Math-123: The fundamental theorem of Galois theory

Sebastien Vasey

Harvard University

April 3, 2020

Let K/F be a field extension.

 \blacktriangleright The group of automorphisms of K fixing F is written Aut (K/F) .

Let K/F be a field extension.

- \triangleright The group of automorphisms of K fixing F is written Aut (K/F) .
- \triangleright K/F is Galois if $|\text{Aut}(K/F)| = [K : F]$. In this case, we call Aut(K/F) the *Galois group* of K over F.

Let K/F be a field extension.

- \triangleright The group of automorphisms of K fixing F is written Aut (K/F) .
- \triangleright K/F is Galois if $|\text{Aut}(K/F)| = [K : F]$. In this case, we call Aut(K/F) the *Galois group* of K over F.
- \triangleright Splitting fields of separable polynomials are Galois.

Let K/F be a field extension.

- \triangleright The group of automorphisms of K fixing F is written Aut (K/F) .
- \triangleright K/F is Galois if $|\text{Aut}(K/F)| = [K : F]$. In this case, we call Aut(K/F) the *Galois group* of K over F.
- \triangleright Splitting fields of separable polynomials are Galois.
- Each subgroup H of Aut(K/F) has a fixed field: the set of all elements of K fixed by H .

$$
F=\mathbb{Q}, K=\mathbb{Q}(\sqrt{2},\sqrt{3}).
$$

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3). Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-$ √ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\overline{3}$, τ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}$. Aut $(K/F) \cong Z_2 \times Z_2$

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3). Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-$ √ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\overline{3}$, τ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}$. Aut $(K/F) \cong Z_2 \times Z_2$

For each subgroup of Aut(K/F), there corresponds a fixed field.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3). Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-$ √ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\overline{3}$, τ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}$. Aut $(K/F) \cong Z_2 \times Z_2$ For each subgroup of Aut(K/F), there corresponds a fixed field. To compute it, use that 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6} = \sqrt{2}$ √ 3 is a basis for the extension.

 $F = \mathbb{Q}, K = \mathbb{Q}(\sqrt{2})$ 2, √ 3). Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-$ √ Aut $(K/F) = \{1, \sigma, \tau, \sigma\tau\}$, where σ sends $\sqrt{2}$ to $-\sqrt{2}$ and fixes $\overline{3}$, τ sends $\sqrt{3}$ to $-\sqrt{3}$ and fixes $\sqrt{2}$. Aut $(K/F) \cong Z_2 \times Z_2$ For each subgroup of Aut(K/F), there corresponds a fixed field. To compute it, use that 1, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{6} = \sqrt{2}$ √ 3 is a basis for the extension.

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

Another example

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$. We computed earlier that $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$, where $\rho = e^{2\pi i/3}$, and K/\mathbb{Q} has degree 6.

Another example

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We computed earlier that $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$, where $\rho = e^{2\pi i/3}$, and K/\mathbb{O} has degree 6.

Let $\sigma : \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau : \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^2$.

Another example

 $F = \mathbb{Q}$, K is the splitting field of $x^3 - 2$.

We computed earlier that $K = \mathbb{Q}(\sqrt[3]{2}, \rho)$, where $\rho = e^{2\pi i/3}$, and K/\mathbb{O} has degree 6.

Let $\sigma : \sqrt[3]{2} \mapsto \rho \sqrt[3]{2}$, $\rho \mapsto \rho$, and $\tau : \sqrt[3]{2} \mapsto \sqrt[3]{2}$, $\rho \mapsto \rho^2$.

Then Aut(K/F) is generated by σ and τ , and we can show Aut $(K/F) \cong S_3$.

Known subfields:

Subgroups of the Galois group:

Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence between subgroups of $Aut(K/F)$ and intermediate fields L with $F \subset L \subset K$. The correspondence is given by taking fixed fields.

Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence between subgroups of $Aut(K/F)$ and intermediate fields L with $F \subseteq L \subseteq K$. The correspondence is given by taking fixed fields.

The fundamental theorem actually gives a lot more information. Today's goal is to prove it.

Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence between subgroups of $Aut(K/F)$ and intermediate fields L with $F \subseteq L \subseteq K$. The correspondence is given by taking fixed fields.

The fundamental theorem actually gives a lot more information. Today's goal is to prove it.

The proof will use linear algebra!

