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Announcement

It was decided last week that every class at Harvard this semester
will be evaluated Sat/Unsat (“SEM/UEM”).

I updated the syllabus to describe how I will determine your grade.

If your class score is at least 70%, you get SEM.

If you are below 70%, you may or may not get SEM depending on
class performance, participation, special circumstances, etc.
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Finishing the proof from last time

Recall ζn := e2πi/n.

Definition

The nth cyclotomic polynomial, Φn(x) is the polynomial whose
roots are the primitive nth roots of unity:

Φn(x) :=
∏

1≤k≤n,(k,n)=1

(x − ζkn )

We proved that Φn(x) is a monic polynomial of degree φ(n), with
integer coefficients.
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Lemma

If g(x) ∈ Fp[x ], then g(xp) = (g(x))p.

Proof.

Say g(x) = anx
n + an−1x

n−1 + . . .+ a0. By properties of the
Frobenius map, g(x)p = apnxpn + apn−1x

p(n−1) + . . .+ ap0 .

Now use that ap = a for every a ∈ Fp (Lagrange’s theorem applied
to the group of units F×p – also called Fermat’s little theorem).

Get g(x)p = anx
pn + an−1x

p(n−1) + . . .+ a0 = g(xp).
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Theorem

Φn(x) is irreducible in Z[x ]. Thus the degree of Q(ζn) over Q is
φ(n).

Proof: Write Φn(x) = f (x)g(x), for f , g monic in Z[x ], f
irreducible with some primitive root of unity ζ as a root.

Let p be a prime not dividing n. Then ζp is a primitive root of
unity. Either f (ζp) = 0 or g(ζp) = 0.

If g(ζp) = 0, then ζ is a root of g(xp), so since f (x) is the
minimal polynomial of ζ, f (x) divides g(xp) in Z[x ]:

g(xp) = f (x)h(x)

Reducing modulo p, we get ḡ(xp) = (ḡ(x))p = f̄ (x)ḡ(x).

So f̄ and ḡ have an irreducible factor in common in Fp[x ]!
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Proof of irreducibility of Φn, continued

We know also f̄ ḡ = Φn(x). Since f̄ and ḡ have a factor in
common, Φn(x) has a multiple root in Fp[x ].

Thus xn − 1 also has a multiple root in Fp[x ]. We saw before that
if p does not divide n, xn − 1 is separable, contradiction.

We had that Φn(x) = f (x)g(x), f irreducible, and we took ζ a
root of f . We showed g(ζp) 6= 0 for any prime p not dividing n.

Thus f (ρp) = 0 for any root ρ of f and any prime p not dividing n.

If ζ is a root of f , any other primitive root of unity is of the form
ζk , k coprime to n. Thus k = p1p2 . . . pm, with the pi ’s primes not
dividing n.

We showed f (ζp1) = 0. Thus applying the previous observation to
ρ = ζp1 and p = p2, f (ζp1p2) = 0.

Continuing in this way, we get that f (ζp1p2...pm) = 0. Thus f has
all primitive roots of unity as roots, so f = Φn, as desired.
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Galois theory

The idea: study automorphisms of fields, and how they permute
roots of polynomials.

Definition

I An isomorphism σ of a field K to itself is called an
automorphism of K .

I We write Aut(K ) for the set of all automorphisms of K .

I An automorphism σ of K fixes an element a if σ(a) = a. We
say σ fixes a set A if σ(a) = a for all a ∈ A.

I If K is an extension of F , we write Aut(K/F ) for the set of all
automorphisms of K which fix F .
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Two key observations

1. Aut(K ) is a group under composition, and Aut(K/F ) is a
subgroup.

2. If K/F is an extension, f (x) ∈ F [x ], α ∈ K is a root of f ,
then for any σ ∈ Aut(K/F ), σ(α) is also a root of f .

The second observation says that automorphisms permute the
roots of a polynomial. Abstractly: the group Aut(K/F ) acts on
these roots.
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Examples

I Aut(Q) = {id}, since any automorphism must fix 1 and
preserve sums and quotients. We write 1 instead of id, so
Aut(Q) = {1}.

I Similarly, Aut(Fp) = {1}. In general, any automorphism fixes
the prime field.

I Let F = Q, K = Q(
√

2). Note Aut(K ) = Aut(K/F ). Let
σ ∈ Aut(K ).

