Math-123: The fundamental theorem of Galois theory, part II

Sebastien Vasey

Harvard University

April 8, 2020

Let K/F be a field extension. Galois theory studies the group Aut(K/F) of automorphisms of K fixing F.

- Let K/F be a field extension. Galois theory studies the group Aut(K/F) of automorphisms of K fixing F.
- If K/F is finite, then $|Aut(K/F)| \le [K : F]$. If equality holds, we call K/F a *Galois extension*.

- Let K/F be a field extension. Galois theory studies the group Aut(K/F) of automorphisms of K fixing F.
- If K/F is finite, then $|Aut(K/F)| \le [K : F]$. If equality holds, we call K/F a *Galois extension*.

Subgroups of Aut(K/F) have a corresponding *fixed field*.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E_1 , E_2 correspond to H_1 , H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E_1, E_2 correspond to H_1, H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .

2.
$$[K : E] = |H|$$
 and $[E : F] = |G : H|$.

Theorem

Let K/F be a Galois extension and let G = Aut(K/F) be the Galois group.

There is a bijection between the subfields E of K containing F, and the subgroups H of G.

This bijection is given by sending E to the elements of G fixing E, and the inverse sends H to the fixed field of H. Moreover:

- 1. (Inclusion-reversing correspondence) If E_1 , E_2 correspond to H_1 , H_2 , then E_1 is a subfield of E_2 if and only if H_2 is a subgroup of H_1 .
- 2. [K : E] = |H| and [E : F] = |G : H|.
- 3. K/E is always Galois, with Galois group Aut(K/E) = H.

The fundamental theorem: picture

$$K = \text{ fixed field of 1}$$

$$|H|=|H:1| |$$

$$E = \text{ fixed field of } H$$

$$|G:H| |$$

$$F = \text{ fixed field of } G$$

$$1 = \text{ automorphisms fixing } K$$

$$[K:E] |$$

$$H = \text{ automorphisms fixing } E$$

$$[E:F] |$$

$$G = \text{Aut}(K/F) = \text{ automorphisms fixing } F$$

The fundamental theorem, part II

Theorem

Let K/F be a Galois extension with Galois group G = Aut(K/F).

The fundamental theorem, part II

Theorem

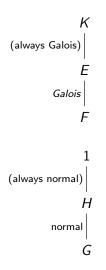
Let K/F be a Galois extension with Galois group $G = \operatorname{Aut}(K/F)$. Let E be an intermediate field ($F \subseteq E \subseteq K$), with corresponding group $H = \operatorname{Aut}(K/E)$.

The fundamental theorem, part II

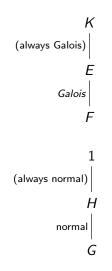
Theorem

Let K/F be a Galois extension with Galois group $G = \operatorname{Aut}(K/F)$. Let E be an intermediate field ($F \subseteq E \subseteq K$), with corresponding group $H = \operatorname{Aut}(K/E)$. Then E is Galois over F if and only if H is a normal subgroup of G. In this case, $\operatorname{Aut}(E/F) \cong G/H$.

The fundamental theorem, part II: picture

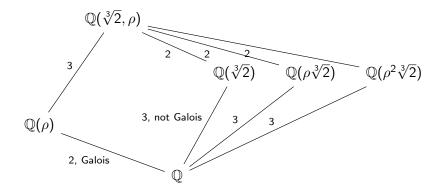


The fundamental theorem, part II: picture

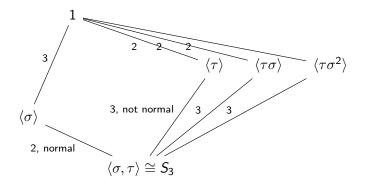


If H is normal in G, then $G/H = \operatorname{Aut}(K/F)/\operatorname{Aut}(K/E) \cong \operatorname{Aut}(E/F).$ Part II in action, splitting fields of $x^3 - 2$

 $(\rho = e^{2\pi i/3})$



Part II in action, splitting field of $x^3 - 2$: group side



Proof of part II: Fix a subgroup *H* of *G*, let *E* be its fixed field. How do the members of Aut(E/F) relate to members of Aut(K/F)?