Characters

Definition

A character of a group G with values in a field L is a homomorphism $\chi: \mathsf{G} \to \mathsf{L}^\times$.

Characters

Definition

A character of a group G with values in a field L is a homomorphism $\chi: \mathsf{G} \to \mathsf{L}^\times$.

Note: any automorphism of a field K yields a character of K^\times with values in K

Characters

Definition

A character of a group G with values in a field L is a homomorphism $\chi: \mathsf{G} \to \mathsf{L}^\times$.

Note: any automorphism of a field K yields a character of K^\times with values in K

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of G with values in L, then they are L-linearly independent: $a_1y_1 + \ldots + a_ny_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0.$

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of G with values in L, then they are linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0.$

Proof: Suppose for a contradiction χ_1, \ldots, χ_n are linearly dependent. Choose *n* least where this happens. Pick a_1, a_2, \ldots, a_n not all zero such that:

 $a_1x_1 + \ldots + a_nx_n = 0$

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of G with values in L, then they are linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0.$

Proof: Suppose for a contradiction χ_1, \ldots, χ_n are linearly dependent. Choose *n* least where this happens. Pick a_1, a_2, \ldots, a_n not all zero such that:

$$
a_1\chi_1+\ldots+a_n\chi_n=0
$$

Pick $g_0 \in G$ such that $\chi_1(g_0) \neq \chi_n(g_0)$. For any $g \in G$:

Theorem (Linear independence of characters)

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct character of G with values in L, then they are linearly independent: $a_1\chi_1 + \ldots + a_n\chi_n = 0$ implies $a_1 = a_2 = \ldots = a_n = 0.$

Proof: Suppose for a contradiction χ_1, \ldots, χ_n are linearly dependent. Choose *n* least where this happens. Pick a_1, a_2, \ldots, a_n not all zero such that:

$$
a_1\chi_1+\ldots+a_n\chi_n=0
$$

Pick $g_0 \in G$ such that $\chi_1(g_0) \neq \chi_n(g_0)$. For any $g \in G$:

$$
a_1 \chi_1(g_0 g) + a_2 \chi_2(g_0 g) + \ldots + a_n \chi_n(g_0 g) = 0
$$

 $a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$

$$
a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0
$$

Also (multiplying $a_1\chi_1 + a_2\chi_2 + \ldots + a_n\chi_n = 0$ by $\chi_n(g_0)$ and plugging in g):

 $a_1\chi_n(g_0)\chi_1(g) + a_2\chi_n(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0$

$$
a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0
$$

Also (multiplying $a_1\chi_1 + a_2\chi_2 + \ldots + a_n\chi_n = 0$ by $\chi_n(g_0)$ and plugging in g):

$$
a_1\chi_n(g_0)\chi_1(g) + a_2\chi_n(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0
$$

Subtracting the two, we get:

 $a_1(\chi_1(g_0)-\chi_n(g_0))\chi_1(g)+\ldots+a_{n-1}(\chi_{n-1}(g_0)-\chi_n(g_0))\chi_{n-1}(g)=0$

$$
a_1\chi_1(g_0)\chi_1(g) + a_2\chi_2(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0
$$

Also (multiplying $a_1\chi_1 + a_2\chi_2 + \ldots + a_n\chi_n = 0$ by $\chi_n(g_0)$ and plugging in g):

$$
a_1\chi_n(g_0)\chi_1(g) + a_2\chi_n(g_0)\chi_2(g) + \ldots + a_n\chi_n(g_0)\chi_n(g) = 0
$$

Subtracting the two, we get:

$$
a_1(\chi_1(g_0)-\chi_n(g_0))\chi_1(g)+\ldots+a_{n-1}(\chi_{n-1}(g_0)-\chi_n(g_0))\chi_{n-1}(g)=0
$$

Since $\chi_1(g_0) \neq \chi_n(g_0)$, this gives a nontrivial relation between $\chi_1, \ldots, \chi_{n-1}$, contradicting minimality of *n*.

We will use linear independence of distinct characters to prove:

Theorem (Key theorem)

If K is a field and G is a finite subgroup of $Aut(K)$ with fixed field F, then $|G| = [K : F]$.

We will use linear independence of distinct characters to prove:

Theorem (Key theorem)

If K is a field and G is a finite subgroup of $Aut(K)$ with fixed field F, then $|G| = [K : F]$.

