} \mapsto -\sqrt{3}$).
- 4. We have to see which of these possibilities really gives an automorphism. Here it is easy: $|Aut(K/F)| = [K : F] = 4$, so there are four automorphisms, so all of them give automorphisms.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

K is the splitting field of $(x^2-2)(x^2-3)$, so is Galois.

- 1. Any automorphism is determined by what it does to $\sqrt{2}$ and $\sqrt{3}$
- $\sqrt{2}$. Any automorphism sends $\sqrt{2}$ to \pm $\sqrt{2}$, and $\sqrt{3}$ to \pm √ 3.
- 3. Thus there are four candidates for automorphisms: the Thus there are four candidates for automorphisms. the
identity, the map σ sending $\sqrt{2}$ to $-\sqrt{2}$ and keeping $\sqrt{3}$ constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$
constant, the map τ sending $\sqrt{3}$ to $-\sqrt{3}$ and keeping $\sqrt{2}$ constant, and $\sigma \tau$ ($\sqrt{2} \mapsto -\sqrt{2}$; $\sqrt{3} \mapsto -\sqrt{3}$).
- 4. We have to see which of these possibilities really gives an automorphism. Here it is easy: $|\text{Aut}(K/F)| = [K : F] = 4$, so there are four automorphisms, so all of them give automorphisms.
- 5. The Galois group is $\{1, \sigma, \tau, \sigma\tau\}$. All elements have order 2, so it is isomorphic to $Z_2 \times Z_2$ (the Klein 4-group).

$$
F=\mathbb{Q}, K=\mathbb{Q}(\sqrt{2},\sqrt{3}).
$$

$$
F=\mathbb{Q}, K=\mathbb{Q}(\sqrt{2},\sqrt{3}).
$$

For each subgroup of Aut(K/F), there corresponds a fixed field.

$$
F=\mathbb{Q}, K=\mathbb{Q}(\sqrt{2},\sqrt{3}).
$$

For each subgroup of Aut(K/F), there corresponds a fixed field.

To compute it, use that 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6} = \sqrt{2}$ √ 3 is a basis for the extension.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3).

For each subgroup of Aut(K/F), there corresponds a fixed field.

To compute it, use that 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6} = \sqrt{2}$ √ 3 is a basis for the extension.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$. We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho \sqrt[3]{2}$, $\rho^2 \sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}.$

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$. We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho \sqrt[3]{2}$, $\rho^2 \sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}.$

 \tilde{J} The splitting field is $\mathbb{Q}(\sqrt[3]{2},\rho)$, and has degree 6 (computed earlier).

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho \sqrt[3]{2}$, $\rho^2 \sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}.$

 \tilde{J} The splitting field is $\mathbb{Q}(\sqrt[3]{2},\rho)$, and has degree 6 (computed earlier).

Any automorphism of K/F must permute the roots of $x^3-2.$ There are $3! = 6$ such permutations and we know $|Aut(K/F)| = [K : F] = 6$. Thus any permutation of the roots induces an automorphism, and Aut(K/F) $\cong S_3$.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho \sqrt[3]{2}$, $\rho^2 \sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}.$

 \tilde{J} The splitting field is $\mathbb{Q}(\sqrt[3]{2},\rho)$, and has degree 6 (computed earlier).

Any automorphism of K/F must permute the roots of $x^3-2.$ There are $3! = 6$ such permutations and we know $|Aut(K/F)| = [K : F] = 6$. Thus any permutation of the roots induces an automorphism, and Aut(K/F) $\cong S_3$.

Another way to think about it: It suffices to describe the Another way to think about it: it suffices to
automorphism on the generators $\sqrt[3]{2}$ and ρ .

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We saw the roots of $x^3 - 2$ are of the form $\sqrt[3]{2}$, $\rho \sqrt[3]{2}$, $\rho^2 \sqrt[3]{2}$, where $\rho = \zeta_3 = e^{2\pi i/3}.$

 \tilde{J} The splitting field is $\mathbb{Q}(\sqrt[3]{2},\rho)$, and has degree 6 (computed earlier).

Any automorphism of K/F must permute the roots of $x^3-2.$ There are $3! = 6$ such permutations and we know $|Aut(K/F)| = [K : F] = 6$. Thus any permutation of the roots induces an automorphism, and Aut(K/F) $\cong S_3$.

Another way to think about it: It suffices to describe the Another way to think about it: it suffices to
automorphism on the generators $\sqrt[3]{2}$ and ρ .

 $\sqrt[3]{2}$ can be sent to a root of $x^3 - 2$, ρ can be sent to ρ or ρ^2 . All these possibilities give automorphisms by counting.

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^2$.

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^2$.

Then Aut(K/F) is generated by σ and τ , and we can again show Aut(K/F) \cong S₃ (see the book for full computation).

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^2$.

Then Aut(K/F) is generated by σ and τ , and we can again show Aut(K/F) \cong S₃ (see the book for full computation).

We can also determine the fixed fields...

Fixed fields:

Subgroups of the Galois group:

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each $k < n$, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each $k < n$, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

Thus σ has order n, so the Galois group of F/K is cyclic of order n , generated by the Frobenius map.
\blacktriangleright For finite extensions, we always have that $|Aut(K/F)| \leq [K : F].$

- \blacktriangleright For finite extensions, we always have that $|Aut(K/F)| \leq [K : F].$
- A finite extension K/F is Galois if $[K : F] = |Aut(K/F)|$.

- \blacktriangleright For finite extensions, we always have that $|Aut(K/F)| < [K : F].$
- A finite extension K/F is *Galois* if $[K : F] = |Aut(K/F)|$.
- \triangleright The splitting field of a separable polynomial gives a Galois extension.

- \blacktriangleright For finite extensions, we always have that $|Aut(K/F)| < [K : F].$
- A finite extension K/F is *Galois* if $[K : F] = |Aut(K/F)|$.
- \triangleright The splitting field of a separable polynomial gives a Galois extension.
- \triangleright Over \mathbb{O} , the splitting field of any polynomial gives a Galois extension.

- \blacktriangleright For finite extensions, we always have that $|Aut(K/F)| < [K : F].$
- A finite extension K/F is Galois if $[K : F] = |Aut(K/F)|$.
- \triangleright The splitting field of a separable polynomial gives a Galois extension.
- \triangleright Over \mathbb{O} , the splitting field of any polynomial gives a Galois extension.
- \triangleright For each subgroup of the Galois group, there is a corresponding fixed field.

- \blacktriangleright For finite extensions, we always have that $|Aut(K/F)| < [K : F].$
- A finite extension K/F is Galois if $[K : F] = |Aut(K/F)|$.
- \triangleright The splitting field of a separable polynomial gives a Galois extension.
- \triangleright Over \mathbb{O} , the splitting field of any polynomial gives a Galois extension.
- \triangleright For each subgroup of the Galois group, there is a corresponding fixed field.
- \triangleright From now on, to make our work easier, we will adopt the convention that $(a + b)^n = a^n + b^n$, in any field of any characteristic.

- \blacktriangleright For finite extensions, we always have that $|Aut(K/F)| < [K : F].$
- A finite extension K/F is Galois if $[K : F] = |Aut(K/F)|$.
- \triangleright The splitting field of a separable polynomial gives a Galois extension.
- \triangleright Over \mathbb{O} , the splitting field of any polynomial gives a Galois extension.
- \triangleright For each subgroup of the Galois group, there is a corresponding fixed field.
- \triangleright From now on, to make our work easier, we will adopt the convention that $(a + b)^n = a^n + b^n$, in any field of any characteristic.
- \blacktriangleright [That last one is an April's fool].