Given $\sigma \in \operatorname{Aut}(K/F)$, $\sigma \upharpoonright E$ may not be in $\operatorname{Aut}(E/F)$ (maybe $\sigma[E] \neq E$). What is true is that $\sigma \upharpoonright E$ is an embedding (= injective homomorphism) of E into K, fixing F

Proof of part II: Fix a subgroup *H* of *G*, let *E* be its fixed field. How do the members of Aut(E/F) relate to members of Aut(K/F)?

Given $\sigma \in \operatorname{Aut}(K/F)$, $\sigma \upharpoonright E$ may not be in $\operatorname{Aut}(E/F)$ (maybe $\sigma[E] \neq E$). What is true is that $\sigma \upharpoonright E$ is an embedding (= injective homomorphism) of E into K, fixing F

Conversely, if $\tau : E \to K$ is an embedding fixing F, then it is an isomorphism of E onto $\tau[E]$.

Proof of part II: Fix a subgroup *H* of *G*, let *E* be its fixed field. How do the members of Aut(E/F) relate to members of Aut(K/F)?

Given $\sigma \in \operatorname{Aut}(K/F)$, $\sigma \upharpoonright E$ may not be in $\operatorname{Aut}(E/F)$ (maybe $\sigma[E] \neq E$). What is true is that $\sigma \upharpoonright E$ is an embedding (= injective homomorphism) of E into K, fixing F

Conversely, if $\tau : E \to K$ is an embedding fixing F, then it is an isomorphism of E onto $\tau[E]$.

As K/F is Galois, K is the splitting field of a separable polynomial $f(x) \in F[x]$. K is the splitting field of $f(x) \in E[x]$ and the splitting field of $\tau(f(x)) = f(x) \in \tau[E][x]$. By results about splitting fields, τ extends to $\sigma \in Aut(K/F)$.

$$\begin{array}{ccc} & K & \stackrel{\cong}{\longrightarrow} & K \\ & & & \\ & & & \\ E & \stackrel{\cong}{\longrightarrow} & \tau[E] \end{array}$$

 $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $(\sigma^{-1}\sigma') \upharpoonright E$ is the identity.

 $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $(\sigma^{-1}\sigma') \upharpoonright E$ is the identity.

That is, $\sigma^{-1}\sigma'$ must fix E: it must be in Aut(K/E) = H.

 $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $(\sigma^{-1}\sigma') \upharpoonright E$ is the identity.

That is, $\sigma^{-1}\sigma'$ must fix E: it must be in Aut(K/E) = H.

Thus $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $\sigma' \in \sigma H$ (if and only if $\sigma' H = \sigma H$). So the distinct $\sigma \upharpoonright E$'s are in bijection with the cosets of H in G: |Emb(E/F)| = [G:H] = [E:F].

 $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $(\sigma^{-1}\sigma') \upharpoonright E$ is the identity.

That is, $\sigma^{-1}\sigma'$ must fix E: it must be in Aut(K/E) = H.

Thus $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $\sigma' \in \sigma H$ (if and only if $\sigma' H = \sigma H$). So the distinct $\sigma \upharpoonright E$'s are in bijection with the cosets of H in G: |Emb(E/F)| = [G:H] = [E:F].

So E/F is Galois if and only if |Emb(E/F)| = |Aut(E/F)|. In other words, E/F is Galois if and only if $\sigma[E] = E$ for all $\sigma \in G$.

 $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $(\sigma^{-1}\sigma') \upharpoonright E$ is the identity.

That is, $\sigma^{-1}\sigma'$ must fix E: it must be in Aut(K/E) = H.

Thus $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $\sigma' \in \sigma H$ (if and only if $\sigma' H = \sigma H$). So the distinct $\sigma \upharpoonright E$'s are in bijection with the cosets of H in G: |Emb(E/F)| = [G:H] = [E:F].

