Math-123: The fundamental theorem of Galois theory

Sebastien Vasey

Harvard University

April 3, 2020

Let K/F be a field extension.

The group of automorphisms of K fixing F is written Aut(K/F).

Let K/F be a field extension.

- ► The group of automorphisms of K fixing F is written Aut(K/F).
- ► K/F is Galois if |Aut(K/F)| = [K : F]. In this case, we call Aut(K/F) the Galois group of K over F.

Let K/F be a field extension.

- ► The group of automorphisms of K fixing F is written Aut(K/F).
- ► K/F is Galois if |Aut(K/F)| = [K : F]. In this case, we call Aut(K/F) the Galois group of K over F.
- Splitting fields of separable polynomials are Galois.

Let K/F be a field extension.

- ► The group of automorphisms of K fixing F is written Aut(K/F).
- ► K/F is Galois if |Aut(K/F)| = [K : F]. In this case, we call Aut(K/F) the Galois group of K over F.
- Splitting fields of separable polynomials are Galois.
- ► Each subgroup H of Aut(K/F) has a *fixed field*: the set of all elements of K fixed by H.

$$F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\sqrt{3}, \tau$ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}$. Aut $(K/F) \cong Z_2 \times Z_2$

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\sqrt{3}, \tau$ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}$. Aut $(K/F) \cong Z_2 \times Z_2$

For each subgroup of Aut(K/F), there corresponds a fixed field.

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\sqrt{3}, \tau$ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}.$ Aut $(K/F) \cong Z_2 \times Z_2$ For each *subgroup* of Aut(K/F), there corresponds a fixed field. To compute it, use that $1, \sqrt{2}, \sqrt{3}, \sqrt{6} = \sqrt{2}\sqrt{3}$ is a basis for the extension.

 $F = \mathbb{Q}, \ K = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\sqrt{3}, \tau$ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}.$ Aut $(K/F) \cong Z_2 \times Z_2$ For each *subgroup* of Aut(K/F), there corresponds a fixed field. To compute it, use that $1, \sqrt{2}, \sqrt{3}, \sqrt{6} = \sqrt{2}\sqrt{3}$ is a basis for the extension.

Subgroup	Fixed field
{1}	$\mathbb{Q}(\sqrt{2},\sqrt{3})$
$\{1,\sigma\}$	$\mathbb{Q}(\sqrt{3})$
$\{1, \sigma \tau\}$	$\mathbb{Q}(\sqrt{6})$
$\{1, au\}$	$\mathbb{Q}(\sqrt{2})$
$\{1, \sigma, \tau, \sigma\tau\}$	\mathbb{Q}

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

Another example

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$. We computed earlier that $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$, where $\rho = e^{2\pi i/3}$, and K/\mathbb{Q} has degree 6.

Another example

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We computed earlier that $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$, where $\rho = e^{2\pi i/3}$, and K/\mathbb{Q} has degree 6.

Let $\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^{2}$.

Another example

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We computed earlier that $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$, where $\rho = e^{2\pi i/3}$, and K/\mathbb{Q} has degree 6.

Let
$$\sigma: \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$$
, $\rho \mapsto \rho$, and $\tau: \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^{2}$.

Then Aut(K/F) is generated by σ and τ , and we can show Aut(K/F) \cong S_3 .

Known subfields:

Subgroups of the Galois group:

Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence between subgroups of Aut(K/F) and intermediate fields L with $F \subseteq L \subseteq K$. The correspondence is given by taking fixed fields.

Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence between subgroups of Aut(K/F) and intermediate fields L with $F \subseteq L \subseteq K$. The correspondence is given by taking fixed fields.

The fundamental theorem actually gives a lot more information. Today's goal is to prove it.

Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence between subgroups of Aut(K/F) and intermediate fields L with $F \subseteq L \subseteq K$. The correspondence is given by taking fixed fields.

The fundamental theorem actually gives a lot more information. Today's goal is to prove it.

The proof will use linear algebra!

Characters

Definition

A *character* of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.

Characters

Definition

A *character* of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.

Note: any automorphism of a field K yields a character of K^{\times} with values in K.

Characters

Definition

A *character* of a group G with values in a field L is a homomorphism $\chi: G \to L^{\times}$.