Note: before, we started with a certain kind of field F and saw that $|Aut(K/F)| = [K : F]$. Here, we start with the group, and deduce the same equation for its fixed field F.

Let G be a finite subgroup of $Aut(K)$. Let F be the fixed field. Then $|G| \leq [K : F]$.

Let G be a finite subgroup of $Aut(K)$. Let F be the fixed field. Then $|G| \leq [K : F]$.

Proof: Suppose for a contradiction that $n = |G| > [K : F] = m$. Write $G = \{\sigma_1, \sigma_2, \ldots, \sigma_n\}$. Let $\omega_1, \omega_2, \ldots, \omega_m$ be a basis for K over F . Let's study how G acts on the basis.

Let G be a finite subgroup of $Aut(K)$. Let F be the fixed field. Then $|G| \leq [K : F]$.

Proof: Suppose for a contradiction that $n = |G| > [K : F] = m$. Write $G = {\sigma_1, \sigma_2, \ldots, \sigma_n}$. Let $\omega_1, \omega_2, \ldots, \omega_m$ be a basis for K over F. Let's study how G acts on the basis. Consider the system of equation:

$$
\sigma_1(\omega_1)x_1 + \sigma_2(\omega_1)x_2 + \ldots + \sigma_n(\omega_1)x_n = 0
$$

...

$$
\sigma_1(\omega_m)x_1 + \sigma_2(\omega_m)x_2 + \ldots + \sigma_n(\omega_m)x_n = 0
$$

Since $n > m$, there is a nonzero solution, $\beta_1, \ldots, \beta_n \in K$.

Let G be a finite subgroup of $Aut(K)$. Let F be the fixed field. Then $|G| \leq [K : F]$.

Proof: Suppose for a contradiction that $n = |G| > [K : F] = m$. Write $G = \{\sigma_1, \sigma_2, \ldots, \sigma_n\}$. Let $\omega_1, \omega_2, \ldots, \omega_m$ be a basis for K over F. Let's study how G acts on the basis. Consider the system of equation:

$$
\sigma_1(\omega_1)x_1 + \sigma_2(\omega_1)x_2 + \ldots + \sigma_n(\omega_1)x_n = 0
$$

...

$$
\sigma_1(\omega_m)x_1 + \sigma_2(\omega_m)x_2 + \ldots + \sigma_n(\omega_m)x_n = 0
$$

Since $n > m$, there is a nonzero solution, $\beta_1, \ldots, \beta_n \in K$.

Consider any $\alpha \in K$. Write $\alpha = a_1 \omega_1 + \ldots + a_m \omega_m$, $a_i \in F$. Note $\sigma_i(a_k\omega_i) = a_k\sigma_i(\omega_i)$ (*F* is the fixed field).
$$
\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0
$$

$$
\ldots
$$

$$
\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0
$$

$$
\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0
$$

...

$$
\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0
$$

Multiply the *i*th equation by a_i , and sum them up:

 $\sigma_1(a_1\omega_1 + a_2\omega_2 + \ldots + a_m\omega_m)\beta_1 + \sigma_2(\ldots)\beta_2 + \ldots + \sigma_n(\ldots)\beta_n = 0$

$$
\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0
$$

...

$$
\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0
$$

Multiply the *i*th equation by a_i , and sum them up:

$$
\sigma_1(a_1\omega_1+a_2\omega_2+\ldots+a_m\omega_m)\beta_1+\sigma_2(\ldots)\beta_2+\ldots+\sigma_n(\ldots)\beta_n=0
$$

We get that $\sigma_1(\alpha)\beta_1 + \ldots + \sigma_n(\alpha)\beta_n = 0$.

$$
\sigma_1(\omega_1)\beta_1 + \sigma_2(\omega_1)\beta_2 + \ldots + \sigma_n(\omega_1)\beta_n = 0
$$

...

$$
\sigma_1(\omega_m)\beta_1 + \sigma_2(\omega_m)\beta_2 + \ldots + \sigma_n(\omega_m)\beta_n = 0
$$

Multiply the *i*th equation by a_i , and sum them up:

$$
\sigma_1(a_1\omega_1+a_2\omega_2+\ldots+a_m\omega_m)\beta_1+\sigma_2(\ldots)\beta_2+\ldots+\sigma_n(\ldots)\beta_n=0
$$

We get that $\sigma_1(\alpha)\beta_1 + \ldots + \sigma_n(\alpha)\beta_n = 0$.

