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Reminders

Let K/F be a field extension.

I The group of automorphisms of K fixing F is written
Aut(K/F ).

I K/F is Galois if |Aut(K/F )| = [K : F ]. In this case, we call
Aut(K/F ) the Galois group of K over F .

I Splitting fields of separable polynomials are Galois.

I Each subgroup H of Aut(K/F ) has a fixed field: the set of all
elements of K fixed by H.
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F = Q, K = Q(
√

2,
√

3).

Aut(K/F ) = {1, σ, τ, στ}, where σ sends
√

2 to −
√

2 and fixes√
3, τ sends

√
3 to −

√
3 and fixes

√
2. Aut(K/F ) ∼= Z2 × Z2

For each subgroup of Aut(K/F ), there corresponds a fixed field.

To compute it, use that 1,
√
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√
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√

6 =
√

2
√

3 is a basis for the
extension.
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{1, σ, τ, στ} Q



Example

F = Q, K = Q(
√

2,
√

3).

Aut(K/F ) = {1, σ, τ, στ}, where σ sends
√

2 to −
√

2 and fixes√
3, τ sends

√
3 to −

√
3 and fixes

√
2. Aut(K/F ) ∼= Z2 × Z2

For each subgroup of Aut(K/F ), there corresponds a fixed field.

To compute it, use that 1,
√

2,
√

3,
√

6 =
√

2
√

3 is a basis for the
extension.

Subgroup Fixed field

{1} Q(
√

2,
√

3)

{1, σ} Q(
√

3)

{1, στ} Q(
√

6)

{1, τ} Q(
√

2)
{1, σ, τ, στ} Q



Example

F = Q, K = Q(
√

2,
√

3).

Aut(K/F ) = {1, σ, τ, στ}, where σ sends
√

2 to −
√

2 and fixes√
3, τ sends

√
3 to −

√
3 and fixes

√
2. Aut(K/F ) ∼= Z2 × Z2

For each subgroup of Aut(K/F ), there corresponds a fixed field.

To compute it, use that 1,
√

2,
√

3,
√

6 =
√

2
√

3 is a basis for the
extension.

Subgroup Fixed field

{1} Q(
√

2,
√

3)

{1, σ} Q(
√

3)

{1, στ} Q(
√

6)

{1, τ} Q(
√

2)
{1, σ, τ, στ} Q



Example

F = Q, K = Q(
√

2,
√

3).

Aut(K/F ) = {1, σ, τ, στ}, where σ sends
√

2 to −
√

2 and fixes√
3, τ sends

√
3 to −

√
3 and fixes

√
2. Aut(K/F ) ∼= Z2 × Z2

For each subgroup of Aut(K/F ), there corresponds a fixed field.

To compute it, use that 1,
√

2,
√

3,
√

6 =
√

2
√

3 is a basis for the
extension.

Subgroup Fixed field

{1} Q(
√

2,
√

3)

{1, σ} Q(
√

3)

{1, στ} Q(
√

6)

{1, τ} Q(
√

2)
{1, σ, τ, στ} Q



Example

F = Q, K = Q(
√

2,
√

3).

Aut(K/F ) = {1, σ, τ, στ}, where σ sends
√

2 to −
√

2 and fixes√
3, τ sends

√
3 to −

√
3 and fixes

√
2. Aut(K/F ) ∼= Z2 × Z2

For each subgroup of Aut(K/F ), there corresponds a fixed field.

To compute it, use that 1,
√

2,
√

3,
√

6 =
√

2
√

3 is a basis for the
extension.

Subgroup Fixed field

{1} Q(
√

2,
√

3)

{1, σ} Q(
√

3)

{1, στ} Q(
√

6)

{1, τ} Q(
√

2)
{1, σ, τ, στ} Q



Q(
√

2,
√

3)

Q(
√

2) Q(
√

6) Q(
√

3)

Q

{1}

{1, τ} {1, στ} {1, σ}

{1, σ, τ, στ}



Another example

F = Q, K is the splitting field of x3 − 2.

We computed earlier that K = Q( 3
√

2, ρ), where ρ = e2πi/3, and
K/Q has degree 6.

Let σ : 3
√

2 7→ ρ 3
√

2, ρ 7→ ρ, and τ : 3
√

2 7→ 3
√

2, ρ 7→ ρ2.

Then Aut(K/F ) is generated by σ and τ , and we can show
Aut(K/F ) ∼= S3.
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Known subfields:
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Subgroups of the Galois group:

1

〈τ〉 〈τσ〉 〈τσ2〉

〈σ〉

〈σ, τ〉

2 2 2
3

2

3 3 3



Theorem (Fundamental theorem of Galois theory)

If K/F is a Galois extension, there is a bijective correspondence
between subgroups of Aut(K/F ) and intermediate fields L with
F ⊆ L ⊆ K . The correspondence is given by taking fixed fields.

The fundamental theorem actually gives a lot more information.
Today’s goal is to prove it.