Note: any automorphism of a field K yields a character of K^{\times} with values in K.

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of *G* with values in *L*, then they are *L*-linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0$.

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of *G* with values in *L*, then they are linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0$.

Proof: Suppose for a contradiction χ_1, \ldots, χ_n are linearly dependent. Choose *n* least where this happens. Pick a_1, a_2, \ldots, a_n not all zero such that:

 $a_1\chi_1+\ldots+a_n\chi_n=0$

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of *G* with values in *L*, then they are linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0$.

Proof: Suppose for a contradiction χ_1, \ldots, χ_n are linearly dependent. Choose *n* least where this happens. Pick a_1, a_2, \ldots, a_n not all zero such that:

$$a_1\chi_1+\ldots+a_n\chi_n=0$$

Pick $g_0 \in G$ such that $\chi_1(g_0) \neq \chi_n(g_0)$. For any $g \in G$:

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of *G* with values in *L*, then they are linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0$.

Proof: Suppose for a contradiction χ_1, \ldots, χ_n are linearly dependent. Choose *n* least where this happens. Pick a_1, a_2, \ldots, a_n not all zero such that:

$$a_1\chi_1+\ldots+a_n\chi_n=0$$

Pick $g_0 \in G$ such that $\chi_1(g_0) \neq \chi_n(g_0)$. For any $g \in G$:

$$a_1\chi_1(g_0g) + a_2\chi_2(g_0g) + \ldots + a_n\chi_n(g_0g) = 0$$

 $a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$

$$a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$$

Also (multiplying $a_1\chi_1 + a_2\chi_2 + \ldots + a_n\chi_n = 0$ by $\chi_n(g_0)$ and plugging in g):

 $a_1\chi_n(g_0)\chi_1(g) + a_2\chi_n(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$

$$a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$$

Also (multiplying $a_1\chi_1 + a_2\chi_2 + \ldots + a_n\chi_n = 0$ by $\chi_n(g_0)$ and plugging in g):

$$a_1\chi_n(g_0)\chi_1(g) + a_2\chi_n(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$$

Subtracting the two, we get:

$$a_1(\chi_1(g_0)-\chi_n(g_0))\chi_1(g)+\ldots+a_{n-1}(\chi_{n-1}(g_0)-\chi_n(g_0))\chi_{n-1}(g)=0$$

$$a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$$

Also (multiplying $a_1\chi_1 + a_2\chi_2 + \ldots + a_n\chi_n = 0$ by $\chi_n(g_0)$ and plugging in g):

$$a_1\chi_n(g_0)\chi_1(g) + a_2\chi_n(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$$

Subtracting the two, we get:

$$a_1(\chi_1(g_0)-\chi_n(g_0))\chi_1(g)+\ldots+a_{n-1}(\chi_{n-1}(g_0)-\chi_n(g_0))\chi_{n-1}(g)=0$$

Since $\chi_1(g_0) \neq \chi_n(g_0)$, this gives a nontrivial relation between $\chi_1, \ldots, \chi_{n-1}$, contradicting minimality of *n*.

We will use linear independence of distinct characters to prove:

Theorem (Key theorem)

If K is a field and G is a finite subgroup of Aut(K) with fixed field F, then |G| = [K : F].

We will use linear independence of distinct characters to prove:

Theorem (Key theorem)

If K is a field and G is a finite subgroup of Aut(K) with fixed field F, then |G| = [K : F].

Note: before, we started with a certain kind of field F and saw that $|\operatorname{Aut}(K/F)| = [K : F]$. Here, we start with the group, and deduce the same equation for its fixed field F.

Let G be a finite subgroup of Aut(K). Let F be the fixed field. Then $|G| \leq [K : F]$.

Let G be a finite subgroup of Aut(K). Let F be the fixed field. Then $|G| \leq [K : F]$.

Proof: Suppose for a contradiction that n = |G| > [K : F] = m. Write $G = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Let $\omega_1, \omega_2, \dots, \omega_m$ be a basis for K over F. Let's study how G acts on the basis.

Let G be a finite subgroup of Aut(K). Let F be the fixed field. Then $|G| \leq [K : F]$.