I
√

2 is a root of x2 − 2, so τ(
√

2) is a root of x2 − 2. Thus
τ(
√

2) = ±
√

2.
I Any element of K is of the form α = a + b

√
2, a, b ∈ Q, so

τ(α) = a + bτ(
√

2), so τ is determined by its value on
√

2.
I If τ(

√
2) =

√
2, τ is the identity. On the other hand

τ(
√

2) = −
√

2 is an automorphism (can check directly, or use
uniqueness of simple extensions).

I Thus Aut(K/F ) = {1, σ}, where σ sends
√

2 to −
√

2. It is the
cyclic group of order 2.
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I Let F = Q, K = Q(
√

2). Note Aut(K ) = Aut(K/F ). Let
σ ∈ Aut(K ).

I
√

2 is a root of x2 − 2, so τ(
√

2) is a root of x2 − 2. Thus
τ(
√

2) = ±
√

2.
I Any element of K is of the form α = a + b

√
2, a, b ∈ Q, so

τ(α) = a + bτ(
√

2), so τ is determined by its value on
√

2.

I If τ(
√

2) =
√

2, τ is the identity. On the other hand
τ(
√

2) = −
√

2 is an automorphism (can check directly, or use
uniqueness of simple extensions).

I Thus Aut(K/F ) = {1, σ}, where σ sends
√

2 to −
√

2. It is the
cyclic group of order 2.



Examples

I Aut(Q) = {id}, since any automorphism must fix 1 and
preserve sums and quotients. We write 1 instead of id, so
Aut(Q) = {1}.

I Similarly, Aut(Fp) = {1}. In general, any automorphism fixes
the prime field.

I Let F = Q, K = Q(
√

2). Note Aut(K ) = Aut(K/F ). Let
σ ∈ Aut(K ).

I
√

2 is a root of x2 − 2, so τ(
√

2) is a root of x2 − 2. Thus
τ(
√

2) = ±
√

2.
I Any element of K is of the form α = a + b

√
2, a, b ∈ Q, so

τ(α) = a + bτ(
√

2), so τ is determined by its value on
√

2.
I If τ(

√
2) =

√
2, τ is the identity. On the other hand

τ(
√

2) = −
√

2 is an automorphism (can check directly, or use
uniqueness of simple extensions).

I Thus Aut(K/F ) = {1, σ}, where σ sends
√

2 to −
√

2. It is the
cyclic group of order 2.



Examples

I Aut(Q) = {id}, since any automorphism must fix 1 and
preserve sums and quotients. We write 1 instead of id, so
Aut(Q) = {1}.

I Similarly, Aut(Fp) = {1}. In general, any automorphism fixes
the prime field.

I Let F = Q, K = Q(
√

2). Note Aut(K ) = Aut(K/F ). Let
σ ∈ Aut(K ).

I
√

2 is a root of x2 − 2, so τ(
√

2) is a root of x2 − 2. Thus
τ(
√

2) = ±
√

2.
I Any element of K is of the form α = a + b

√
2, a, b ∈ Q, so

τ(α) = a + bτ(
√

2), so τ is determined by its value on
√

2.
I If τ(

√
2) =

√
2, τ is the identity. On the other hand

τ(
√

2) = −
√

2 is an automorphism (can check directly, or use
uniqueness of simple extensions).

I Thus Aut(K/F ) = {1, σ}, where σ sends
√

2 to −
√

2. It is the
cyclic group of order 2.



One more example

Let F = Q, K = Q( 3
√

2).

As before, any automorphism is determined by what it does to 3
√

2.

If τ ∈ Aut(K/F ), τ( 3
√

2) must be a root of x3 − 2. However the
other roots of x3 − 2 are not real numbers, so are not in K . Thus
τ( 3
√

2) = 3
√

2.

This shows that Aut(K/F ) = {1}, the trivial group.



One more example

Let F = Q, K = Q( 3
√

2).

As before, any automorphism is determined by what it does to 3
√

2.

If τ ∈ Aut(K/F ), τ( 3
√

2) must be a root of x3 − 2. However the
other roots of x3 − 2 are not real numbers, so are not in K . Thus
τ( 3
√

2) = 3
√

2.

This shows that Aut(K/F ) = {1}, the trivial group.



One more example

Let F = Q, K = Q( 3
√

2).

As before, any automorphism is determined by what it does to 3
√

2.

If τ ∈ Aut(K/F ), τ( 3
√

2) must be a root of x3 − 2. However the
other roots of x3 − 2 are not real numbers, so are not in K . Thus
τ( 3
√

2) = 3
√

2.

