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It was decided last week that every class at Harvard this semester
will be evaluated Sat/Unsat (“SEM/UEM").

| updated the syllabus to describe how | will determine your grade.
If your class score is at least 70%, you get SEM.

If you are below 70%, you may or may not get SEM depending on
class performance, participation, special circumstances, etc.
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Recall ¢, := e27i/n.
Definition

The nth cyclotomic polynomial, ®,(x) is the polynomial whose
roots are the primitive nth roots of unity:

ou(x):= [ =)

1<k<n,(k,n)=1

We proved that ®,(x) is a monic polynomial of degree ¢(n), with
integer coefficients.
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Lemma

If g(x) € Fy[x], then g(xP) = (g(x))".

Proof.

Say g(x) = a,x" + ap_1x""1 4 ... 4 ag. By properties of the
Frobenius map, g(x)P = ahxP" + a2 xP("=1) 4 4 b,

Now use that aP = a for every a € F,, (Lagrange’s theorem applied
to the group of units F — also called Fermat'’s little theorem).

Get g(x)P = apxP" + a,_1xP("=1) 4 4 a9 = g(xP). O
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Theorem

®,(x) is irreducible in Z[x]. Thus the degree of Q((,) over Q is
¢(n).

Proof: Write ®,(x) = f(x)g(x), for f, g monic in Z[x], f
irreducible with some primitive root of unity ¢ as a root.

Let p be a prime not dividing n. Then (P is a primitive root of
unity. Either £(¢P) =0 or g(¢P) = 0.

If g(¢P) =0, then ( is a root of g(xP), so since f(x) is the
minimal polynomial of ¢, f(x) divides g(x”) in Z[x]:

g(xP) = f(x)h(x)

Reducing modulo p, we get g(x?) = (g(x))? = f(x)&(x).

So f and g have an irreducible factor in common in F,[x]!
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Proof of irreducibility of ®,, continued

We know also fg = ®,(x). Since f and g have a factor in
common, ®,(x) has a multiple root in Fp[x].

Thus x" — 1 also has a multiple root in Fp[x]. We saw before that
if p does not divide n, x” — 1 is separable, contradiction.

We had that ®,(x) = f(x)g(x), f irreducible, and we took ¢ a
root of f. We showed g(¢P) # 0 for any prime p not dividing n.

Thus f(pP) = 0 for any root p of f and any prime p not dividing n.

If ¢ is a root of f, any other primitive root of unity is of the form
¢k, k coprime to n. Thus k = p1ps ... pm, with the p;'s primes not
dividing n.

We showed f(¢P*) = 0. Thus applying the previous observation to
p=CPrand p=py, F(¢CPP2) =0.

Continuing in this way, we get that f(¢P*P2-Pm) = 0. Thus f has
all primitive roots of unity as roots, so f = ®,, as desired.
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roots of polynomials.

Definition

» An isomorphism o of a field K to itself is called an
automorphism of K.

» We write Aut(K) for the set of all automorphisms of K.

» An automorphism o of K fixes an element a if o(a) = a. We
say o fixes a set A if o(a) = a for all a € A.

» If K is an extension of F, we write Aut(K/F) for the set of all
automorphisms of K which fix F.
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Two key observations

1. Aut(K) is a group under composition, and Aut(K/F) is a
subgroup.

2. If K/F is an extension, f(x) € F[x], « € K is a root of f,
then for any o € Aut(K/F), o(«) is also a root of f.

The second observation says that automorphisms permute the
roots of a polynomial. Abstractly: the group Aut(K/F) acts on
these roots.
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Examples

» Aut(Q) = {id}, since any automorphism must fix 1 and
preserve sums and quotients. We write 1 instead of id, so
Aut(Q) = {1},

» Similarly, Aut(F,) = {1}. In general, any automorphism fixes
the prime field.

» Let F=Q, K = Q(+/2). Note Aut(K) = Aut(K/F). Let
o € Aut(K).

» /2 is a root of x> — 2, so 7(1/2) is a root of x> — 2. Thus
(V2) = £V2.

» Any element of K is of the form a = a+ b\/2, a,b € Q, so
7(a) = a + br(\/2), so 7 is determined by its value on /2.

> If T(\@) = /2, 7 is the identity. On the other hand
T(\@) = —+/2 is an automorphism (can check directly, or use
uniqueness of simple extensions).

» Thus Aut(K/F) = {1,0}, where o sends v/2 to —/2. It is the
cyclic group of order 2.
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One more example

Let F=Q, K = Q(v/2).
As before, any automorphism is determined by what it does to 2.

If 7 € Aut(K/F), 7(v/2) must be a root of x> — 2. However the
other roots of x3 — 2 are not real numbers, so are not in K. Thus

"(¥2) = V2
This shows that Aut(K/F) = {1}, the trivial group.
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From field to group and back

Fix a field K.
Given a subfield F, we get a group Aut(K/F).

Going back, if we fix a subgroup H of Aut(K), we can get a
subfield:

Definition

The fixed field of H is the subfield of K of all elements fixed by
every automorphism in H.

(one can check it is indeed a subfield: if a and b are fixed, ab,
a+ b, a/b are fixed too!).
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Going from subfield to groups, and back, give inclusion-reversing
operations:

1. If 1 € F, C K, then Aut(K/F) C Aut(K/F1). [The fewer
things to fix, the more automorphisms].

2. If Hy C Hy C Aut(K), with fixed fields Fy, Fy, then F; C F
[Fewer automorphisms fix more things].
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Back to the examples

K = Q(v2), F = Q. The fixed field of Aut(K/F) is the set of
elements of a+ b2 € Q(ﬂ) fixed by all automorphisms.