α was an arbitrary element of K, so $\sigma_1\beta_1 + \ldots + \sigma_n\beta_n = 0$. This contradicts linear independence of characters.

Let $G = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| \geq [K : F]$.

Let $G = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| > [K : F]$.

Proof: Suppose for a contradiction $n = |G| < [K : F]$. Let $\alpha_1, \ldots, \alpha_{n+1}$ be *F*-linearly independent in *K*. Look at the system:

Let $G = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| > [K : F]$.

Proof: Suppose for a contradiction $n = |G| < [K : F]$. Let $\alpha_1, \ldots, \alpha_{n+1}$ be *F*-linearly independent in *K*. Look at the system:

$$
\sigma_1(\alpha_1)x_1 + \sigma_1(\alpha_2)x_2 + \ldots + \sigma_1(\alpha_{n+1})x_{n+1} = 0
$$

...

$$
\sigma_n(\alpha_1)x_1 + \sigma_n(\alpha_2)x_2 + \ldots + \sigma_n(\alpha_{n+1})x_{n+1} = 0
$$

Let $G = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| > [K : F]$.

Proof: Suppose for a contradiction $n = |G| < [K : F]$. Let $\alpha_1, \ldots, \alpha_{n+1}$ be F-linearly independent in K. Look at the system:

$$
\sigma_1(\alpha_1)x_1 + \sigma_1(\alpha_2)x_2 + \ldots + \sigma_1(\alpha_{n+1})x_{n+1} = 0
$$

...

$$
\sigma_n(\alpha_1)x_1 + \sigma_n(\alpha_2)x_2 + \ldots + \sigma_n(\alpha_{n+1})x_{n+1} = 0
$$

This has a solution $\beta_1,\ldots,\beta_{n+1}\in K$ with not all β_i 's zero. Choose the one with the minimal number of nonzeroes.

Let $G = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$ be a subgroup of Aut(K) with fixed field F. Then $|G| > [K : F]$.

Proof: Suppose for a contradiction $n = |G| < [K : F]$. Let $\alpha_1, \ldots, \alpha_{n+1}$ be F-linearly independent in K. Look at the system:

$$
\sigma_1(\alpha_1)x_1 + \sigma_1(\alpha_2)x_2 + \ldots + \sigma_1(\alpha_{n+1})x_{n+1} = 0
$$

...

$$
\sigma_n(\alpha_1)x_1 + \sigma_n(\alpha_2)x_2 + \ldots + \sigma_n(\alpha_{n+1})x_{n+1} = 0
$$

This has a solution $\beta_1,\ldots,\beta_{n+1}\in K$ with not all β_i 's zero. Choose the one with the minimal number of nonzeroes. Renumbering, without loss of generality $\beta_{n+1} \neq 0$. Dividing everything by β_{n+1} , without loss of generality $1 = \beta_{n+1} \in F$. We will show that all the β_i 's are in $F.$ This is a contradiction: σ_1 is the identity and $\alpha_1, \ldots, \alpha_{n+1}$ are supposed to be *F*-linearly independent.

If $\beta_i \notin F$ for some j, then assume for simplicity $j = 1$ and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

If $\beta_i \notin F$ for some j, then assume for simplicity $j = 1$ and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1})=0.$

If $\beta_i \notin F$ for some j, then assume for simplicity $j = 1$ and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1})=0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}$.

If $\beta_i \notin F$ for some j, then assume for simplicity $j = 1$ and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1})=0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}$.

Also note $\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$ is just a permutation of $\sigma_1, \ldots, \sigma_n$. So rearranging the equations, we can assume without loss that $\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_i(\alpha_{n+1})\beta_{n+1}=0$.

If $\beta_i \notin F$ for some j, then assume for simplicity $j = 1$ and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1})=0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}$.

Also note $\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$ is just a permutation of $\sigma_1, \ldots, \sigma_n$. So rearranging the equations, we can assume without loss that $\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_i(\alpha_{n+1})\beta_{n+1}=0$.

