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Reminders

Let K/F be a field extension.

» The group of automorphisms of K fixing F is written
Aut(K/F).

» K/F is Galois if |[Aut(K/F)| = [K : F]. In this case, we call
Aut(K/F) the Galois group of K over F.

» Splitting fields of separable polynomials are Galois.

» Each subgroup H of Aut(K/F) has a fixed field: the set of all
elements of K fixed by H.
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Example

F=Q, K=0Q(\2V3).

Aut(K/F) = {1,0,7,07}, where o sends v/2 to —/2 and fixes
V/3, 7 sends v/3 to —/3 and fixes V2. Aut(K/F) = Z, x Z»

For each subgroup of Aut(K/F), there corresponds a fixed field.
To compute it, use that 1, V2, V3, V6 = V/21/3 is a basis for the

extension.
Subgroup Fixed field
{1y V2. V3)
{10} Q(V3)
{1,07} Q(+v6)
{17} Q(v2)

{1,0,7,07} Q



Q(v2,V3)

(v2) Q(v6) Q
\ | /
{1}

e

{1,7} {1,07} {1,0}

{1,0,7,07}

V3)
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Another example

F = Q, K is the splitting field of x3 — 2.

We computed earlier that K = Q(v/2, p), where p = €2™/3, and
K/Q has degree 6.

Leta:\ﬁb—uﬁﬁ,plﬁp,andT:fﬁb—)w,pHp?

Then Aut(K/F) is generated by o and 7, and we can show
Aut(K/F) = Ss.



Known subfields:

Q(V2,p)

Q(V2)  Q(pv2) — Q(p*V2)



Subgroups of the Galois group:
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Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence
between subgroups of Aut(K/F) and intermediate fields L with
F C L C K. The correspondence is given by taking fixed fields.

The fundamental theorem actually gives a lot more information.
Today's goal is to prove it.

The proof will use linear algebra!
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Theorem (Linear independence of characters)

If x1,X2,...,Xn are distinct character of G with values in L, then
they are linearly independent: ajx1 + ...+ anxn = 0 implies
aya=a=...=a,=0.

Proof: Suppose for a contradiction x1,...,xn are linearly

dependent. Choose n least where this happens. Pick a, ap, ..., a,
not all zero such that:

ax1+...+anxn=0

Pick go € G such that x1(g0) # xn(&0). For any g € G:

a1x1(gog) + a2x2(gog) + - .. + anxn(gog) =0



For any g € G,
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For any g € G,
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Also (multiplying a;x1 + a2x2 + ... + anxn = 0 by xn(go) and
plugging in g):
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For any g € G,

a1x1(go)x1(g) + a2x2(g0)x2(g) + - - - + anxn(g0)xn(g) = 0

Also (multiplying a;x1 + a2x2 + ... + anxn = 0 by xn(go) and
plugging in g):

a1xn(&0)x1(g) + a2xn(g0)x2(g) + - .- + anxn(g0)xn(g) = 0

Subtracting the two, we get:

a1(x1(g0)—xn(80))x1(g)+- - -+an—1(Xn-1(80)—Xn(&0))xn-1(g) =0

Since x1(g0) # xn(g0), this gives a nontrivial relation between
X1, -5 Xn—1, contradicting minimality of n.
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We will use linear independence of distinct characters to prove:
Theorem (Key theorem)

If K is a field and G is a finite subgroup of Aut(K') with fixed field
F, then |G| = [K : F].

Note: before, we started with a certain kind of field F and saw that
|Aut(K/F)| = [K : F]. Here, we start with the group, and deduce
the same equation for its fixed field F.
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Let G be a finite subgroup of Aut(K). Let F be the fixed field.
Then |G| < [K : F].

Proof: Suppose for a contradiction that n = |G| > [K : F] = m.
Write G = {01,02,...,0n}. Let w1,w2,...,wn be a basis for K
over F. Let's study how G acts on the basis. Consider the system
of equation:

o1(wi)x1 + o2(wi)xe + ...+ op(w1)x, =0

o1(wm)x1 + o2(wm)x2 + ... + op(wm)xp =0

Since n > m, there is a nonzero solution, B1,...,0, € K.