So E/F is Galois if and only if |Emb(E/F)| = |Aut(E/F)|. In other words, E/F is Galois if and only if $\sigma[E] = E$ for all $\sigma \in G$.

Fix $\sigma \in G$. When is $\sigma[E] = E$? By the Galois correspondence, precisely when their fixing subgroups are equal: Aut $(K/E) = Aut(K/\sigma[E])$

 $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $(\sigma^{-1}\sigma') \upharpoonright E$ is the identity.

That is, $\sigma^{-1}\sigma'$ must fix E: it must be in Aut(K/E) = H.

Thus $\sigma \upharpoonright E = \sigma' \upharpoonright E$ if and only if $\sigma' \in \sigma H$ (if and only if $\sigma' H = \sigma H$). So the distinct $\sigma \upharpoonright E$'s are in bijection with the cosets of H in G: |Emb(E/F)| = [G:H] = [E:F].

So E/F is Galois if and only if |Emb(E/F)| = |Aut(E/F)|. In other words, E/F is Galois if and only if $\sigma[E] = E$ for all $\sigma \in G$.

Fix $\sigma \in G$. When is $\sigma[E] = E$? By the Galois correspondence, precisely when their fixing subgroups are equal: Aut $(K/E) = Aut(K/\sigma[E])$

Claim: Aut $(K/\sigma[E]) = \sigma H \sigma^{-1} (= \sigma Aut(K/E) \sigma^{-1}).$

Claim: Aut $(K/\sigma[E]) = \sigma H \sigma^{-1} (= \sigma \operatorname{Aut}(K/E) \sigma^{-1}).$

Claim: Aut $(K/\sigma[E]) = \sigma H \sigma^{-1}$ (= σ Aut $(K/E)\sigma^{-1}$). **Proof of Claim:** Suppose $\tau \in$ Aut $(K/\sigma[E])$. Let $\tau' := \sigma^{-1}\tau\sigma$. Then $\tau = \sigma\tau'\sigma^{-1}$ and for all $a \in E$, $\tau'(a) = \sigma^{-1}\tau\sigma(a) = \sigma^{-1}\sigma(a) = a$. Thus $\tau' \in H$. **Claim:** Aut $(K/\sigma[E]) = \sigma H \sigma^{-1} (= \sigma \operatorname{Aut}(K/E) \sigma^{-1}).$

Proof of Claim: Suppose $\tau \in \operatorname{Aut}(K/\sigma[E])$. Let $\tau' := \sigma^{-1}\tau\sigma$. Then $\tau = \sigma\tau'\sigma^{-1}$ and for all $a \in E$, $\tau'(a) = \sigma^{-1}\tau\sigma(a) = \sigma^{-1}\sigma(a) = a$. Thus $\tau' \in H$.

This shows $\operatorname{Aut}(K/\sigma[E]) \subseteq \sigma H \sigma^{-1}$. For the converse, observe $|\operatorname{Aut}(K/\sigma[E])| = |\operatorname{Aut}(K/E)| = [K : E] = |H| = |\sigma H \sigma^{-1}|$. $\dagger_{\operatorname{Claim}}$

Thus E/F is Galois if and only if $\sigma[E] = E$ for all $\sigma \in G$ if and only if $H = \sigma H \sigma^{-1}$ for all $\sigma \in G$, which means precisely that H is normal in G.

Claim: Aut $(K/\sigma[E]) = \sigma H \sigma^{-1} (= \sigma Aut(K/E)\sigma^{-1}).$

Proof of Claim: Suppose $\tau \in \operatorname{Aut}(K/\sigma[E])$. Let $\tau' := \sigma^{-1}\tau\sigma$. Then $\tau = \sigma\tau'\sigma^{-1}$ and for all $a \in E$, $\tau'(a) = \sigma^{-1}\tau\sigma(a) = \sigma^{-1}\sigma(a) = a$. Thus $\tau' \in H$.

