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Recall...

Let K/F be a field extension. Galois theory studies the group
Aut(K/F) of automorphisms of K fixing F.

If K/F is finite, then |Aut(K/F)| < [K : F]. If equality holds, we
call K/F a Galois extension.

Subgroups of Aut(K/F) have a corresponding fixed field.
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The fundamental theorem, part | (last time)

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the
Galois group.

There is a bijection between the subfields E of K containing F,
and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E,
and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E;, E; correspond to
H1, H>, then E7 is a subfield of E; if and only if Hs is a
subgroup of Hj.

2. [K:E]=|H|and [E: F]=|G: H|.
3. K/E is always Galois, with Galois group Aut(K/E) = H.



The fundamental theorem: picture

K — fixed field of 1
Hi=lH:]|

E — fixed field of H
G|

F = fixed field of G

1 = automorphisms fixing K
el

H = automorphisms fixing E
(£:F]

G = Aut(K/F) = automorphisms fixing F
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Theorem

Let K/F be a Galois extension with Galois group G = Aut(K/F).
Let E be an intermediate field (F C E C K), with corresponding
group H = Aut(K/E).

Then E is Galois over F if and only if H is a normal subgroup of
G. In this case, Aut(E/F) = G/H.
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If His normal in G, then
G/H = Aut(K/F)/Aut(K/E) = Aut(E/F).
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Proof of part Il: Fix a subgroup H of G, let E be its fixed field.
How do the members of Aut(E/F) relate to members of
Aut(K/F)?

Given o € Aut(K/F), o | E may not be in Aut(E/F) (maybe
o[E] # E). What is true is that o [ E is an embedding (= injective
homomorphism) of E into K, fixing F

Conversely, if 7: E — K is an embedding fixing F, then it is an
isomorphism of E onto 7[E].

As K/F is Galois, K is the splitting field of a separable polynomial
f(x) € F[x]. K is the splitting field of f(x) € E[x] and the
splitting field of 7(f(x)) = f(x) € 7[E][x]. By results about
splitting fields, 7 extends to o € Aut(K/F).
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Claim: Aut(K/o[E]) = cHo™! (= cAut(K/E)o™1).

Proof of Claim: Suppose 7 € Aut(K/o[E]). Let 7/ := o7 170.
Then 7 = 07’0~ and for all a € E,

7(a) = 0" '10(a) = 0 lo(a) = a. Thus 7 € H.

This shows Aut(K/o[E]) C oHo~!. For the converse, observe
Aut(K /o[E])| = |Aut(K/E)| = [K : E] = |H| = [oHo ™| tciaim
Thus E/F is Galois if and only if o[E] = E for all o € G if and

only if H= oHo™! for all ¢ € G, which means precisely that H is
normal in G.

We saw the members of Aut(E/F) are in bijections with cosets of
H in G and this bijection respects composition, so gives an
isomorphism of Aut(E/F) with G/H. This concludes the proof of
part [I!
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Theorem
If E1, E; correspond to Hy, H», then E; N E corresponds to
(H1, Hz), and E; E; corresponds to Hy N Hy.

Proof.

Exercise! Use the definition of the fixed field.
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Example: Q(v/2 + v/3)

Let's compute the minimal polynomial of v/2 + /3 using Galois
theory.

Recall Q(v/2,1/3)/Q is a Galois extension of degree 4 (It is the
splitting field of (x? — 2)(x2 — 3)).

Clearly, Q(v/2 + v/3) € Q(V2, \/§) = K. The roots of the minimal
polynomial f(x) of V2 + /3 are the images of V2 + /3 under the
members of Aut(K/Q) (called the conjugates under Aut(K/Q)).

Therefore f(x) has +1/2 + /3 as roots. They are all distinct.
f(x) = (x=(V2+V3)) (x—(V2-V3)) (x~ (- V2+V3)) (x~ (- V2-V3))
By direct computation, f(x) = x* — 10x? + 1.

In particular, this polynomial is irreducible, and Q(ﬂ+ \@) has
degree 4, so is equal to Q(v/2,/3).
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Example: splitting field K of x® — 2
K is generated by 6 = /2 and ¢ = e2™/8, a primitive 8th root of
unity, so K = Q(v/2,¢).
Any automorphism of K is determined by what it does to ¥/2 and
to C. It can take V/2 to 8 different possibilities, and ¢ to ¢(8) (=
the number of primitive 8th root of unity) different possibilities.
Observe ¢(8) =23 — 22 = 4.
WARNING: Does it mean there are 8 - 4 = 32 automorphisms?

No! For example 6* = /2 = ¢ + (7, so we cannot send 6 to 6 and
¢ to ¢3 for example.

There may be more relations: checking directly that a certain
mapping gives an automorphism is annoying. It is better to
compute the degree of the extension first.

We have that { = %(1 + i), so in fact we can show that
K =Q(v/2,i).

