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Recall...

Let K/F be a field extension. Galois theory studies the group
Aut(K/F ) of automorphisms of K fixing F .

If K/F is finite, then |Aut(K/F )| ≤ [K : F ]. If equality holds, we
call K/F a Galois extension.

Subgroups of Aut(K/F ) have a corresponding fixed field.
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The fundamental theorem, part I (last time)

Theorem

Let K/F be a Galois extension and let G = Aut(K/F ) be the
Galois group.

There is a bijection between the subfields E of K containing F ,
and the subgroups H of G .
This bijection is given by sending E to the elements of G fixing E ,
and the inverse sends H to the fixed field of H. Moreover:

1. (Inclusion-reversing correspondence) If E1,E2 correspond to
H1,H2, then E1 is a subfield of E2 if and only if H2 is a
subgroup of H1.

2. [K : E ] = |H| and [E : F ] = |G : H|.
3. K/E is always Galois, with Galois group Aut(K/E ) = H.
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The fundamental theorem: picture

K = fixed field of 1

E = fixed field of H

F = fixed field of G

|H|=|H:1|

|G :H|

1 = automorphisms fixing K

H = automorphisms fixing E

G = Aut(K/F ) = automorphisms fixing F

[K :E ]

[E :F ]



The fundamental theorem, part II

Theorem

Let K/F be a Galois extension with Galois group G = Aut(K/F ).

Let E be an intermediate field (F ⊆ E ⊆ K ), with corresponding
group H = Aut(K/E ).
Then E is Galois over F if and only if H is a normal subgroup of
G . In this case, Aut(E/F ) ∼= G/H.
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The fundamental theorem, part II: picture
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If H is normal in G , then
G/H = Aut(K/F )/Aut(K/E ) ∼= Aut(E/F ).



The fundamental theorem, part II: picture

K

E

F

(always Galois)

Galois

1

H

G

(always normal)

normal

If H is normal in G , then
G/H = Aut(K/F )/Aut(K/E ) ∼= Aut(E/F ).



Part II in action, splitting fields of x3 − 2
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Part II in action, splitting field of x3 − 2: group side
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Proof of part II: Fix a subgroup H of G , let E be its fixed field.
How do the members of Aut(E/F ) relate to members of
Aut(K/F )?

Given σ ∈ Aut(K/F ), σ � E may not be in Aut(E/F ) (maybe
σ[E ] 6= E ). What is true is that σ � E is an embedding (= injective
homomorphism) of E into K , fixing F

Conversely, if τ : E → K is an embedding fixing F , then it is an
isomorphism of E onto τ [E ].

As K/F is Galois, K is the splitting field of a separable polynomial
f (x) ∈ F [x ]. K is the splitting field of f (x) ∈ E [x ] and the
splitting field of τ(f (x)) = f (x) ∈ τ [E ][x ]. By results about
splitting fields, τ extends to σ ∈ Aut(K/F ).

K K

E τ [E ]

∼=
σ

∼=
τ
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So let Emb(E/F ) denote the set of embeddings of E into K fixing
F . We showed σ 7→ σ � E gives a surjection from G = Aut(K/F )
onto Emb(E/F ).

σ � E = σ′ � E if and only if (σ−1σ′) � E is the identity.

That is, σ−1σ′ must fix E : it must be in Aut(K/E ) = H.

Thus σ � E = σ′ � E if and only if σ′ ∈ σH (if and only if
σ′H = σH). So the distinct σ � E ’s are in bijection with the cosets
of H in G : |Emb(E/F )| = [G : H] = [E : F ].

So E/F is Galois if and only if |Emb(E/F )| = |Aut(E/F )|. In
other words, E/F is Galois if and only if σ[E ] = E for all σ ∈ G .

Fix σ ∈ G . When is σ[E ] = E? By the Galois correspondence,
precisely when their fixing subgroups are equal:
Aut(K/E ) = Aut(K/σ[E ])

Claim: Aut(K/σ[E ]) = σHσ−1 (= σAut(K/E )σ−1).
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Claim: Aut(K/σ[E ]) = σHσ−1 (= σAut(K/E )σ−1).

Proof of Claim: Suppose τ ∈ Aut(K/σ[E ]). Let τ ′ := σ−1τσ.
Then τ = στ ′σ−1 and for all a ∈ E ,
τ ′(a) = σ−1τσ(a) = σ−1σ(a) = a. Thus τ ′ ∈ H.

This shows Aut(K/σ[E ]) ⊆ σHσ−1. For the converse, observe
|Aut(K/σ[E ])| = |Aut(K/E )| = [K : E ] = |H| = |σHσ−1|. †Claim
Thus E/F is Galois if and only if σ[E ] = E for all σ ∈ G if and
only if H = σHσ−1 for all σ ∈ G , which means precisely that H is
normal in G .

We saw the members of Aut(E/F ) are in bijections with cosets of
H in G and this bijection respects composition, so gives an
isomorphism of Aut(E/F ) with G/H. This concludes the proof of
part II!
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Fundamental theorem, part III

Theorem

If E1,E2 correspond to H1,H2, then E1 ∩ E2 corresponds to
〈H1,H2〉, and E1E2 corresponds to H1 ∩ H2.

Proof.

Exercise! Use the definition of the fixed field.
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Let’s compute the minimal polynomial of
√
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Recall Q(
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3)/Q is a Galois extension of degree 4 (It is the
splitting field of (x2 − 2)(x2 − 3)).
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members of Aut(K/Q) (called the conjugates under Aut(K/Q)).

Therefore f (x) has ±
√

2±
√

3 as roots. They are all distinct.

f (x) = (x−(
√

2+
√

3))(x−(
√

2−
√

3))(x−(−
√

2+
√

3))(x−(−
√

2−
√

3))

By direct computation, f (x) = x4 − 10x2 + 1.