The proof will use linear algebra!
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Characters

Definition

A character of a group G with values in a field L is a
homomorphism χ : G → L×.

Note: any automorphism of a field K yields a character of K× with
values in K .

Theorem (Linear independence of characters)

If χ1, χ2, . . . , χn are distinct character of G with values in L, then
they are L-linearly independent: a1χ1 + . . .+ anχn = 0 implies
a1 = a2 = . . . = an = 0.
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Proof: Suppose for a contradiction χ1, . . . , χn are linearly
dependent. Choose n least where this happens. Pick a1, a2, . . . , an
not all zero such that:
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Pick g0 ∈ G such that χ1(g0) 6= χn(g0). For any g ∈ G :

a1χ1(g0g) + a2χ2(g0g) + . . .+ anχn(g0g) = 0
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plugging in g):
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Since χ1(g0) 6= χn(g0), this gives a nontrivial relation between
χ1, . . . , χn−1, contradicting minimality of n.
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We will use linear independence of distinct characters to prove:

Theorem (Key theorem)

If K is a field and G is a finite subgroup of Aut(K ) with fixed field
F , then |G | = [K : F ].

Note: before, we started with a certain kind of field F and saw that
|Aut(K/F )| = [K : F ]. Here, we start with the group, and deduce
the same equation for its fixed field F .
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Lemma

Let G be a finite subgroup of Aut(K ). Let F be the fixed field.
Then |G | ≤ [K : F ].

Proof: Suppose for a contradiction that n = |G | > [K : F ] = m.
Write G = {σ1, σ2, . . . , σn}. Let ω1, ω2, . . . , ωm be a basis for K
over F . Let’s study how G acts on the basis. Consider the system
of equation:

σ1(ω1)x1 + σ2(ω1)x2 + . . .+ σn(ω1)xn = 0

. . .

σ1(ωm)x1 + σ2(ωm)x2 + . . .+ σn(ωm)xn = 0

Since n > m, there is a nonzero solution, β1, . . . , βn ∈ K .

Consider any α ∈ K . Write α = a1ω1 + . . .+ amωm, ai ∈ F . Note
σi (akωj) = akσi (ωj) (F is the fixed field).
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Lemma

Let G = {σ1 = 1, σ2, . . . , σn} be a subgroup of Aut(K ) with fixed
field F . Then |G | ≥ [K : F ].

Proof: Suppose for a contradiction n = |G | < [K : F ]. Let
α1, . . . , αn+1 be F -linearly independent in K . Look at the system:

σ1(α1)x1 + σ1(α2)x2 + . . .+ σ1(αn+1)xn+1 = 0

. . .

σn(α1)x1 + σn(α2)x2 + . . .+ σn(αn+1)xn+1 = 0

This has a solution β1, . . . , βn+1 ∈ K with not all βi ’s zero. Choose
the one with the minimal number of nonzeroes. Renumbering,
without loss of generality βn+1 6= 0. Dividing everything by βn+1,
without loss of generality 1 = βn+1 ∈ F . We will show that all the
βi ’s are in F . This is a contradiction: σ1 is the identity and
α1, . . . , αn+1 are supposed to be F -linearly independent.
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We have the equations σi (α1)β1 + . . .+ σi (αn+1)βn+1 = 0 for
each i , and we know 0 6= βn+1 ∈ F .

If βj /∈ F for some j , then assume for simplicity j = 1 and by
definition of the fixed field there is an automorphism σk0 ∈ G such
that σk0(β1) 6= β1.

Applying σk0 to the above, we get that
σk0σi (α1)σk0(β1) + . . .+ σk0σi (αn+1)σk0(βn+1) = 0.

Note that σk0(βn+1) = βn+1.

Also note σk0σ1, σk0σ2, . . . , σk0σn is just a permutation of
σ1, . . . , σn. So rearranging the equations, we can assume without
loss that σi (α1)σk0(β1) + . . .+ σi (αn+1)βn+1 = 0.

Subtract this from the equation in the first paragraph:
(β1 − σk0(β1))σi (α1) + . . .+ (βn − σk0(βn))σi (αn) = 0.

Thus β1 − σk0(β1), . . . , βn − σk0(βn), 0 is a solution with fewer
zeroes than before, contradiction.
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Theorem (Key theorem)

If G is a finite subgroup of Aut(K ) with fixed field F , then
|G | = [F : K ].

Corollary

If K/F is any finite extension, then |Aut(K/F )| ≤ [K : F ] with
equality if and only if F is the fixed field of Aut(K/F ). Thus K/F
is Galois if and only if F is the fixed field of Aut(K/F ).

Proof.

Let F1 be the fixed field of G = Aut(K/F ). Of course,
F ⊆ F1 ⊆ K .

By the key theorem, [K : F1] = |Aut(K/F )|. Thus
[K : F ] = [K : F1][F1 : F ] = |Aut(K/F )|[F1 : F ].

Thus [K : F ] ≥ |Aut(K/F )| with equality if and only if F1 = F .
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Lemma

If K/F is a Galois extension, then every irreducible p(x) ∈ F [x ]
which has a root in K is separable and splits completely in K .