Subtract this from the equation in the first paragraph: $(\beta_1 - \sigma_{k_0}(\beta_1))\sigma_i(\alpha_1) + \ldots + (\beta_n - \sigma_{k_0}(\beta_n))\sigma_i(\alpha_n) = 0.$

If $\beta_i \notin F$ for some j, then assume for simplicity $j = 1$ and by definition of the fixed field there is an automorphism $\sigma_{k_0} \in G$ such that $\sigma_{k_0}(\beta_1) \neq \beta_1$.

Applying σ_{k_0} to the above, we get that $\sigma_{k_0}\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_{k_0}\sigma_i(\alpha_{n+1})\sigma_{k_0}(\beta_{n+1})=0.$ Note that $\sigma_{k_0}(\beta_{n+1}) = \beta_{n+1}$.

Also note $\sigma_{k_0}\sigma_1, \sigma_{k_0}\sigma_2, \ldots, \sigma_{k_0}\sigma_n$ is just a permutation of $\sigma_1, \ldots, \sigma_n$. So rearranging the equations, we can assume without loss that $\sigma_i(\alpha_1)\sigma_{k_0}(\beta_1)+\ldots+\sigma_i(\alpha_{n+1})\beta_{n+1}=0$.

Subtract this from the equation in the first paragraph: $(\beta_1 - \sigma_{k_0}(\beta_1))\sigma_i(\alpha_1) + \ldots + (\beta_n - \sigma_{k_0}(\beta_n))\sigma_i(\alpha_n) = 0.$

Thus $\beta_1-\sigma_{k_0}(\beta_1),\ldots,\beta_n-\sigma_{k_0}(\beta_n),$ 0 is a solution with fewer zeroes than before, contradiction.

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $|G| = [F : K].$

If G is a finite subgroup of Aut(K) with fixed field F , then $|G| = [F : K].$

Corollary

If K/F is any finite extension, then $|Aut(K/F)| \leq [K : F]$ with equality if and only if F is the fixed field of Aut(K/F). Thus K/F is Galois if and only if F is the fixed field of $Aut(K/F)$.

If G is a finite subgroup of Aut(K) with fixed field F , then $|G| = [F : K].$

Corollarv

If K/F is any finite extension, then $|Aut(K/F)| \leq [K : F]$ with equality if and only if F is the fixed field of Aut(K/F). Thus K/F is Galois if and only if F is the fixed field of Aut(K/F).

Proof.

Let F_1 be the fixed field of $G = Aut(K/F)$. Of course, $F \subseteq F_1 \subseteq K$.

If G is a finite subgroup of Aut (K) with fixed field F, then $|G| = [F : K].$

Corollary

If K/F is any finite extension, then $|Aut(K/F)| \leq [K : F]$ with equality if and only if F is the fixed field of Aut(K/F). Thus K/F is Galois if and only if F is the fixed field of Aut(K/F).

Proof.

Let F_1 be the fixed field of $G = Aut(K/F)$. Of course, $F \subset F_1 \subset K$.

By the key theorem, $[K : F_1] = |Aut(K/F)|$. Thus $[K : F] = [K : F_1][F_1 : F] = |Aut(K/F)|[F_1 : F].$

If G is a finite subgroup of Aut(K) with fixed field F, then $|G| = [F : K].$

Corollary

If K/F is any finite extension, then $|Aut(K/F)| \leq [K : F]$ with equality if and only if F is the fixed field of Aut(K/F). Thus K/F is Galois if and only if F is the fixed field of Aut(K/F).

Proof.

Let F_1 be the fixed field of $G = Aut(K/F)$. Of course, $F \subset F_1 \subset K$.

By the key theorem, $[K : F_1] = |Aut(K/F)|$. Thus $[K : F] = [K : F_1][F_1 : F] = |Aut(K/F)|[F_1 : F].$ Thus $[K : F] \geq |Aut(K/F)|$ with equality if and only if $F_1 = F$. \Box

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Proof.

Let $G = Aut(K/F) = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$. Let $\alpha \in K$ be a root of $p(x)$. Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \ldots, \sigma_n(\alpha)$.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Proof.

Let $G = \text{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$. Let $\alpha \in K$ be a root of $p(x)$. Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \ldots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha=\alpha_1,\ldots,\alpha_r.$ Any member of G permutes the α_i 's.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Proof.

Let $G = \text{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$. Let $\alpha \in K$ be a root of $p(x)$. Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \ldots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha=\alpha_1,\ldots,\alpha_r.$ Any member of G permutes the α_i 's.