In particular we need a + bv2=a— b2, s0b=0. Any
automorphism fixes the rationals, so the fixed field of Aut(K/F) is
Q.

The fixed field of {1} is Q(v/2).

Suppose now K = Q(v/2), F = Q. The fixed field of

Aut(K/F) = {1} is just Q(~+/2): there is only one automorphism,
the identity, which fixes everything.

So in this case, QQ is not the fixed field of any subgroup. Intuitively,
we are “missing roots” for x3 — 2.
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Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial f(x) € F[x]. Then
Aut(K/F) has at most [K : F] elements, with equality if f is
separable.

Proof: We more generally ask: given an isomorphism ¢ : F = F/,
K a splitting field of f(x), K’ a splitting field of the corresponding
polynomial f' = ¢(f), how many isomorphisms ¢ : K = K’ does ¢
extend to?

The special case we care about is when F = F', ¢ is the identity,
K =K'
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By the induction hypothesis, there are (at most) [K : F(«)]-many

ways to extend each ¢’ to a o, with equality if % is separable.

There are as many ways to extend ¢ to ¢’ as there are roots for
p(x). This number of roots is at most the degree of p(x), with
equality if p(x) is separable.

In total, there are at most [F(«) : F] - [K : F(a)] = [K : F]
extensions, with equality if f(x) is separable.
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Exercise: prove more generally that if K/F is a finite extension,
then |Aut(K/F)| < [K : F].

Definition

A finite extension K/F is Galois if |Aut(K/F)| =[K : F]. If K/F
is Galois, we call Aut(K/F) the Galois group of K/F.

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in F[x], then
K/F is Galois.

The converse is also true (to be proven later).

Example: Q(+v/2)/Q is Galois, but Q(v/2)/Q is not Galois.

In general, the splitting field of any polynomial in Q[x] is Galois
over QQ: consider the product of its distinct irreducible factors.
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Definition

The Galois group of a polynomial f(x) € F[x] is the Galois group
of a splitting field for f(x) over F.
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Example

F=

Q K=Q(v2,Vv3).

K is the splitting field of (x? — 2)(x? — 3), so is Galois.

What is its Galois group? Proceed in several steps:

1.

Any automorphism is determined by what it does to v/2 and
V3.

Any automorphism sends V2 to +v/2, and /3 to +v/3.
Thus there are four candidates for automorphisms: the
identity, the map o sending V2 to —+/2 and keeping V3
constant, the map 7 sending v/3 to —/3 and keeping /2
constant, and o7 (V2 — —v/2; V3 —/3).

We have to see which of these possibilities really gives an
automorphism. Here it is easy: |Aut(K/F)| = [K : F] =4, so
there are four automorphisms, so all of them give
automorphisms.

The Galois group is {1,0,7,07}. All elements have order 2, so
it is isomorphic to Z x Z, (the Klein 4-group).
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Example continued

F=Q, K=0(23).
For each subgroup of Aut(K/F), there corresponds a fixed field.
To compute it, use that 1, V2, V3, V6 = v/2v/3 is a basis for the

extension.
Subgroup Fixed field
{1} Q(v2,v3)
{1,0} Q(v3)
{1,017} Q(v6)
{1,7} Q(v2)

{1,0,7,07} Q



Q(v2,V3)

(v2) Q(v6) Q
\ | /
{1}

e

{1,7} {1,07} {1,0}

{1,0,7,07}

V3)
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Another example

F = Q, K is the splitting field of x3 — 2.

We saw the roots of x3 — 2 are of the form /2, p\%, p2\3@, where
p=0(3= e2mi/3.

The splitting field is Q(v/2, p), and has degree 6 (computed
earlier).

Any automorphism of K/F must permute the roots of x> — 2.
There are 3! = 6 such permutations and we know

|Aut(K/F)| = [K : F] = 6. Thus any permutation of the roots
induces an automorphism, and Aut(K/F) = Ss.

Another way to think about it: It suffices to describe the
automorphism on the generators v/2 and p.

v/2 can be sent to a root of x3 —2, p can be sent to p or p2. All
these possibilities give automorphisms by counting.
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Then Aut(K/F) is generated by o and 7, and we can again show
Aut(K/F) = S3 (see the book for full computation).

We can also determine the fixed fields...



Fixed fields:

Q(V2,p)

Q(V2)  Q(pv2) — Q(p*V2)



Subgroups of the Galois group:

1

\ :

2
’ (r) " {ra) T (ro?)
<0’> 3 3 3
X
<U’ T>
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One more example

F=F, K=Fp.

We showed K was the splitting field of x?" — x, a separable
polynomial, so K/F is Galois, and |Aut(K/F)| =[K : F] = n.
An example of an automorphism: the Frobenius map o sending

ars aP forall ae F.

. k .
In fact, for each k > 1, o, the map sending a to aP is also an
automorphism.

What is the order of o7 Note ¢” is the identity: by construction,
" =aforallacF.

Also, for each k < n, the equation xP* = x has at most pX

solutions, so o* is not the identity.

Thus o has order n, so the Galois group of F/K is cyclic of order
n, generated by the Frobenius map.
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Summary

v

For finite extensions, we always have that

|Aut(K/F)| < [K : F].

A finite extension K/F is Galois if [K : F] = |Aut(K/F)|.
The splitting field of a separable polynomial gives a Galois
extension.

Over Q, the splitting field of any polynomial gives a Galois
extension.

For each subgroup of the Galois group, there is a
corresponding fixed field.

From now on, to make our work easier, we will adopt the
convention that (a+ b)” = a" + b", in any field of any
characteristic.

[That last one is an April’s fool].