Proof: Suppose for a contradiction that n = |G| > [K : F] = m. Write $G = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Let $\omega_1, \omega_2, \dots, \omega_m$ be a basis for K over F. Let's study how G acts on the basis. Consider the system of equation:

$$\sigma_1(\omega_1)x_1 + \sigma_2(\omega_1)x_2 + \ldots + \sigma_n(\omega_1)x_n = 0$$

$$\ldots$$

$$\sigma_1(\omega_m)x_1 + \sigma_2(\omega_m)x_2 + \ldots + \sigma_n(\omega_m)x_n = 0$$

Since n > m, there is a nonzero solution, $\beta_1, \ldots, \beta_n \in K$.

Let G be a finite subgroup of Aut(K). Let F be the fixed field. Then $|G| \leq [K : F]$.

Proof: Suppose for a contradiction that n = |G| > [K : F] = m. Write $G = \{\sigma_1, \sigma_2, \dots, \sigma_n\}$. Let $\omega_1, \omega_2, \dots, \omega_m$ be a basis for K over F. Let's study how G acts on the basis. Consider the system of equation:

$$\sigma_1(\omega_1)x_1 + \sigma_2(\omega_1)x_2 + \ldots + \sigma_n(\omega_1)x_n = 0$$

$$\ldots$$

$$\sigma_1(\omega_m)x_1 + \sigma_2(\omega_m)x_2 + \ldots + \sigma_n(\omega_m)x_n = 0$$

Since n > m, there is a nonzero solution, $\beta_1, \ldots, \beta_n \in K$.

Consider any $\alpha \in K$. Write $\alpha = a_1\omega_1 + \ldots + a_m\omega_m$, $a_i \in F$. Note $\sigma_i(a_k\omega_j) = a_k\sigma_i(\omega_j)$ (*F* is the fixed field).
$$\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0$$

...
$$\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0$$

$$\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0$$

$$\ldots$$

$$\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0$$

Multiply the *i*th equation by a_i , and sum them up:

$$\sigma_1(a_1\omega_1+a_2\omega_2+\ldots+a_m\omega_m)\beta_1+\sigma_2(\ldots)\beta_2+\ldots+\sigma_n(\ldots)\beta_n=0$$

$$\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0$$

$$\ldots$$

$$\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0$$

Multiply the *i*th equation by a_i , and sum them up:

$$\sigma_1(a_1\omega_1+a_2\omega_2+\ldots+a_m\omega_m)\beta_1+\sigma_2(\ldots)\beta_2+\ldots+\sigma_n(\ldots)\beta_n=0$$

We get that $\sigma_1(\alpha)\beta_1 + \ldots + \sigma_n(\alpha)\beta_n = 0$.

$$\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0$$

$$\ldots$$

$$\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0$$

Multiply the *i*th equation by a_i , and sum them up:

$$\sigma_1(a_1\omega_1+a_2\omega_2+\ldots+a_m\omega_m)\beta_1+\sigma_2(\ldots)\beta_2+\ldots+\sigma_n(\ldots)\beta_n=0$$

We get that $\sigma_1(\alpha)\beta_1 + \ldots + \sigma_n(\alpha)\beta_n = 0$.

 α was an arbitrary element of K, so $\sigma_1\beta_1 + \ldots + \sigma_n\beta_n = 0$. This contradicts linear independence of characters.

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| \ge [K : F]$.

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| \ge [K : F]$.

Proof: Suppose for a contradiction n = |G| < [K : F]. Let $\alpha_1, \ldots, \alpha_{n+1}$ be *F*-linearly independent in *K*. Look at the system:

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| \ge [K : F]$.

Proof: Suppose for a contradiction n = |G| < [K : F]. Let $\alpha_1, \ldots, \alpha_{n+1}$ be *F*-linearly independent in *K*. Look at the system:

$$\sigma_1(\alpha_1)x_1 + \sigma_1(\alpha_2)x_2 + \ldots + \sigma_1(\alpha_{n+1})x_{n+1} = 0$$

$$\ldots$$

$$\sigma_n(\alpha_1)x_1 + \sigma_n(\alpha_2)x_2 + \ldots + \sigma_n(\alpha_{n+1})x_{n+1} = 0$$

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| \ge [K : F]$.

