Math-123: Finite fields, Composite extensions

Sebastien Vasey

Harvard University

April 10, 2020

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed earlier K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed earlier K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed earlier K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{ρ^k} is also an automorphism.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed earlier K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{ρ^k} is also an automorphism.

What is the order of σ ? Note σ ⁿ is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed earlier K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{ρ^k} is also an automorphism.

What is the order of σ ? Note σ ⁿ is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each $k < n$, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

$$
F=\mathbb{F}_p, K=\mathbb{F}_{p^n}.
$$

We showed earlier K was the splitting field of $x^{p^n}-x$, a separable polynomial, so K/F is Galois, and $|Aut(K/F)| = [K : F] = n$.

An example of an automorphism: the Frobenius map σ sending $a \mapsto a^p$ for all $a \in F$.

In fact, for each $k\geq 1$, σ^k , the map sending *a* to a^{ρ^k} is also an automorphism.

What is the order of σ ? Note σ ⁿ is the identity: by construction, $a^{p^n} = a$ for all $a \in F$.

Also, for each $k < n$, the equation $x^{p^k} = x$ has at most p^k solutions, so σ^k is not the identity.

Thus σ has order n, so the Galois group of K/F is cyclic of order n, generated by the Frobenius map: Aut(K/F) $\cong \mathbb{Z}/n\mathbb{Z}$.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the subgroup generated by σ^d , then $|H| = \frac{n}{d}$ $\frac{n}{d}$, so if E is the fixed field, $[K : E] = \frac{n}{d}$ and $[E : F] = d$.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the subgroup generated by σ^d , then $|H| = \frac{n}{d}$ $\frac{n}{d}$, so if E is the fixed field, $[K : E] = \frac{n}{d}$ and $[E : F] = d$.

By uniqueness of finite fields, $E = \mathbb{F}_{p^d}$.

By the fundamental theorem, subfields of \mathbb{F}_{p^n} and subgroups of $\mathbb{Z}/n\mathbb{Z}$ are in one to one correspondence.

Subgroups of $\mathbb{Z}/n\mathbb{Z}$ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of \mathbb{F}_{p^n} , and there are no other subfields.

More precisely: if σ is the Frobenius map, d a divisor of n, H the subgroup generated by σ^d , then $|H| = \frac{n}{d}$ $\frac{n}{d}$, so if E is the fixed field, $[K : E] = \frac{n}{d}$ and $[E : F] = d$.

By uniqueness of finite fields, $E = \mathbb{F}_{p^d}$.

Since cyclic groups are abelian, all the subgroups are normal, so E/F is Galois (which we knew already).

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees.

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees.

In general they are not so easy to find: given n and p , is there even an irreducible polynomial of degree n in $\mathbb{F}_p[x]$?

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees. In general they are not so easy to find: given n and p , is there even an irreducible polynomial of degree n in $\mathbb{F}_p[x]$? The answer is yes:

Theorem

The extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is simple: $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ for some θ . In particular, the minimal polynomial of θ is irreducible in $\mathbb{F}_p[x]$ of degree n.

Remember that in the assignments you built some finite fields by hand by exhibiting irreducible elements in $\mathbb{F}_p[x]$ of certain degrees. In general they are not so easy to find: given n and p , is there even

an irreducible polynomial of degree n in $\mathbb{F}_p[x]$? The answer is yes:

Theorem

The extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is simple: $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$ for some θ . In particular, the minimal polynomial of θ is irreducible in $\mathbb{F}_p[x]$ of degree n.

Proof.

We say any finite subgroup of the group of units of a field is cyclic, so $\mathbb{F}_{\rho^n}^\times$ is cyclic: take θ to be a generator.

For each prime p and each n , there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree *n*.

Okay, but what are these irreducible polynomials?

For each prime p and each n , there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree *n*.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all roots of the polynomial $x^{p^n}-x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

For each prime p and each n , there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree *n*.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all roots of the polynomial $x^{p^n}-x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

Conversely, if $p(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d which divides $x^{p^n} - x$, and $p(\alpha) = 0$, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} of degree d .

For each prime p and each n , there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree *n*.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all roots of the polynomial $x^{p^n}-x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

Conversely, if $p(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d which divides $x^{p^n} - x$, and $p(\alpha) = 0$, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} of degree d .

We have just seen that $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}.$ In particular, d divides $n.$ Since $\mathbb{F}_{p}(\alpha)$ is Galois, it contains all the roots of $p(x)$.

For each prime p and each n , there are irreducible polynomials in $\mathbb{F}_p[x]$ of degree *n*.

Okay, but what are these irreducible polynomials?

Say $\mathbb{F}_{p^n} = \mathbb{F}_p(\theta)$. Since \mathbb{F}_{p^n} is just the set of all roots of the polynomial $x^{p^n}-x$, this means θ is a root, so its minimal polynomial divides $x^{p^n} - x$.

Conversely, if $p(x) \in \mathbb{F}_p[x]$ is any irreducible polynomial of degree d which divides $x^{p^n} - x$, and $p(\alpha) = 0$, then $\mathbb{F}_p(\alpha)$ is a subfield of \mathbb{F}_{p^n} of degree d .

We have just seen that $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^d}.$ In particular, d divides $n.$ Since $\mathbb{F}_{p}(\alpha)$ is Galois, it contains *all* the roots of $p(x)$.

Putting all of this together: $x^{p^n} - x$ is the product of $(x - \beta)$, for β a root. β has a certain minimal polynomial of degree d. That degree must divide n. Conversely, any irreducible poly with degree d dividing n must generate $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$, so divides $x^{p^n} - x$.