Consider any @ € K. Write a = ajw1 + ... + amwm, a;i € F. Note
U;(akwj') = aka,-(wj) (F is the fixed ﬁeld).



a=aw1+ ...+ amwm

o1(w1)f1 + o2(w1)B2 + ... + on(w1)Bn =0

Ul(wm)ﬁl + 0'2(Wm)ﬁ2 +...+ O'n(wm)ﬁn =0
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o1(w1)B1 4+ o2(w1)Ba+ ... + op(w1)Bn =0
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a=aw1+ ...+ amwm

o1(w1)B1 4+ o2(w1)Ba+ ... + op(w1)Bn =0

Ul(wm)ﬁl + 0'2(Wm)ﬁ2 +...+ O'n(wm)ﬁn =0
Multiply the ith equation by a;, and sum them up:
o1(aiwr +acw2 + ...+ amwm)Br+02(.. )2+ ...+ 0on(...)Bn =0

We get that o1(a)B1 + ... + op(a)Bs = 0.



a=aw1+ ...+ amwm

o1(w1)B1 4+ o2(w1)Ba+ ... + op(w1)Bn =0

Ul(wm)ﬁl + 0'2(Wm)ﬁ2 +...+ O'n(wm)ﬁn =0
Multiply the ith equation by a;, and sum them up:
o1(aiwr +acw2 + ...+ amwm)Br+02(.. )2+ ...+ 0on(...)Bn =0

We get that o1(a)B1 + ... + op(a)Bs = 0.

« was an arbitrary element of K, so 0161 + ...+ 0,8, = 0. This
contradicts linear independence of characters.
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Lemma

Let G = {01 =1,02,...,0n} be a subgroup of Aut(K) with fixed
field F. Then |G| > [K : F].

Proof: Suppose for a contradiction n = |G| < [K : F]. Let
a1, ...,0n+1 be F-linearly independent in K. Look at the system:

al(al)xl + Ul(OéQ)XQ + ...+ 01(04,7+1)Xn+1 =0

on(a1)x1 + on(a2)xe + ... + on(@nt1)Xnt1 =0

This has a solution f1,...,Bny1 € K with not all 8;'s zero. Choose
the one with the minimal number of nonzeroes. Renumbering,
without loss of generality 3,11 # 0. Dividing everything by 8,41,
without loss of generality 1 = 8,41 € F. We will show that all the
Bi's are in F. This is a contradiction: o1 is the identity and

a1, ...,0n+1 are supposed to be F-linearly independent.
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each /i, and we know 0 # 5,41 € F.

If B; ¢ F for some j, then assume for simplicity j = 1 and by
definition of the fixed field there is an automorphism oy, € G such

that o4, (51) # Bi-

Applying oy, to the above, we get that

0k 0i(01)0k,(B1) + - .. + 0ky0i(ni1) 0k, (Bny1) = 0.
Note that o, (Bn+1) = Bnt1-

Also note 0,01, 04,02, ...,0k0n is just a permutation of

01,.-.,0n. S0 rearranging the equations, we can assume without
loss that oi(a1)ok,(81) + ... + gi(ant1)Bny1 = 0.



We have the equations o;(a1)51 + ... + 0i(@n+1)Bnr1 = 0 for
each /i, and we know 0 # 5,41 € F.

If B; ¢ F for some j, then assume for simplicity j = 1 and by
definition of the fixed field there is an automorphism oy, € G such

that oy, (51) # B

Applying oy, to the above, we get that

O'kOO','(Ozl)O'kO(,Bl) + ...+ Ukoo'i(an—i-l)ako(ﬁn-i-l) =0.

Note that o, (Bn+1) = Bnt1-

Also note 0,01, 04,02, ...,0k0n is just a permutation of
o1,...,0n. SO rearranging the equations, we can assume without
loss that oi(a1)ok,(81) + ... + gi(ant1)Bny1 = 0.

Subtract this from the equation in the first paragraph:

(/61 - Uko(ﬁl))al(al) (5n O'ko(/Bn))Ui(Oln) =0.



We have the equations o;(a1)51 + ... + 0i(@n+1)Bnr1 = 0 for
each /i, and we know 0 # 5,41 € F.

If B; ¢ F for some j, then assume for simplicity j = 1 and by
definition of the fixed field there is an automorphism oy, € G such

that o4, (51) # Bi-

Applying oy, to the above, we get that
Ok0i(01)ok,(B1) + - - + 0k 0i(nt1) ok (Bnr1) = 0.
Note that o, (Bn+1) = Bnt1-

Also note 0,01, 04,02, ...,0k0n is just a permutation of
01,.-.,0n. S0 rearranging the equations, we can assume without
loss that oi(a1)ok,(81) + ... + gi(ant1)Bny1 = 0.

Subtract this from the equation in the first paragraph:

(/61 - Uko(ﬁl))al(al) (5n O'ko(/Bn))Ui(Oln) =0.

Thus B1 — 0k, (B1), -, Bn — 0k, (Bn), 0 is a solution with fewer
zeroes than before, contradiction.
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Theorem (Key theorem)

If G is a finite subgroup of Aut(K) with fixed field F, then
|G| = [F : K].

Corollary

If K/F is any finite extension, then |Aut(K/F)| < [K : F] with
equality if and only if F is the fixed field of Aut(K/F). Thus K/F
is Galois if and only if F is the fixed field of Aut(K/F).

Proof.

Let F; be the fixed field of G = Aut(K/F). Of course,
FCFH CK.