Consider $f(x) = (x - \alpha)(x - \alpha_2) \dots (x - \alpha_r)$. Where are its coefficients?

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Proof.

Let $G = \text{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$. Let $\alpha \in K$ be a root of $p(x)$. Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \ldots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha=\alpha_1,\ldots,\alpha_r.$ Any member of G permutes the α_i 's.

Consider $f(x) = (x - \alpha)(x - \alpha_2) \dots (x - \alpha_r)$. Where are its coefficients?

They are fixed by the members of G, so lie in the fixed field of G, which is F because K/F is Galois. Thus $f(x) \in F[x]$.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Proof.

Let $G = \text{Aut}(K/F) = \{\sigma_1 = 1, \sigma_2, \ldots, \sigma_n\}$. Let $\alpha \in K$ be a root of $p(x)$. Consider $\alpha, \sigma_2(\alpha), \sigma_3(\alpha), \ldots, \sigma_n(\alpha)$.

Say r of them are distinct, $\alpha=\alpha_1,\ldots,\alpha_r.$ Any member of G permutes the α_i 's.

Consider $f(x) = (x - \alpha)(x - \alpha_2) \dots (x - \alpha_r)$. Where are its coefficients?

They are fixed by the members of G, so lie in the fixed field of G, which is F because K/F is Galois. Thus $f(x) \in F[x]$.

Moreover, $p(x)$ divides $f(x)$ (it is the minimal polynomial), and $f(x)$ divides $p(x)$ because it has fewer roots. Thus $f(x)$ and $p(x)$ are the same up to a unit, and the result follows.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let $\omega_1, \ldots, \omega_n$ be a basis for K/F , with minimal polynomials p_1, p_2, \ldots, p_n .

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let $\omega_1, \ldots, \omega_n$ be a basis for K/F , with minimal polynomials p_1, p_2, \ldots, p_n .

Each p_i is separable and splits completely in K by the lemma.

If K/F is a Galois extension, then every irreducible $p(x) \in F[x]$ which has a root in K is separable and splits completely in K .

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Proof.

We saw the right to left direction already. For the converse, let $\omega_1, \ldots, \omega_n$ be a basis for K/F , with minimal polynomials p_1, p_2, \ldots, p_n .

Each p_i is separable and splits completely in K by the lemma. Let $q_1(x), \ldots, q_r(x)$ be a listing of the distinct p_i 's. Let $g(x) = q_1(x)q_2(x)... q_r(x)$. Then K is the splitting field of $g(x)$.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Corollary

If K/F is Galois and $F \subseteq E \subseteq K$, then K/E is Galois.

Corollary

An extension K/F is Galois if and only if it is the splitting field of a separable polynomial over F.

Corollary

If K/F is Galois and $F \subseteq E \subseteq K$, then K/E is Galois.

Proof.

K/F is the splitting field of some $f(x) \in F[x]$, so is also the splitting field of $f(x)$ considered as a polynomial in $E[x]$.

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $|G| = [F : K].$

Corollary

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $G = Aut(K/F)$.

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $|G| = [F : K].$

Corollary

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $G = Aut(K/F)$.

Proof.

Clearly, any element of G is in Aut (K/F) . Thus $|G| \leq |\text{Aut}(K/F)|$.

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $|G| = [F : K].$

Corollary

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $G = Aut(K/F)$.

Proof.

Clearly, any element of G is in Aut(K/F). Thus $|G| < |Aut(K/F)|$. By key theorem, $|G| = [K : F]$, so K/F is finite.
Theorem (Key theorem)

If G is a finite subgroup of Aut(K) with fixed field F, then $|G| = [F : K].$

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then $G = Aut(K/F)$.

Proof.

Clearly, any element of G is in Aut(K/F). Thus $|G| < |Aut(K/F)|$. By key theorem, $|G| = [K : F]$, so K/F is finite. By earlier corollary, $|\text{Aut}(K/F)| < [K : F]$.

Theorem (Key theorem)

If G is a finite subgroup of Aut(K) with fixed field F, then $|G| = [F : K].$

Corollary

If G is a finite subgroup of Aut(K) with fixed field F, then $G = Aut(K/F)$.

Proof.

