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Galois groups of finite fields

F = Fp, K = Fpn .

We showed earlier K was the splitting field of xp
n − x , a separable

polynomial, so K/F is Galois, and |Aut(K/F )| = [K : F ] = n.

An example of an automorphism: the Frobenius map σ sending
a 7→ ap for all a ∈ F .

In fact, for each k ≥ 1, σk , the map sending a to ap
k

is also an
automorphism.

What is the order of σ? Note σn is the identity: by construction,
ap

n
= a for all a ∈ F .

Also, for each k < n, the equation xp
k

= x has at most pk

solutions, so σk is not the identity.

Thus σ has order n, so the Galois group of K/F is cyclic of order
n, generated by the Frobenius map: Aut(K/F ) ∼= Z/nZ.
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σ has order n, so the Galois group of K/F is cyclic of order n,
generated by the Frobenius map: Aut(K/F ) ∼= Z/nZ.

By the fundamental theorem, subfields of Fpn and subgroups of
Z/nZ are in one to one correspondence.

Subgroups of Z/nZ are those generated by d , d a divisor of n.

So for every divisor d of n, there is a unique subfield E of Fpn , and
there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the
subgroup generated by σd , then |H| = n

d , so if E is the fixed field,
[K : E ] = n

d and [E : F ] = d .

By uniqueness of finite fields, E = Fpd .

Since cyclic groups are abelian, all the subgroups are normal, so
E/F is Galois (which we knew already).
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Irreducible polynomials over Fp

Remember that in the assignments you built some finite fields by
hand by exhibiting irreducible elements in Fp[x ] of certain degrees.

In general they are not so easy to find: given n and p, is there even
an irreducible polynomial of degree n in Fp[x ]? The answer is yes:

Theorem

The extension Fpn/Fp is simple: Fpn = Fp(θ) for some θ. In
particular, the minimal polynomial of θ is irreducible in Fp[x ] of
degree n.

Proof.

We say any finite subgroup of the group of units of a field is cyclic,
so F×pn is cyclic: take θ to be a generator.
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Theorem

For each prime p and each n, there are irreducible polynomials in
Fp[x ] of degree n.

Okay, but what are these irreducible polynomials?

Say Fpn = Fp(θ). Since Fpn is just the set of all roots of the
polynomial xp

n − x , this means θ is a root, so its minimal
polynomial divides xp

n − x .

Conversely, if p(x) ∈ Fp[x ] is any irreducible polynomial of degree
d which divides xp

n − x , and p(α) = 0, then Fp(α) is a subfield of
Fpn of degree d .

We have just seen that Fp(α) = Fpd . In particular, d divides n.
Since Fp(α) is Galois, it contains all the roots of p(x).

Putting all of this together: xp
n − x is the product of (x − β), for β

a root. β has a certain minimal polynomial of degree d . That
degree must divide n. Conversely, any irreducible poly with degree
d dividing n must generate Fpd ⊆ Fpn , so divides xp

n − x .
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Theorem

xp
n − x is the product of all the distinct irreducible polynomials in

Fp[x ] of degree d , where d runs through all the divisors of n.

This can be used to produce irreducible polynomials recursively,
count how many there are, etc. (see DF)



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1. [Why? Think about properties of

groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 were irreducible over Fp[x ], then it would generate an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1. [Why? Think about properties of

groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 were irreducible over Fp[x ], then it would generate an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1.

[Why? Think about properties of
groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 were irreducible over Fp[x ], then it would generate an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1. [Why? Think about properties of

groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 were irreducible over Fp[x ], then it would generate an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1. [Why? Think about properties of

groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 were irreducible over Fp[x ], then it would generate an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.



A fun result

Theorem

The irreducible x4 + 1 ∈ Z[x ] is reducible modulo every prime.

Proof: If p = 2, x4 + 1 = (x + 1)4. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 − 1.

Thus x8 − 1 divides xp
2−1 − 1. [Why? Think about properties of

groups of roots of unity!]

We have: x4 + 1|x8 − 1|xp2−1 − 1|xp2 − x . Thus all roots of x4 + 1
are roots of xp

2 − x , so are in Fp2 .

If x4 + 1 were irreducible over Fp[x ], then it would generate an
extension K of degree 4, with Fp ⊆ K ⊆ Fp2 . However Fp2/Fp has
degree 2, contradiction.



Composite extensions

Theorem

Suppose K/F is a Galois extension and F ′/F is any extension.
Then KF ′/F ′ is a Galois extension.

The Galois group is Aut(KF ′/F ′) ∼= Aut(K/K ∩ F ′).
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Galois group of composite extensions: picture

KF ′

K F ′

K ∩ F ′
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Galois

Galois

Aut(K/(K ∩ F ′)) ∼= Aut(KF ′/F ′)
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Proof of Theorem: K/F is the splitting field of a separable
f (x) ∈ F [x ]. Thus KF ′/F ′ is the splitting field of f (x), seen as a
poly in F ′[x ]. Thus KF ′/F ′ is Galois.

Define a map φ : Aut(KF ′/F ′)→ Aut(K/F ) by φ(σ) = σ � K .

Since K/F is a Galois extension, it is a well-defined map (seen last
time).

The elements of the kernel fix both K and F ′, hence fix KF ′. Thus
the kernel is trivial: φ is injective.
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φ : Aut(KF ′/F ′)→ Aut(K/F ), φ(σ) = σ � K is injective.

Let H be the image of φ. Let KH be the fixed field of H (in K/F ).
Every element of H fixes F ′, so F ′ ∩ K ⊆ KH .