This shows $\operatorname{Aut}(K/\sigma[E]) \subseteq \sigma H \sigma^{-1}$. For the converse, observe $|\operatorname{Aut}(K/\sigma[E])| = |\operatorname{Aut}(K/E)| = [K : E] = |H| = |\sigma H \sigma^{-1}|$. $\dagger_{\operatorname{Claim}}$

Thus E/F is Galois if and only if $\sigma[E] = E$ for all $\sigma \in G$ if and only if $H = \sigma H \sigma^{-1}$ for all $\sigma \in G$, which means precisely that H is normal in G.

We saw the members of Aut(E/F) are in bijections with cosets of H in G and this bijection respects composition, so gives an isomorphism of Aut(E/F) with G/H. This concludes the proof of part II!

Fundamental theorem, part III

Theorem

If E_1, E_2 correspond to H_1, H_2 , then $E_1 \cap E_2$ corresponds to $\langle H_1, H_2 \rangle$, and E_1E_2 corresponds to $H_1 \cap H_2$.

Fundamental theorem, part III

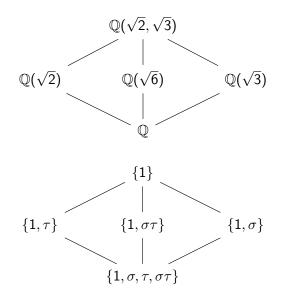
Theorem

If E_1, E_2 correspond to H_1, H_2 , then $E_1 \cap E_2$ corresponds to $\langle H_1, H_2 \rangle$, and E_1E_2 corresponds to $H_1 \cap H_2$.

Proof.

Exercise! Use the definition of the fixed field.

Part III in action: $\mathbb{Q}(\sqrt{2},\sqrt{3})$



Example: $\mathbb{Q}(\sqrt{2} + \sqrt{3})$

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Recall $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension of degree 4 (It is the splitting field of $(x^2 - 2)(x^2 - 3)$).

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Recall $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension of degree 4 (It is the splitting field of $(x^2 - 2)(x^2 - 3)$).

Clearly, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) = K$. The roots of the minimal polynomial f(x) of $\sqrt{2} + \sqrt{3}$ are the images of $\sqrt{2} + \sqrt{3}$ under the members of Aut (K/\mathbb{Q}) (called the *conjugates under Aut* (K/\mathbb{Q})).

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Recall $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension of degree 4 (It is the splitting field of $(x^2 - 2)(x^2 - 3)$).

Clearly, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) = K$. The roots of the minimal polynomial f(x) of $\sqrt{2} + \sqrt{3}$ are the images of $\sqrt{2} + \sqrt{3}$ under the members of Aut (K/\mathbb{Q}) (called the *conjugates under Aut* (K/\mathbb{Q})).

Therefore f(x) has $\pm\sqrt{2}\pm\sqrt{3}$ as roots. They are all distinct.

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Recall $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension of degree 4 (It is the splitting field of $(x^2 - 2)(x^2 - 3)$).

Clearly, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) = K$. The roots of the minimal polynomial f(x) of $\sqrt{2} + \sqrt{3}$ are the images of $\sqrt{2} + \sqrt{3}$ under the members of Aut (K/\mathbb{Q}) (called the *conjugates under Aut* (K/\mathbb{Q})).

Therefore f(x) has $\pm\sqrt{2}\pm\sqrt{3}$ as roots. They are all distinct.

 $f(x) = (x - (\sqrt{2} + \sqrt{3}))(x - (\sqrt{2} - \sqrt{3}))(x - (-\sqrt{2} + \sqrt{3}))(x - (-\sqrt{2} - \sqrt{3}))$

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Recall $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension of degree 4 (It is the splitting field of $(x^2 - 2)(x^2 - 3)$).

Clearly, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) = K$. The roots of the minimal polynomial f(x) of $\sqrt{2} + \sqrt{3}$ are the images of $\sqrt{2} + \sqrt{3}$ under the members of Aut (K/\mathbb{Q}) (called the *conjugates under Aut* (K/\mathbb{Q})).