In particular, this polynomial is irreducible, and Q(
√

2 +
√

3) has
degree 4, so is equal to Q(

√
2,
√

3).
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Example: splitting field K of x8 − 2
K is generated by θ = 8

√
2 and ζ = e2πi/8, a primitive 8th root of

unity, so K = Q( 8
√

2, ζ).

Any automorphism of K is determined by what it does to 8
√

2 and
to ζ. It can take 8

√
2 to 8 different possibilities, and ζ to φ(8) (=

the number of primitive 8th root of unity) different possibilities.
Observe φ(8) = 23 − 22 = 4.

WARNING: Does it mean there are 8 · 4 = 32 automorphisms?
No! For example θ4 =

√
2 = ζ + ζ7, so we cannot send θ to θ and

ζ to ζ3 for example.

There may be more relations: checking directly that a certain
mapping gives an automorphism is annoying. It is better to
compute the degree of the extension first.

We have that ζ =
√
2
2 (1 + i), so in fact we can show that

K = Q( 8
√

2, i).

This has degree at most 2 · 8 = 16, but strictly more than 8 (i is
not real), so must have degree 16.
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Splitting field of x8 − 2, continued

So K = Q( 8
√

2, i) is the splitting field of x8 − 2 and has degree 16.

It is a Galois extension, so G = Aut(K/Q) has 16 elements. They
are determined by what they do to θ = 8

√
2 and i .

i is a root of x2 + 1, so automorphisms send it to ±i .
8
√

2 is a root of x8 − 2, so automorphisms send it to ζa 8
√

2, for
a = 0, 1, 2, . . . , 7.

This gives 16 possibilities, so all of these choices are indeed
automorphisms. Let σ send θ to ζθ, and fix i . Let τ send θ to θ
and i to −i .
G = 〈σ, θ〉, σ has order 2, θ has order 8. We can also compute
that στ = τσ3 (details in the book).

This determines the group completely: it is a “quasidihedral group”
of order 16. See the book for the computation of the subgroups
and subfields.
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Galois groups of finite fields

F = Fp, K = Fpn .

We showed earlier K was the splitting field of xp
n − x , a separable

polynomial, so K/F is Galois, and |Aut(K/F )| = [K : F ] = n.

An example of an automorphism: the Frobenius map σ sending
a 7→ ap for all a ∈ F .

In fact, for each k ≥ 1, σk , the map sending a to ap
k

is also an
automorphism.

What is the order of σ? Note σn is the identity: by construction,
ap

n
= a for all a ∈ F .

Also, for each k < n, the equation xp
k

= x has at most pk

solutions, so σk is not the identity.

Thus σ has order n, so the Galois group of K/F is cyclic of order
n, generated by the Frobenius map: Aut(K/F ) ∼= Z/nZ.
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σ has order n, so the Galois group of K/F is cyclic of order n,
generated by the Frobenius map: Aut(K/F ) ∼= Z/nZ.

By the fundamental theorem, subfields of Fpn and subgroups of
Z/nZ are in one to one correspondence.

Subgroups of Z/nZ are those generated by d , d a divisor of n.

So for every divisor d of n, there is a unique subfield E of Fpn , and
there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the
subgroup generated by σd , then |H| = n

d , so if E is the fixed field,
[K : E ] = n

d and [E : F ] = d .

By uniqueness of finite fields, E = Fpd .

Since cyclic groups are abelian, all the subgroups are normal, so
E/F is Galois (which we knew already).
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Irreducible polynomials over Fp

Remember that in the assignments you built some finite fields by
hand by exhibiting irreducible elements in Fp[x ] of certain degrees.

In general they are not so easy to find: given n and p, is there even
an irreducible polynomial of degree n in Fp[x ]? The answer is yes:

Theorem

The extension Fpn/Fp is simple: Fpn = Fp(θ) for some θ. In
particular, the minimal polynomial of θ is irreducible in Fp[x ] of
degree n.

Proof.

We say any finite subgroup of the group of units of a field is cyclic,
so F×pn is cyclic: take θ to be a generator.
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Theorem

For each prime p and each n, there are irreducible polynomials in
Fp[x ] of degree n.

Okay, but what are these irreducible polynomials?

Say Fpn = Fp(θ). Since Fpn is just the set of all rots of the
polynomial xp

n − x , this means θ is a root, so its minimal
polynomial divides xp

n − x .

Conversely, if p(x) ∈ Fp[x ] is any irreducible polynomial of degree
d which divides xp

n − x , and p(α) = 0, then Fp(α) is a subfield of
Fpn of degree d .

We have just seen that Fp(α) = Fpd . In particular, d divides n.
Since Fp(α) is Galois, it contains all the roots of p(x).

Putting all of this together: xp
n − x is the product of (x − β), for β

a root. β has a certain minimal polynomial of degree d . That
degree must divide n. Conversely, any irreducible poly with degree
d dividing n must generate Fpd ⊆ Fpn , so divides xp

n − x .
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Theorem

xp
n − x is the product of all the distinct irreducible polynomials in

Fp[x ] of degree d , where d runs through all the divisors of n.

This can be used to produce irreducible polynomials recursively,
count how many there are, etc. (see DF)



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1. [Why? Think about properties of

groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 is irreducible over Fp[x ], that would mean it generates an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.
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Summary

I Fundamental theorem, part II: If K/F is Galois and E is an
intermediate field, E/F is Galois if and only if Aut(K/E ) is
normal in Aut(K/F ). In this case,
Aut(E/F ) ∼= Aut(K/F )/Aut(K/E ).

I The Galois group of Fpn/Fp is cyclic of order n, generated by
the Frobenius map. Thus Fpd is the only subfield of Fpn , for d
a divisor of n.
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