This shows that Aut(K/F ) = {1}, the trivial group.



One more example

Let F = Q, K = Q( 3
√

2).

As before, any automorphism is determined by what it does to 3
√

2.

If τ ∈ Aut(K/F ), τ( 3
√

2) must be a root of x3 − 2. However the
other roots of x3 − 2 are not real numbers, so are not in K . Thus
τ( 3
√

2) = 3
√

2.

This shows that Aut(K/F ) = {1}, the trivial group.



From field to group and back

Fix a field K .

Given a subfield F , we get a group Aut(K/F ).

Going back, if we fix a subgroup H of Aut(K ), we can get a
subfield:

Definition

The fixed field of H is the subfield of K of all elements fixed by
every automorphism in H.

(one can check it is indeed a subfield: if a and b are fixed, ab,
a + b, a/b are fixed too!).
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Going from subfield to groups, and back, give inclusion-reversing
operations:

1. If F1 ⊆ F2 ⊆ K , then Aut(K/F2) ⊆ Aut(K/F1). [The fewer
things to fix, the more automorphisms].

2. If H1 ⊆ H2 ⊆ Aut(K ), with fixed fields F1, F2, then F2 ⊆ F1
[Fewer automorphisms fix more things].
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Back to the examples

K = Q(
√

2), F = Q.

The fixed field of Aut(K/F ) is the set of
elements of a + b

√
2 ∈ Q(

√
2) fixed by all automorphisms.

In particular we need a + b
√

2 = a− b
√

2, so b = 0. Any
automorphism fixes the rationals, so the fixed field of Aut(K/F ) is
Q.

The fixed field of {1} is Q(
√

2).

Suppose now K = Q( 3
√

2), F = Q. The fixed field of
Aut(K/F ) = {1} is just Q( 3

√
2): there is only one automorphism,

the identity, which fixes everything.

So in this case, Q is not the fixed field of any subgroup. Intuitively,
we are “missing roots” for x3 − 2.
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Automorphisms of the splitting field

Theorem

Let K be the splitting field of a polynomial f (x) ∈ F [x ]. Then
Aut(K/F ) has at most [K : F ] elements, with equality if f is
separable.

Proof: We more generally ask: given an isomorphism φ : F ∼= F ′,
K a splitting field of f (x), K ′ a splitting field of the corresponding
polynomial f ′ = φ(f ), how many isomorphisms σ : K ∼= K ′ does φ
extend to?

K K ′

F F ′

∼=
σ

∼=
φ

The special case we care about is when F = F ′, φ is the identity,
K = K ′.
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We proceed by induction on n := [K : F ]. If n = 1, σ = φ is the
only extension. Assume now n ≥ 2.

Let p(x) be an irreducible factor of f (x), p′(x) the corresponding
irreducible factor of f ′(x). Fix a root α of p(x). For any root α′ of
p′(x), we get a picture like below with φ′(α) = α′.
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By the induction hypothesis, there are (at most) [K : F (α)]-many

ways to extend each φ′ to a σ, with equality if f (x)
x−α is separable.

There are as many ways to extend φ to φ′ as there are roots for
p(x). This number of roots is at most the degree of p(x), with
equality if p(x) is separable.

In total, there are at most [F (α) : F ] · [K : F (α)] = [K : F ]
extensions, with equality if f (x) is separable.
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Exercise: prove more generally that if K/F is a finite extension,
then |Aut(K/F )| ≤ [K : F ].

Definition

A finite extension K/F is Galois if |Aut(K/F )| = [K : F ]. If K/F
is Galois, we call Aut(K/F ) the Galois group of K/F .

We have just shown:

Theorem

If K is the splitting field of a separable polynomial in F [x ], then
K/F is Galois.

The converse is also true (to be proven later).

Example: Q(
√

2)/Q is Galois, but Q( 3
√

2)/Q is not Galois.

In general, the splitting field of any polynomial in Q[x ] is Galois
over Q: consider the product of its distinct irreducible factors.
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Slogan: to do Galois theory, we need to have “enough roots”, so
work over splitting fields!

Definition

The Galois group of a polynomial f (x) ∈ F [x ] is the Galois group
of a splitting field for f (x) over F .
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Example
F = Q, K = Q(

√
2,
√

3).

K is the splitting field of (x2 − 2)(x2 − 3), so is Galois.

What is its Galois group? Proceed in several steps:

1. Any automorphism is determined by what it does to
√

2 and√
3.