Therefore f(x) has $\pm\sqrt{2}\pm\sqrt{3}$ as roots. They are all distinct.

$$f(x) = (x - (\sqrt{2} + \sqrt{3}))(x - (\sqrt{2} - \sqrt{3}))(x - (-\sqrt{2} + \sqrt{3}))(x - (-\sqrt{2} - \sqrt{3}))$$

By direct computation, $f(x) = x^4 - 10x^2 + 1$.

Let's compute the minimal polynomial of $\sqrt{2}+\sqrt{3}$ using Galois theory.

Recall $\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}$ is a Galois extension of degree 4 (It is the splitting field of $(x^2 - 2)(x^2 - 3)$).

Clearly, $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) = K$. The roots of the minimal polynomial f(x) of $\sqrt{2} + \sqrt{3}$ are the images of $\sqrt{2} + \sqrt{3}$ under the members of Aut (K/\mathbb{Q}) (called the *conjugates under Aut* (K/\mathbb{Q})).

Therefore f(x) has $\pm\sqrt{2}\pm\sqrt{3}$ as roots. They are all distinct.

$$f(x) = (x - (\sqrt{2} + \sqrt{3}))(x - (\sqrt{2} - \sqrt{3}))(x - (-\sqrt{2} + \sqrt{3}))(x - (-\sqrt{2} - \sqrt{3}))$$

By direct computation, $f(x) = x^4 - 10x^2 + 1$.

In particular, this polynomial is irreducible, and $\mathbb{Q}(\sqrt{2} + \sqrt{3})$ has degree 4, so is equal to $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

Any automorphism of K is determined by what it does to $\sqrt[3]{2}$ and to ζ . It can take $\sqrt[3]{2}$ to 8 different possibilities, and ζ to $\phi(8)$ (= the number of primitive 8th root of unity) different possibilities. Observe $\phi(8) = 2^3 - 2^2 = 4$.

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

Any automorphism of K is determined by what it does to $\sqrt[3]{2}$ and to ζ . It can take $\sqrt[3]{2}$ to 8 different possibilities, and ζ to $\phi(8)$ (= the number of primitive 8th root of unity) different possibilities. Observe $\phi(8) = 2^3 - 2^2 = 4$.

WARNING: Does it mean there are $8 \cdot 4 = 32$ automorphisms?

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

Any automorphism of K is determined by what it does to $\sqrt[3]{2}$ and to ζ . It can take $\sqrt[3]{2}$ to 8 different possibilities, and ζ to $\phi(8)$ (= the number of primitive 8th root of unity) different possibilities. Observe $\phi(8) = 2^3 - 2^2 = 4$.

WARNING: Does it mean there are $8 \cdot 4 = 32$ automorphisms? No! For example $\theta^4 = \sqrt{2} = \zeta + \zeta^7$, so we cannot send θ to θ and ζ to ζ^3 for example.

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

Any automorphism of K is determined by what it does to $\sqrt[3]{2}$ and to ζ . It can take $\sqrt[3]{2}$ to 8 different possibilities, and ζ to $\phi(8)$ (= the number of primitive 8th root of unity) different possibilities. Observe $\phi(8) = 2^3 - 2^2 = 4$.

WARNING: Does it mean there are $8 \cdot 4 = 32$ automorphisms? No! For example $\theta^4 = \sqrt{2} = \zeta + \zeta^7$, so we cannot send θ to θ and ζ to ζ^3 for example.

There may be more relations: checking directly that a certain mapping gives an automorphism is annoying. It is better to compute the degree of the extension first.

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

Any automorphism of K is determined by what it does to $\sqrt[8]{2}$ and to ζ . It can take $\sqrt[8]{2}$ to 8 different possibilities, and ζ to $\phi(8)$ (= the number of primitive 8th root of unity) different possibilities. Observe $\phi(8) = 2^3 - 2^2 = 4$.

WARNING: Does it mean there are $8 \cdot 4 = 32$ automorphisms? No! For example $\theta^4 = \sqrt{2} = \zeta + \zeta^7$, so we cannot send θ to θ and ζ to ζ^3 for example.

There may be more relations: checking directly that a certain mapping gives an automorphism is annoying. It is better to compute the degree of the extension first.