This has degree at most 2 - 8 = 16, but strictly more than 8 (i is
not real), so must have degree 16.
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Splitting field of x® — 2, continued

So K = Q(v/2, i) is the splitting field of x® — 2 and has degree 16.

It is a Galois extension, so G = Aut(K/Q) has 16 elements. They
are determined by what they do to 6 = /2 and i.

i is a root of x2 + 1, so automorphisms send it to =i.

V/2 is a root of x® — 2, so automorphisms send it to (2+/2, for
a=0,1,2,...,7.

This gives 16 possibilities, so all of these choices are indeed
automorphisms. Let o send 6 to (6, and fix i. Let 7 send 6 to 0
and i to —i.

G = (0,0), o has order 2, 0 has order 8. We can also compute
that o7 = 703 (details in the book).

This determines the group completely: it is a “quasidihedral group”
of order 16. See the book for the computation of the subgroups
and subfields.
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F=F, K=Fp.

We showed earlier K was the splitting field of x?" — x, a separable
polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map o sending

ars aP forall ae F.

. k .
In fact, for each k > 1, 0%, the map sending a to aP is also an
automorphism.

What is the order of o7 Note ¢” is the identity: by construction,
" =aforallacF.

Also, for each k < n, the equation xP* = x has at most pX

solutions, so 0¥ is not the identity.

Thus o has order n, so the Galois group of K/F is cyclic of order
n, generated by the Frobenius map: Aut(K/F) = Z/nZ.
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o has order n, so the Galois group of K/F is cyclic of order n,
generated by the Frobenius map: Aut(K/F) = Z/nZ.

By the fundamental theorem, subfields of IFp» and subgroups of
Z,/nZ are in one to one correspondence.

Subgroups of Z/nZ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of Fj», and
there are no other subfields.

More precisely: if o is the Frobenius map, d a divisor of n, H the
subgroup generated by 09, then |H| = 5. so if E is the fixed field,
[K:E]= 5 and [E: F]=d.

By uniqueness of finite fields, £ = F 4.

Since cyclic groups are abelian, all the subgroups are normal, so
E/F is Galois (which we knew already).
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Irreducible polynomials over I,

Remember that in the assighments you built some finite fields by
hand by exhibiting irreducible elements in F,[x] of certain degrees.

In general they are not so easy to find: given n and p, is there even
an irreducible polynomial of degree n in F,[x]? The answer is yes:

Theorem

The extension Fpn /I, is simple: Fpn = F,(0) for some 6. In
particular, the minimal polynomial of 6 is irreducible in Fy[x] of
degree n.

Proof.

We say any finite subgroup of the group of units of a field is cyclic,
so IE";,, is cyclic: take 0 to be a generator. [
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Theorem

For each prime p and each n, there are irreducible polynomials in
Fp[x] of degree n.

Okay, but what are these irreducible polynomials?

Say Fpn = Fp(8). Since Fpn is just the set of all rots of the
polynomial xP" — x, this means @ is a root, so its minimal
polynomial divides xP" — x.

Conversely, if p(x) € Fp[x] is any irreducible polynomial of degree
d which divides xP" — x, and p(a) = 0, then F,(a) is a subfield of
Fpn of degree d.

We have just seen that Fy(a) = Fa. In particular, d divides n.
Since () is Galois, it contains all the roots of p(x).

Putting all of this together: xP" — x is the product of (x — 3), for
a root. 3 has a certain minimal polynomial of degree d. That
degree must divide n. Conversely, any irreducible poly with degree
d dividing n must generate F,s C Fpn, so divides xP" — x.



Theorem

xP" — x is the product of all the distinct irreducible polynomials in
Fp[x] of degree d, where d runs through all the divisors of n.

This can be used to produce irreducible polynomials recursively,
count how many there are, etc. (see DF)
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A fun result

Theorem

The irreducible x* + 1 € Z[x] is reducible modulo every prime.

Proof: If p=2, x* + 1 = (x + 1)*. Assume now p is odd.
Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 —1.

Thus x8 — 1 divides xP"~1 — 1. [Why? Think about properties of
groups of roots of unity!]

We have: x* + 1|x8 — 1|xP*~1 —1|xP* — x. Thus all roots of x* 4 1
are roots of xP° — x, so are in Fp.

If x* 4+ 1 is irreducible over Fp[x], that would mean it generates an

extension K of degree 4, with F, C K C Fpo. However sz/Fp has
degree 2, contradiction.
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intermediate field, E/F is Galois if and only if Aut(K/E) is
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Summary

» Fundamental theorem, part Il: If K/F is Galois and E is an
intermediate field, E/F is Galois if and only if Aut(K/E) is
normal in Aut(K/F). In this case,

Aut(E/F) = Aut(K/F)/Aut(K/E).

» The Galois group of Fpn/IF, is cyclic of order n, generated by
the Frobenius map. Thus 4 is the only subfield of Fpn, for d
a divisor of n.