Proof.

Let G = Aut(K/F ) = {σ1 = 1, σ2, . . . , σn}. Let α ∈ K be a root
of p(x). Consider α, σ2(α), σ3(α), . . . , σn(α).

Say r of them are distinct, α = α1, . . . , αr . Any member of G
permutes the αi ’s.

Consider f (x) = (x − α)(x − α2) . . . (x − αr ). Where are its
coefficients?

They are fixed by the members of G , so lie in the fixed field of G ,
which is F because K/F is Galois. Thus f (x) ∈ F [x ].

Moreover, p(x) divides f (x) (it is the minimal polynomial), and
f (x) divides p(x) because it has fewer roots. Thus f (x) and p(x)
are the same up to a unit, and the result follows.
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which has a root in K is separable and splits completely in K .

Corollary

An extension K/F is Galois if and only if it is the splitting field of
a separable polynomial over F .

Proof.

We saw the right to left direction already. For the converse, let
ω1, . . . , ωn be a basis for K/F , with minimal polynomials
p1, p2, . . . , pn.

Each pi is separable and splits completely in K by the lemma. Let
q1(x), . . . , qr (x) be a listing of the distinct pi ’s. Let
g(x) = q1(x)q2(x) . . . qr (x). Then K is the splitting field of g(x).
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Corollary

If K/F is Galois and F ⊆ E ⊆ K , then K/E is Galois.

Proof.

K/F is the splitting field of some f (x) ∈ F [x ], so is also the
splitting field of f (x) considered as a polynomial in E [x ].
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Corollary

If G is a finite subgroup of Aut(K ) with fixed field F , then
G = Aut(K/F ).

Proof.

Clearly, any element of G is in Aut(K/F ). Thus |G | ≤ |Aut(K/F )|.
By key theorem, |G | = [K : F ], so K/F is finite.

By earlier corollary, |Aut(K/F )| ≤ [K : F ].

So we have [K : F ] = |G | ≤ |Aut(K/F )| ≤ [K : F ], so equality
holds.
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By earlier corollary, |Aut(K/F )| ≤ [K : F ].

So we have [K : F ] = |G | ≤ |Aut(K/F )| ≤ [K : F ], so equality
holds.
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If G1 6= G2 are distinct finite subgroups of Aut(K ), then their fixed
fields are distinct.

Proof.

Let F1,F2 be the fixed fields of G1,G2. By previous corollary,
G1 = Aut(K/F1), G2 = Aut(K/F2). Thus if F1 = F2, then
G1 = G2.



Corollary

If G is a finite subgroup of Aut(K ) with fixed field F , then
G = Aut(K/F ).

Corollary

If G1 6= G2 are distinct finite subgroups of Aut(K ), then their fixed
fields are distinct.

Proof.

Let F1,F2 be the fixed fields of G1,G2. By previous corollary,
G1 = Aut(K/F1), G2 = Aut(K/F2). Thus if F1 = F2, then
G1 = G2.



Corollary

If G is a finite subgroup of Aut(K ) with fixed field F , then
G = Aut(K/F ).

Corollary

If G1 6= G2 are distinct finite subgroups of Aut(K ), then their fixed
fields are distinct.

Proof.

Let F1,F2 be the fixed fields of G1,G2. By previous corollary,
G1 = Aut(K/F1), G2 = Aut(K/F2). Thus if F1 = F2, then
G1 = G2.



The fundamental theorem, part I

Theorem

Let K/F be a Galois extension and let G = Aut(K/F ) be the
Galois group.

There is a bijection between the subfields E of K containing F ,
and the subgroups H of G .

This bijection is given by sending E to the elements of G fixing E ,
and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E1,E2 correspond to
H1,H2, then E1 is a subfield of E2 if and only if H2 is a
subgroup of H1.

2. [K : E ] = |H| and [E : F ] = |G : H|.
3. K/E is always Galois, with Galois group Aut(K/E ) = H.
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The fundamental theorem: picture

K = fixed field of 1

E = fixed field of H

F = fixed field of G

|H|

|G :H|

1 = automorphisms fixing K

H = automorphisms fixing E

G = Aut(K/F ) = automorphisms fixing F

[K :E ]

[E :F ]



Proof of fundamental theorem, part I

We have already proven that the map sending a group to its fixed
field is injective.

We have also seen that K/E is Galois for any intermediate field E ,
so E is the fixed field of Aut(K/E ). This shows the
correspondence is surjective.

Also, if E is the fixed field of H then Aut(K/E ) = H so
|H| = Aut(K/E ) = [K : E ], and we also know [K : F ] = |G |, so
taking quotients and using multiplicativity of degrees,
|G/H| = |G |/|H| = [E : F ].
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Summary

If K/F is a Galois extension (equivalently, the splitting field of a
separable polynomial), then there is a perfect correspondence
between subgroups of Aut(K/F ) and intermediate fields, given by
taking fixed fields.