We have that $\zeta = \frac{\sqrt{2}}{2}(1+i)$, so in fact we can show that $K = \mathbb{Q}(\sqrt[8]{2}, i)$.

K is generated by $\theta = \sqrt[8]{2}$ and $\zeta = e^{2\pi i/8}$, a primitive 8th root of unity, so $K = \mathbb{Q}(\sqrt[8]{2}, \zeta)$.

Any automorphism of K is determined by what it does to $\sqrt[3]{2}$ and to ζ . It can take $\sqrt[3]{2}$ to 8 different possibilities, and ζ to $\phi(8)$ (= the number of primitive 8th root of unity) different possibilities. Observe $\phi(8) = 2^3 - 2^2 = 4$.

WARNING: Does it mean there are $8 \cdot 4 = 32$ automorphisms? No! For example $\theta^4 = \sqrt{2} = \zeta + \zeta^7$, so we cannot send θ to θ and ζ to ζ^3 for example.

There may be more relations: checking directly that a certain mapping gives an automorphism is annoying. It is better to compute the degree of the extension first.

We have that $\zeta = \frac{\sqrt{2}}{2}(1+i)$, so in fact we can show that $K = \mathbb{Q}(\sqrt[8]{2}, i)$.

This has degree at most $2 \cdot 8 = 16$, but strictly more than 8 (*i* is not real), so must have degree 16.

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16.

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16. It is a Galois extension, so $G = \operatorname{Aut}(K/\mathbb{Q})$ has 16 elements. They are determined by what they do to $\theta = \sqrt[8]{2}$ and *i*.

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16. It is a Galois extension, so $G = \operatorname{Aut}(K/\mathbb{Q})$ has 16 elements. They are determined by what they do to $\theta = \sqrt[8]{2}$ and *i*.

i is a root of $x^2 + 1$, so automorphisms send it to $\pm i$.

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16. It is a Galois extension, so $G = \operatorname{Aut}(K/\mathbb{Q})$ has 16 elements. They are determined by what they do to $\theta = \sqrt[8]{2}$ and *i*.

i is a root of $x^2 + 1$, so automorphisms send it to $\pm i$.

 $\sqrt[8]{2}$ is a root of $x^8 - 2$, so automorphisms send it to $\zeta^a \sqrt[8]{2}$, for a = 0, 1, 2, ..., 7.

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16. It is a Galois extension, so $G = \operatorname{Aut}(K/\mathbb{Q})$ has 16 elements. They are determined by what they do to $\theta = \sqrt[8]{2}$ and *i*.

i is a root of $x^2 + 1$, so automorphisms send it to $\pm i$.

 $\sqrt[8]{2}$ is a root of $x^8 - 2$, so automorphisms send it to $\zeta^a \sqrt[8]{2}$, for a = 0, 1, 2, ..., 7.

This gives 16 possibilities, so all of these choices are indeed automorphisms. Let σ send θ to $\zeta \theta$, and fix *i*. Let τ send θ to θ and *i* to -i.

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16. It is a Galois extension, so $G = \operatorname{Aut}(K/\mathbb{Q})$ has 16 elements. They are determined by what they do to $\theta = \sqrt[8]{2}$ and *i*.

i is a root of $x^2 + 1$, so automorphisms send it to $\pm i$.

 $\sqrt[8]{2}$ is a root of $x^8 - 2$, so automorphisms send it to $\zeta^a \sqrt[8]{2}$, for a = 0, 1, 2, ..., 7.

This gives 16 possibilities, so all of these choices are indeed automorphisms. Let σ send θ to $\zeta \theta$, and fix *i*. Let τ send θ to θ and *i* to -i.

 $G = \langle \sigma, \theta \rangle$, σ has order 2, θ has order 8. We can also compute that $\sigma \tau = \tau \sigma^3$ (details in the book).

So $K = \mathbb{Q}(\sqrt[8]{2}, i)$ is the splitting field of $x^8 - 2$ and has degree 16. It is a Galois extension, so $G = \operatorname{Aut}(K/\mathbb{Q})$ has 16 elements. They are determined by what they do to $\theta = \sqrt[8]{2}$ and *i*.

i is a root of $x^2 + 1$, so automorphisms send it to $\pm i$.