Proof: Suppose for a contradiction n = |G| < [K : F]. Let $\alpha_1, \ldots, \alpha_{n+1}$ be *F*-linearly independent in *K*. Look at the system:

$$\sigma_1(\alpha_1)x_1 + \sigma_1(\alpha_2)x_2 + \ldots + \sigma_1(\alpha_{n+1})x_{n+1} = 0$$

$$\ldots$$

$$\sigma_n(\alpha_1)x_1 + \sigma_n(\alpha_2)x_2 + \ldots + \sigma_n(\alpha_{n+1})x_{n+1} = 0$$

This has a solution $\beta_1, \ldots, \beta_{n+1} \in K$ with not all β_i 's zero. Choose the one with the minimal number of nonzeroes.

Let $G = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| \ge [K : F]$.

Proof: Suppose for a contradiction n = |G| < [K : F]. Let $\alpha_1, \ldots, \alpha_{n+1}$ be *F*-linearly independent in *K*. Look at the system:

$$\sigma_1(\alpha_1)x_1 + \sigma_1(\alpha_2)x_2 + \ldots + \sigma_1(\alpha_{n+1})x_{n+1} = 0$$

$$\ldots$$

$$\sigma_n(\alpha_1)x_1 + \sigma_n(\alpha_2)x_2 + \ldots + \sigma_n(\alpha_{n+1})x_{n+1} = 0$$

This has a solution $\beta_1, \ldots, \beta_{n+1} \in K$ with not all β_i 's zero. Choose the one with the minimal number of nonzeroes. Renumbering, without loss of generality $\beta_{n+1} \neq 0$. Dividing everything by β_{n+1} , without loss of generality $1 = \beta_{n+1} \in F$. We will show that all the β_i 's are in F. This is a contradiction: σ_1 is the identity and $\alpha_1, \ldots, \alpha_{n+1}$ are supposed to be F-linearly independent.

If $\beta_j \notin F$ for some j, then assume for simplicity j = 1 and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

If $\beta_j \notin F$ for some j, then assume for simplicity j = 1 and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1}) = 0.$

If $\beta_j \notin F$ for some j, then assume for simplicity j = 1 and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1}) = 0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}.$

If $\beta_j \notin F$ for some j, then assume for simplicity j = 1 and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1}) = 0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}.$

Also note $\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$ is just a permutation of $\sigma_1, \ldots, \sigma_n$. So rearranging the equations, we can assume without loss that $\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_i(\alpha_{n+1})\beta_{n+1} = 0$.

If $\beta_j \notin F$ for some j, then assume for simplicity j = 1 and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1}) = 0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}.$

Also note $\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$ is just a permutation of $\sigma_1, \ldots, \sigma_n$. So rearranging the equations, we can assume without loss that $\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_i(\alpha_{n+1})\beta_{n+1} = 0$.

Subtract this from the equation in the first paragraph: $(\beta_1 - \sigma_{k_0}(\beta_1))\sigma_i(\alpha_1) + \ldots + (\beta_n - \sigma_{k_0}(\beta_n))\sigma_i(\alpha_n) = 0.$

If $\beta_j \notin F$ for some j, then assume for simplicity j = 1 and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1}) = 0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}.$

Also note $\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$ is just a permutation of $\sigma_1, \ldots, \sigma_n$. So rearranging the equations, we can assume without loss that $\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1) + \ldots + \sigma_i(\alpha_{n+1})\beta_{n+1} = 0$.

Subtract this from the equation in the first paragraph: $(\beta_1 - \sigma_{k_0}(\beta_1))\sigma_i(\alpha_1) + \ldots + (\beta_n - \sigma_{k_0}(\beta_n))\sigma_i(\alpha_n) = 0.$

Thus $\beta_1 - \sigma_{k_0}(\beta_1), \ldots, \beta_n - \sigma_{k_0}(\beta_n), 0$ is a solution with fewer zeroes than before, contradiction.

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If K/F is any finite extension, then $|\operatorname{Aut}(K/F)| \leq [K : F]$ with equality if and only if F is the fixed field of $\operatorname{Aut}(K/F)$. Thus K/F is Galois if and only if F is the fixed field of $\operatorname{Aut}(K/F)$.