2. Any automorphism sends
√

2 to ±
√

2, and
√

3 to ±
√

3.

3. Thus there are four candidates for automorphisms: the
identity, the map σ sending

√
2 to −

√
2 and keeping

√
3

constant, the map τ sending
√

3 to −
√

3 and keeping
√

2
constant, and στ (

√
2 7→ −

√
2;
√

3 7→ −
√

3).

4. We have to see which of these possibilities really gives an
automorphism. Here it is easy: |Aut(K/F )| = [K : F ] = 4, so
there are four automorphisms, so all of them give
automorphisms.

5. The Galois group is {1, σ, τ, στ}. All elements have order 2, so
it is isomorphic to Z2 × Z2 (the Klein 4-group).
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Example continued

F = Q, K = Q(
√

2,
√

3).

For each subgroup of Aut(K/F ), there corresponds a fixed field.

To compute it, use that 1,
√

2,
√

3,
√

6 =
√

2
√

3 is a basis for the
extension.

Subgroup Fixed field

{1} Q(
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2,
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3)

{1, σ} Q(
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3)

{1, στ} Q(
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6)

{1, τ} Q(
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2)
{1, σ, τ, στ} Q
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Another example

F = Q, K is the splitting field of x3 − 2.

We saw the roots of x3 − 2 are of the form 3
√

2, ρ 3
√

2, ρ2 3
√

2, where
ρ = ζ3 = e2πi/3.

The splitting field is Q( 3
√

2, ρ), and has degree 6 (computed
earlier).

Any automorphism of K/F must permute the roots of x3 − 2.
There are 3! = 6 such permutations and we know
|Aut(K/F )| = [K : F ] = 6. Thus any permutation of the roots
induces an automorphism, and Aut(K/F ) ∼= S3.

Another way to think about it: It suffices to describe the
automorphism on the generators 3

√
2 and ρ.

3
√

2 can be sent to a root of x3 − 2, ρ can be sent to ρ or ρ2. All
these possibilities give automorphisms by counting.
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Let σ : 3
√

2 7→ ρ 3
√

2, ρ 7→ ρ, and τ : 3
√

2 7→ 3
√

2, ρ 7→ ρ2.

Then Aut(K/F ) is generated by σ and τ , and we can again show
Aut(K/F ) ∼= S3 (see the book for full computation).

We can also determine the fixed fields...
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Fixed fields:

Q( 3
√

2, ρ)

Q( 3
√

2) Q(ρ 3
√

2) Q(ρ2 3
√

2)

Q(ρ)

Q

2 2 2
3

2

3 3 3



Subgroups of the Galois group:

1

〈τ〉 〈τσ〉 〈τσ2〉

〈σ〉

〈σ, τ〉

2 2 2
3

2

3 3 3



One more example

F = Fp, K = Fpn .

We showed K was the splitting field of xp
n − x , a separable

polynomial, so K/F is Galois, and |Aut(K/F )| = [K : F ] = n.

An example of an automorphism: the Frobenius map σ sending
a 7→ ap for all a ∈ F .

In fact, for each k ≥ 1, σk , the map sending a to ap
k

is also an
automorphism.

What is the order of σ? Note σn is the identity: by construction,
ap

n
= a for all a ∈ F .

Also, for each k < n, the equation xp
k

= x has at most pk

solutions, so σk is not the identity.

Thus σ has order n, so the Galois group of F/K is cyclic of order
n, generated by the Frobenius map.
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Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.
I The splitting field of a separable polynomial gives a Galois

extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].



Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.

I The splitting field of a separable polynomial gives a Galois
extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].



Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.
I The splitting field of a separable polynomial gives a Galois

extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].



Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.
I The splitting field of a separable polynomial gives a Galois

extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].



Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.
I The splitting field of a separable polynomial gives a Galois

extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].



Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.
I The splitting field of a separable polynomial gives a Galois

extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].



Summary

I For finite extensions, we always have that
|Aut(K/F )| ≤ [K : F ].

I A finite extension K/F is Galois if [K : F ] = |Aut(K/F )|.
I The splitting field of a separable polynomial gives a Galois

extension.

I Over Q, the splitting field of any polynomial gives a Galois
extension.

I For each subgroup of the Galois group, there is a
corresponding fixed field.

I From now on, to make our work easier, we will adopt the
convention that (a + b)n = an + bn, in any field of any
characteristic.

I [That last one is an April’s fool].