 $\sqrt[8]{2}$ is a root of $x^8 - 2$, so automorphisms send it to $\zeta^a \sqrt[8]{2}$, for a = 0, 1, 2, ..., 7.

This gives 16 possibilities, so all of these choices are indeed automorphisms. Let σ send θ to $\zeta \theta$, and fix *i*. Let τ send θ to θ and *i* to -i.

 $G = \langle \sigma, \theta \rangle$, σ has order 2, θ has order 8. We can also compute that $\sigma \tau = \tau \sigma^3$ (details in the book).

This determines the group completely: it is a "quasidihedral group" of order 16. See the book for the computation of the subgroups and subfields.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed earlier K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed earlier K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed earlier K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed earlier K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed earlier K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each k < n, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

$$F = \mathbb{F}_p, \ K = \mathbb{F}_{p^n}.$$

We showed earlier K was the splitting field of $x^{p^n} - x$, a separable polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k \ge 1$, σ^k , the map sending *a* to a^{p^k} is also an automorphism.

What is the order of σ ? Note σ^n is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each k < n, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

Thus σ has order *n*, so the Galois group of K/F is cyclic of order *n*, generated by the Frobenius map: Aut $(K/F) \cong \mathbb{Z}/n\mathbb{Z}$.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the subgroup generated by σ^d , then $|H| = \frac{n}{d}$, so if E is the fixed field, $[K:E] = \frac{n}{d}$ and [E:F] = d.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the subgroup generated by σ^d , then $|H| = \frac{n}{d}$, so if E is the fixed field, $[K:E] = \frac{n}{d}$ and [E:F] = d.

By uniqueness of finite fields, $E = \mathbb{F}_{p^d}$.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the subgroup generated by σ^d , then $|H| = \frac{n}{d}$, so if E is the fixed field, $[K:E] = \frac{n}{d}$ and [E:F] = d.

By uniqueness of finite fields, $E = \mathbb{F}_{p^d}$.

Since cyclic groups are abelian, all the subgroups are normal, so E/F is Galois (which we knew already).

Irreducible polynomials over \mathbb{F}_p

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees.

Irreducible polynomials over \mathbb{F}_p

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees.

In general they are not so easy to find: given *n* and *p*, is there even an irreducible polynomial of degree *n* in $\mathbb{F}_p[x]$?

Irreducible polynomials over \mathbb{F}_p

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_{p}[x]$ of certain degrees.

In general they are not so easy to find: given *n* and *p*, is there even an irreducible polynomial of degree *n* in $\mathbb{F}_p[x]$? The answer is yes:

Theorem

The extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is simple: $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ for some θ . In particular, the minimal polynomial of θ is irreducible in $\mathbb{F}_p[x]$ of degree *n*.

Irreducible polynomials over \mathbb{F}_p

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees.

In general they are not so easy to find: given *n* and *p*, is there even an irreducible polynomial of degree *n* in $\mathbb{F}_p[x]$? The answer is yes:

Theorem

The extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is simple: $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ for some θ . In particular, the minimal polynomial of θ is irreducible in $\mathbb{F}_p[x]$ of degree *n*.

Proof.

We say any finite subgroup of the group of units of a field is cyclic, so $\mathbb{F}_{p^n}^{\times}$ is cyclic: take θ to be a generator.

For each prime p and each n, there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree n.

Okay, but what are these irreducible polynomials?

For each prime p and each n, there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree n.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all rots of the polynomial $x^{p^n} - x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

For each prime p and each n, there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree n.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all rots of the polynomial $x^{p^n} - x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

Conversely, if $p(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d which divides $x^{p^n} - x$, and $p(\alpha) = 0$, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} of degree d.

For each prime p and each n, there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree n.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all rots of the polynomial $x^{p^n} - x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

Conversely, if $p(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d which divides $x^{p^n} - x$, and $p(\alpha) = 0$, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} of degree d.