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If K/F is any finite extension, then $|Aut(K/F)| \le [K : F]$ with equality if and only if F is the fixed field of Aut(K/F). Thus K/F is Galois if and only if F is the fixed field of Aut(K/F).

Proof.

Let F_1 be the fixed field of $G = \operatorname{Aut}(K/F)$. Of course, $F \subseteq F_1 \subseteq K$.

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If K/F is any finite extension, then $|Aut(K/F)| \le [K : F]$ with equality if and only if F is the fixed field of Aut(K/F). Thus K/F is Galois if and only if F is the fixed field of Aut(K/F).

Proof.

Let F_1 be the fixed field of $G = \operatorname{Aut}(K/F)$. Of course, $F \subseteq F_1 \subseteq K$.

By the key theorem, $[K : F_1] = |Aut(K/F)|$. Thus $[K : F] = [K : F_1][F_1 : F] = |Aut(K/F)|[F_1 : F]$.

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If K/F is any finite extension, then $|\operatorname{Aut}(K/F)| \leq [K : F]$ with equality if and only if F is the fixed field of $\operatorname{Aut}(K/F)$. Thus K/F is Galois if and only if F is the fixed field of $\operatorname{Aut}(K/F)$.

Proof.

Let F_1 be the fixed field of $G = \operatorname{Aut}(K/F)$. Of course, $F \subseteq F_1 \subseteq K$.

By the key theorem, $[K : F_1] = |\operatorname{Aut}(K/F)|$. Thus $[K : F] = [K : F_1][F_1 : F] = |\operatorname{Aut}(K/F)|[F_1 : F]$. Thus $[K : F] \ge |\operatorname{Aut}(K/F)|$ with equality if and only if $F_1 = F$. \Box

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Proof.

Let $G = \operatorname{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$. Let $\alpha \in K$ be a root of p(x). Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \dots, \sigma_n(\alpha)$.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Proof.

Let $G = \operatorname{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$. Let $\alpha \in K$ be a root of p(x). Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \dots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha = \alpha_1, \ldots, \alpha_r$. Any member of G permutes the α_i 's.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Proof.

Let $G = \operatorname{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$. Let $\alpha \in K$ be a root of p(x). Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \dots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha = \alpha_1, \ldots, \alpha_r$. Any member of G permutes the α_i 's.

Consider $f(x) = (x - \alpha)(x - \alpha_2) \dots (x - \alpha_r)$. Where are its coefficients?

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Proof.

Let $G = \operatorname{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$. Let $\alpha \in K$ be a root of p(x). Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \dots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha = \alpha_1, \ldots, \alpha_r$. Any member of G permutes the α_i 's.

Consider $f(x) = (x - \alpha)(x - \alpha_2) \dots (x - \alpha_r)$. Where are its coefficients?

They are fixed by the members of G, so lie in the fixed field of G, which is F because K/F is Galois. Thus $f(x) \in F[x]$.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Proof.

Let $G = \operatorname{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$. Let $\alpha \in K$ be a root of p(x). Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \dots, \sigma_n(\alpha)$.

Say *r* of them are distinct, $\alpha = \alpha_1, \ldots, \alpha_r$. Any member of *G* permutes the α_i 's.

Consider $f(x) = (x - \alpha)(x - \alpha_2) \dots (x - \alpha_r)$. Where are its coefficients?

They are fixed by the members of G, so lie in the fixed field of G, which is F because K/F is Galois. Thus $f(x) \in F[x]$.

Moreover, p(x) divides f(x) (it is the minimal polynomial), and f(x) divides p(x) because it has fewer roots. Thus f(x) and p(x) are the same up to a unit, and the result follows.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let $\omega_1, \ldots, \omega_n$ be a basis for K/F, with minimal polynomials p_1, p_2, \ldots, p_n .

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let $\omega_1, \ldots, \omega_n$ be a basis for K/F, with minimal polynomials p_1, p_2, \ldots, p_n .

Each p_i is separable and splits completely in K by the lemma.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let $\omega_1, \ldots, \omega_n$ be a basis for K/F, with minimal polynomials p_1, p_2, \ldots, p_n .