Clearly, any element of G is in Aut(K/F). Thus $|G| < |Aut(K/F)|$. By key theorem, $|G| = [K : F]$, so K/F is finite. By earlier corollary, $|\text{Aut}(K/F)| \leq [K : F]$. So we have $[K : F] = |G| \leq |Aut(K/F)| \leq [K : F]$, so equality holds.П

Corollary

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $G = Aut(K/F).$

Corollary

If G is a finite subgroup of $Aut(K)$ with fixed field F, then $G = Aut(K/F)$.

Corollary

If $G_1 \neq G_2$ are distinct finite subgroups of Aut(K), then their fixed fields are distinct.

Corollary

If G is a finite subgroup of Aut(K) with fixed field F , then $G = Aut(K/F)$.

Corollary

If $G_1 \neq G_2$ are distinct finite subgroups of Aut(K), then their fixed fields are distinct.

Proof.

Let F_1, F_2 be the fixed fields of G_1, G_2 . By previous corollary, $G_1 = \text{Aut}(K/F_1)$, $G_2 = \text{Aut}(K/F_2)$. Thus if $F_1 = F_2$, then $G_1 = G_2$.

Theorem

Let K/F be a Galois extension and let $G = Aut(K/F)$ be the Galois group.

Theorem

Let K/F be a Galois extension and let $G = Aut(K/F)$ be the Galois group.

There is a bijection between the subfields E of K containing F , and the subgroups H of G .

Theorem

Let K/F be a Galois extension and let $G = Aut(K/F)$ be the Galois group.

There is a bijection between the subfields E of K containing F , and the subgroups H of G .

This bijection is given by sending E to the elements of G fixing E , and the inverse sends H to the fixed field of H . Moreover:

Theorem

Let K/F be a Galois extension and let $G = Aut(K/F)$ be the Galois group.

There is a bijection between the subfields E of K containing F , and the subgroups H of G .

This bijection is given by sending E to the elements of G fixing E , and the inverse sends H to the fixed field of H . Moreover:

1. (Inclusion-reversing correspondence) If E_1, E_2 correspond to H_1, H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .

Theorem

Let K/F be a Galois extension and let $G = Aut(K/F)$ be the Galois group.

There is a bijection between the subfields E of K containing F , and the subgroups H of G .

This bijection is given by sending E to the elements of G fixing E , and the inverse sends H to the fixed field of H . Moreover:

1. (Inclusion-reversing correspondence) If E_1, E_2 correspond to H_1, H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .

2.
$$
[K : E] = |H|
$$
 and $[E : F] = |G : H|$.

Theorem

Let K/F be a Galois extension and let $G = Aut(K/F)$ be the Galois group.

There is a bijection between the subfields E of K containing F , and the subgroups H of G .

This bijection is given by sending E to the elements of G fixing E , and the inverse sends H to the fixed field of H . Moreover:

- 1. (Inclusion-reversing correspondence) If E_1, E_2 correspond to H_1, H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .
- 2. $[K : E] = |H|$ and $[E : F] = |G : H|$.
- 3. K/E is always Galois, with Galois group $Aut(K/E) = H$.

The fundamental theorem: picture

$$
K = \text{ fixed field of 1}
$$
\n
$$
|H||
$$
\n
$$
E = \text{fixed field of } H
$$
\n
$$
|G:H||
$$
\n
$$
F = \text{fixed field of } G
$$
\n
$$
1 = \text{automorphisms fixing } K
$$
\n
$$
[K:E]
$$
\n
$$
H = \text{automorphisms fixing } E
$$
\n
$$
[E:F]
$$
\n
$$
G = \text{Aut}(K/F) = \text{automorphisms fixing } F
$$

Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed field is injective.

Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed field is injective.

We have also seen that K/E is Galois for any intermediate field E , so E is the fixed field of Aut (K/E) . This shows the correspondence is surjective.

Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed field is injective.

We have also seen that K/E is Galois for any intermediate field E , so E is the fixed field of Aut(K/E). This shows the correspondence is surjective.

Also, if E is the fixed field of H then $Aut(K/E) = H$ so $|H| = \text{Aut}(K/E) = [K : E]$, and we also know $[K : F] = |G|$, so taking quotients and using multiplicativity of degrees, $|G/H| = |G|/|H| = [E : F].$

Summary

If K/F is a Galois extension (equivalently, the splitting field of a separable polynomial), then there is a perfect correspondence between subgroups of Aut (K/F) and intermediate fields, given by taking fixed fields.