We have just seen that $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$. In particular, *d* divides *n*. Since $\mathbb{F}_p(\alpha)$ is Galois, it contains *all* the roots of p(x).

For each prime p and each n, there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree n.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all rots of the polynomial $x^{p^n} - x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

Conversely, if $p(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d which divides $x^{p^n} - x$, and $p(\alpha) = 0$, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} of degree d.

We have just seen that $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}$. In particular, *d* divides *n*. Since $\mathbb{F}_p(\alpha)$ is Galois, it contains *all* the roots of p(x).

Putting all of this together: $x^{p^n} - x$ is the product of $(x - \beta)$, for β a root. β has a certain minimal polynomial of degree d. That degree must divide n. Conversely, any irreducible poly with degree d dividing n must generate $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$, so divides $x^{p^n} - x$.

 $x^{p^n} - x$ is the product of all the distinct irreducible polynomials in $\mathbb{F}_p[x]$ of degree d, where d runs through all the divisors of n.

This can be used to produce irreducible polynomials recursively, count how many there are, etc. (see DF)

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If p = 2, $x^4 + 1 = (x + 1)^4$. Assume now *p* is odd.

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If p = 2, $x^4 + 1 = (x + 1)^4$. Assume now *p* is odd.

Modulo 8, *p* is either 1, 3, 5, 7, so 8 divides $p^2 - 1$.

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If p = 2, $x^4 + 1 = (x + 1)^4$. Assume now *p* is odd. Modulo 8, *p* is either 1, 3, 5, 7, so 8 divides $p^2 - 1$. Thus $x^8 - 1$ divides $x^{p^2-1} - 1$.

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If p = 2, $x^4 + 1 = (x + 1)^4$. Assume now p is odd. Modulo 8, p is either 1, 3, 5, 7, so 8 divides $p^2 - 1$. Thus $x^8 - 1$ divides $x^{p^2-1} - 1$. [Why? Think about properties of groups of roots of unity!]

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If p = 2, $x^4 + 1 = (x + 1)^4$. Assume now p is odd. Modulo 8, p is either 1, 3, 5, 7, so 8 divides $p^2 - 1$. Thus $x^8 - 1$ divides $x^{p^2-1} - 1$. [Why? Think about properties of groups of roots of unity!] We have: $x^4 + 1|x^8 - 1|x^{p^2-1} - 1|x^{p^2} - x$. Thus all roots of $x^4 + 1$ are roots of $x^{p^2} - x$, so are in \mathbb{F}_{p^2} .

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If p = 2, $x^4 + 1 = (x + 1)^4$. Assume now *p* is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides $p^2 - 1$.

Thus $x^8 - 1$ divides $x^{p^2-1} - 1$. [Why? Think about properties of groups of roots of unity!]

We have: $x^4 + 1|x^8 - 1|x^{p^2-1} - 1|x^{p^2} - x$. Thus all roots of $x^4 + 1$ are roots of $x^{p^2} - x$, so are in \mathbb{F}_{p^2} .

If $x^4 + 1$ is irreducible over $\mathbb{F}_p[x]$, that would mean it generates an extension K of degree 4, with $\mathbb{F}_p \subseteq K \subseteq \mathbb{F}_{p^2}$. However $\mathbb{F}_{p^2}/\mathbb{F}_p$ has degree 2, contradiction.

Summary

Fundamental theorem, part II: If K/F is Galois and E is an intermediate field, E/F is Galois if and only if Aut(K/E) is normal in Aut(K/F). In this case, Aut(E/F) ≅ Aut(K/F)/Aut(K/E).

Summary

- Fundamental theorem, part II: If K/F is Galois and E is an intermediate field, E/F is Galois if and only if Aut(K/E) is normal in Aut(K/F). In this case, Aut(E/F) ≅ Aut(K/F)/Aut(K/E).
- ► The Galois group of F_{pⁿ}/F_p is cyclic of order n, generated by the Frobenius map. Thus F_{p^d} is the only subfield of F_{pⁿ}, for d a divisor of n.