Each p_i is separable and splits completely in K by the lemma. Let $q_1(x), \ldots, q_r(x)$ be a listing of the distinct p_i 's. Let $g(x) = q_1(x)q_2(x) \ldots q_r(x)$. Then K is the splitting field of g(x).

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Corollary

If K/F is Galois and $F \subseteq E \subseteq K$, then K/E is Galois.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Corollary

If K/F is Galois and $F \subseteq E \subseteq K$, then K/E is Galois.

Proof.

K/F is the splitting field of some $f(x) \in F[x]$, so is also the splitting field of f(x) considered as a polynomial in E[x].

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Proof.

Clearly, any element of G is in Aut(K/F). Thus $|G| \leq |Aut(K/F)|$.

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Proof.

Clearly, any element of G is in Aut(K/F). Thus $|G| \le |Aut(K/F)|$. By key theorem, |G| = [K : F], so K/F is finite.
Theorem (Key theorem)

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Proof.

Clearly, any element of G is in $\operatorname{Aut}(K/F)$. Thus $|G| \leq |\operatorname{Aut}(K/F)|$. By key theorem, |G| = [K : F], so K/F is finite. By earlier corollary, $|\operatorname{Aut}(K/F)| \leq [K : F]$.

Theorem (Key theorem)

If G is a finite subgroup of Aut(K) with fixed field F, then |G| = [F : K].

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Proof.

Clearly, any element of G is in $\operatorname{Aut}(K/F)$. Thus $|G| \leq |\operatorname{Aut}(K/F)|$. By key theorem, |G| = [K : F], so K/F is finite. By earlier corollary, $|\operatorname{Aut}(K/F)| \leq [K : F]$. So we have $[K : F] = |G| \leq |\operatorname{Aut}(K/F)| \leq [K : F]$, so equality holds.

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Corollary

If $G_1 \neq G_2$ are distinct finite subgroups of Aut(K), then their fixed fields are distinct.

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then G = Aut(K/F).

Corollary

If $G_1 \neq G_2$ are distinct finite subgroups of Aut(K), then their fixed fields are distinct.

Proof.

Let F_1 , F_2 be the fixed fields of G_1 , G_2 . By previous corollary, $G_1 = \operatorname{Aut}(K/F_1)$, $G_2 = \operatorname{Aut}(K/F_2)$. Thus if $F_1 = F_2$, then $G_1 = G_2$.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E_1 , E_2 correspond to H_1 , H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E_1 , E_2 correspond to H_1 , H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .

2.
$$[K : E] = |H|$$
 and $[E : F] = |G : H|$.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

- 1. (Inclusion-reversing correspondence) If E_1 , E_2 correspond to H_1 , H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .
- 2. [K : E] = |H| and [E : F] = |G : H|.
- 3. K/E is always Galois, with Galois group Aut(K/E) = H.

The fundamental theorem: picture

$$K = \text{ fixed field of 1}$$

$$|H| |$$

$$E = \text{ fixed field of } H$$

$$|G:H| |$$

$$F = \text{ fixed field of } G$$

$$1 = \text{ automorphisms fixing } K$$

$$[K:E] |$$

$$H = \text{ automorphisms fixing } E$$

$$[E:F] |$$

$$G = \text{Aut}(K/F) = \text{ automorphisms fixing } F$$

Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed field is injective.

Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed field is injective.

We have also seen that K/E is Galois for any intermediate field E, so E is the fixed field of Aut(K/E). This shows the correspondence is surjective.

Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed field is injective.

We have also seen that K/E is Galois for any intermediate field E, so E is the fixed field of Aut(K/E). This shows the correspondence is surjective.

Also, if *E* is the fixed field of *H* then Aut(K/E) = H so |H| = Aut(K/E) = [K : E], and we also know [K : F] = |G|, so taking quotients and using multiplicativity of degrees, |G/H| = |G|/|H| = [E : F].

Summary

If K/F is a Galois extension (equivalently, the splitting field of a separable polynomial), then there is a perfect correspondence between subgroups of Aut(K/F) and intermediate fields, given by taking fixed fields.