By the key theorem, [K : F1] = |Aut(K/F)|. Thus
[K: Fl=[K: FA][Ff: F]=|Aut(K/F)|[F : F].

Thus [K : F] > |Aut(K/F)| with equality if and only if F; = F. [
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coefficients?
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Let G = Aut(K/F) ={o1 =1,02,...,0,}. Let « € K be a root
of p(x). Consider «, 02(), 03(@), ..., on().

Say r of them are distinct, « = a3, ..., a,. Any member of G

permutes the «;'s.
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coefficients?

They are fixed by the members of G, so lie in the fixed field of G,
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Lemma

If K/F is a Galois extension, then every irreducible p(x) € F[x]
which has a root in K is separable and splits completely in K.

Proof.

Let G = Aut(K/F) ={o1 =1,02,...,0,}. Let « € K be a root
of p(x). Consider «, 02(), 03(@), ..., on().

Say r of them are distinct, « = a3, ..., a,. Any member of G

permutes the «;'s.

Consider f(x) = (x — a)(x — a2) ... (x — a,). Where are its
coefficients?

They are fixed by the members of G, so lie in the fixed field of G,
which is F because K/F is Galois. Thus f(x) € F[x].

Moreover, p(x) divides f(x) (it is the minimal polynomial), and
f(x) divides p(x) because it has fewer roots. Thus f(x) and p(x)
are the same up to a unit, and the result follows. []



Lemma
If K/F is a Galois extension, then every irreducible p(x) € F[x]
which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of
a separable polynomial over F.



Lemma
If K/F is a Galois extension, then every irreducible p(x) € F[x]

which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of
a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let
wi,...,wp be a basis for K/F, with minimal polynomials

P1,P2;- -, Pn-



Lemma

If K/F is a Galois extension, then every irreducible p(x) € F[x]
which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of
a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let
wi,...,wp be a basis for K/F, with minimal polynomials
P1,P2,- -, Pn-

Each p; is separable and splits completely in K by the lemma.



Lemma

If K/F is a Galois extension, then every irreducible p(x) € F[x]
which has a root in K is separable and splits completely in K.

Corollary

An extension K/F is Galois if and only if it is the splitting field of
a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let
wi,...,wp be a basis for K/F, with minimal polynomials
P1,P2,- -, Pn-

Each p; is separable and splits completely in K by the lemma. Let
g1(x), ..., qr(x) be a listing of the distinct p;'s. Let
g(x) = q1(x)g2(x) ... gr(x). Then K is the splitting field of g(x).

Ol



Corollary
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Corollary

If K/F is Galois and F C E C K, then K/E is Galois.

Proof.

K /F is the splitting field of some f(x) € F[x], so is also the
splitting field of f(x) considered as a polynomial in E[x]. O
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Theorem (Key theorem)

If G is a finite subgroup of Aut(K) with fixed field F, then
|G| =[F : K].

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then
G = Aut(K/F).

Proof.

Clearly, any element of G is in Aut(K/F). Thus |G| < |Aut(K/F)].
By key theorem, |G| = [K : F], so K/F is finite.
By earlier corollary, |Aut(K/F)| < [K : F].

So we have [K : F] = |G| < |Aut(K/F)| < [K : F], so equality
holds. O]
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Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then
G = Aut(K/F).

Corollary

If G1 # Gy are distinct finite subgroups of Aut(K), then their fixed
fields are distinct.

Proof.

Let F1, F> be the fixed fields of Gy, Go. By previous corollary,
G = Aut(K/Fl), G, = Aut(K/Fg). Thus if F; = F», then
Gy = Go. L]
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Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the
Galois group.

There is a bijection between the subfields E of K containing F,
and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E,
and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E;, E; correspond to
Hi, Ho, then Ej is a subfield of E; if and only if Hs is a
subgroup of Hj.

2. [K:E]=|H|and [E: F]=|G: H]|.
3. K/E is always Galois, with Galois group Aut(K/E) = H.



The fundamental theorem: picture

K = fixed field of 1
|

E — fixed field of H
G|

F = fixed field of G

1 = automorphisms fixing K
el

H = automorphisms fixing E
(£:F]

G = Aut(K/F) = automorphisms fixing F
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Proof of fundamental theorem, part |

We have already proven that the map sending a group to its fixed
field is injective.

We have also seen that K/E is Galois for any intermediate field E,
so E is the fixed field of Aut(K/E). This shows the
correspondence is surjective.

Also, if E is the fixed field of H then Aut(K/E) = H so

|H| = Aut(K/E) = [K : E], and we also know [K : F] = |G|, so
taking quotients and using multiplicativity of degrees,

|G/H| = |G|/|H| = [E : F].



Summary

If K/F is a Galois extension (equivalently, the splitting field of a
separable polynomial), then there is a perfect correspondence
between subgroups of Aut(K/F) and intermediate fields, given by
taking fixed fields.