KHF
′ is fixed by Aut(KF ′/F ′): if σ ∈ Aut(KF ′/F ′), then σ fixes

F ′, and σ � K is in the image of φ, so fixes KH .

So we have KH ⊆ F ′, so KH = K ∩ F ′.

Thus H = Aut(K/K ∩ F ′), and we are done (first iso theorem).
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subgroup of Aut(K1/F )× Aut(K2/F ) consisting of pairs
(σ1, σ2) agreeing on K1 ∩ K2.
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Proof that (K1 ∩ K2)/F is Galois: Let p(x) ∈ F [x ] be irreducible
with a root α in K1 ∩ K2.

All the roots of p(x) lie in K1 and in K2 (characterization of Galois
extensions). Thus all the roots of p(x) lie in K1 ∩ K2. Thus
K1 ∩ K2/F is Galois.
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Proof that (K1K2)/F is Galois: Say K1/F is the splitting field of
a separable f1(x), K2/F is the splitting field of a separable f2(x).

Then K1K2 is the splitting field of f1(x)f2(x). Removing repeated
irreducible factors, we get that K1K2 is the splitting field of a
separable polynomial.
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K1 ∩ K2

F

Description of the Galois group of K1K2/F : Consider
φ : Aut(K1K2/F )→ Aut(K1/F )× Aut(K2/F ) given by
φ(σ) = (σ � K1, σ � K2).

The kernel is trivial, so φ is injective.

Let H be the subgroup of Aut(K1/F )× Aut(K2/F ) of all (σ1, σ2)
that agree on K1 ∩ K2. The image of φ is contained in H.

We will show that |H| = |Aut(K1K2/F )|, so the image has to be
all of H.
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H is the subgroup of Aut(K1/F )× Aut(K2/F ) of all (σ1, σ2) that
agree on K1 ∩ K2.

If σ1 ∈ Aut(K1/F ), how many σ2 ∈ Aut(K2/F ) are there so that
(σ1, σ2) ∈ H?

Exactly |Aut(K2/K1 ∩ K2)| (exercise).

|H| = |Aut(K1/F )||Aut(K2/K1∩K2)| = |Aut(K1/F )| |Aut(K2/F )|
|Aut(K1∩K2/F )| .

Using the previous corollary, |H| = [K1K2 : F ], as desired.
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Corollary

Let K1/F , K2/F be Galois extensions. If K1 ∩ K2 = F , then
Aut(K1K2/F ) ∼= Aut(K1/F )× Aut(K2/F ).

For example: take F = Q, K1 = Q(
√

2),K2 = Q(
√

3).

Each extension is Galois, with Galois group Z2 (= Z/2Z).

We know
√

3 /∈ Q(
√

2), so K1 6= K2.

Thus F ⊆ K1 ∩ K2 ( K1. By the Galois correspondence (or just
looking at degrees), F = K1 ∩ K2.

So Aut(K1K2/F ) = Aut(Q(
√

2,
√

3)/Q) ∼= Z2 × Z2.
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Separable extensions

Definition

An extension E/F is separable if every element in E is the root of
a separable polynomial in F [x ].

Note: if F has characteristic zero (or more generally is perfect),
then any irreducible polynomial is separable.

Thus any algebraic extension of a perfect field is separable.
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Corollary

If E/F is any finite separable extension, then E is contained in an
extension K which is Galois over F , and is minimal (no proper
subfield of K containing E is Galois over F ).

Proof.

Let f1(x), f2(x), . . . , fn(x) be the minimal polynomials for a basis of
E/F (they are separable).
Let K1/F , K2/F , ..., Kn/F be the splitting fields. They are Galois
extensions.
So K1K2 . . .Kn/F is a Galois extension containing E .
It has only finitely-many subfields, since the Galois group is finite.
Take the intersection K of all the subfields containing E that are
Galois over F .

The Galois extension K is called the Galois closure of E over F .
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Summary

I The Galois group of Fpn/Fp is cyclic of order n, generated by
the Frobenius map. Thus Fpd is the only subfield of Fpn , for d
a divisor of n.

I If K1/F , K2/F are Galois, then K1 ∩ K2/F and K1K2/F are
Galois. If K1 ∩ K2 = F , then the Galois group of K1K2/F is
the product of the Galois groups of K1/F and K2/F .

I If E/F is any finite separable extension, then there is a
minimal extension K/E which is Galois over F , called the
Galois closure of E over F .



Summary

I The Galois group of Fpn/Fp is cyclic of order n, generated by
the Frobenius map. Thus Fpd is the only subfield of Fpn , for d
a divisor of n.

I If K1/F , K2/F are Galois, then K1 ∩ K2/F and K1K2/F are
Galois. If K1 ∩ K2 = F , then the Galois group of K1K2/F is
the product of the Galois groups of K1/F and K2/F .

I If E/F is any finite separable extension, then there is a
minimal extension K/E which is Galois over F , called the
Galois closure of E over F .



Summary

I The Galois group of Fpn/Fp is cyclic of order n, generated by
the Frobenius map. Thus Fpd is the only subfield of Fpn , for d
a divisor of n.

I If K1/F , K2/F are Galois, then K1 ∩ K2/F and K1K2/F are
Galois. If K1 ∩ K2 = F , then the Galois group of K1K2/F is
the product of the Galois groups of K1/F and K2/F .

I If E/F is any finite separable extension, then there is a
minimal extension K/E which is Galois over F , called the
Galois closure of E over F .