 $x^{p^n} - x$ is the product of all the distinct irreducible polynomials in $\mathbb{F}_{p}[x]$ of degree d, where d runs through all the divisors of n.

This can be used to produce irreducible polynomials recursively, count how many there are, etc. (see DF)

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If $p = 2$, $x^4 + 1 = (x + 1)^4$. Assume now p is odd.

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If $p = 2$, $x^4 + 1 = (x + 1)^4$. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p^2-1 .

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If $p = 2$, $x^4 + 1 = (x + 1)^4$. Assume now p is odd. Modulo 8, p is either 1, 3, 5, 7, so 8 divides p^2-1 . Thus $x^8 - 1$ divides $x^{p^2-1} - 1$.

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If $p = 2$, $x^4 + 1 = (x + 1)^4$. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p^2-1 .

Thus $x^8 - 1$ divides $x^{p^2-1} - 1$. [Why? Think about properties of groups of roots of unity!]

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If $p = 2$, $x^4 + 1 = (x + 1)^4$. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p^2-1 .

Thus $x^8 - 1$ divides $x^{p^2-1} - 1$. [Why? Think about properties of groups of roots of unity!]

We have: $x^4+1|x^8-1|x^{p^2-1}-1|x^{p^2}-x.$ Thus all roots of x^4+1 are roots of $x^{p^2}-x$, so are in \mathbb{F}_{p^2} .

Theorem

The irreducible $x^4 + 1 \in \mathbb{Z}[x]$ is reducible modulo every prime.

Proof: If $p = 2$, $x^4 + 1 = (x + 1)^4$. Assume now p is odd.

Modulo 8, p is either 1, 3, 5, 7, so 8 divides p^2-1 .

Thus $x^8 - 1$ divides $x^{p^2-1} - 1$. [Why? Think about properties of groups of roots of unity!]

We have: $x^4+1|x^8-1|x^{p^2-1}-1|x^{p^2}-x.$ Thus all roots of x^4+1 are roots of $x^{p^2}-x$, so are in \mathbb{F}_{p^2} .

If $x^4 + 1$ were irreducible over $\mathbb{F}_p[x]$, then it would generate an extension K of degree 4, with $\mathbb{F}_\rho\subseteq K\subseteq \mathbb{F}_{\rho^2}.$ However $\mathbb{F}_{\rho^2}/\mathbb{F}_\rho$ has degree 2, contradiction.

Composite extensions

Theorem

Suppose K/F is a Galois extension and F'/F is any extension. Then KF'/F' is a Galois extension.

Composite extensions

Theorem

Suppose K/F is a Galois extension and F'/F is any extension. Then KF'/F' is a Galois extension. The Galois group is $Aut(KF'/F') \cong Aut(K/K \cap F')$.

Galois group of composite extensions: picture

 $\mathsf{Aut}(\mathcal K/(\mathcal K\cap\mathcal F'))\cong \mathsf{Aut}(\mathcal K\mathcal F'/\mathcal F')$

Proof of Theorem: K/F is the splitting field of a separable $f(x) \in F[x]$. Thus KF'/F' is the splitting field of $f(x)$, seen as a poly in $F'[x]$. Thus KF'/F' is Galois.

Proof of Theorem: K/F is the splitting field of a separable $f(x) \in F[x]$. Thus KF'/F' is the splitting field of $f(x)$, seen as a poly in $F'[x]$. Thus KF'/F' is Galois.

Define a map ϕ : Aut $(KF'/F') \to$ Aut (K/F) by $\phi(\sigma) = \sigma \upharpoonright K$.

Proof of Theorem: K/F is the splitting field of a separable $f(x) \in F[x]$. Thus KF'/F' is the splitting field of $f(x)$, seen as a poly in $F'[x]$. Thus KF'/F' is Galois.

Define a map ϕ : Aut $(KF'/F') \to$ Aut (K/F) by $\phi(\sigma) = \sigma \upharpoonright K$.

Since K/F is a Galois extension, it is a well-defined map (seen last time).

Proof of Theorem: K/F is the splitting field of a separable $f(x) \in F[x]$. Thus KF'/F' is the splitting field of $f(x)$, seen as a poly in $F'[x]$. Thus KF'/F' is Galois.

Define a map ϕ : Aut $(KF'/F') \to$ Aut (K/F) by $\phi(\sigma) = \sigma \upharpoonright K$.

Since K/F is a Galois extension, it is a well-defined map (seen last time).

The elements of the kernel fix both K and F' , hence fix KF' . Thus the kernel is trivial: ϕ is injective.

Let H be the image of ϕ . Let K_H be the fixed field of H (in K/F). Every element of H fixes F', so $F' \cap K \subseteq K_H$.

Let H be the image of ϕ . Let K_H be the fixed field of H (in K/F). Every element of H fixes F', so $F' \cap K \subseteq K_H$.

 $K_H F'$ is fixed by Aut (KF'/F') :

Let H be the image of ϕ . Let K_H be the fixed field of H (in K/F). Every element of H fixes F', so $F' \cap K \subseteq K_H$.

 $K_H F'$ is fixed by $\text{Aut}(KF'/F')$: if $\sigma \in \text{Aut}(KF'/F')$, then σ fixes F', and $\sigma \restriction K$ is in the image of ϕ , so fixes K_H .

Let H be the image of ϕ . Let K_H be the fixed field of H (in K/F). Every element of H fixes F', so $F' \cap K \subseteq K_H$.

 $K_H F'$ is fixed by $\text{Aut}(KF'/F')$: if $\sigma \in \text{Aut}(KF'/F')$, then σ fixes F', and $\sigma \restriction K$ is in the image of ϕ , so fixes K_H .

So we have $K_H \subseteq F'$, so $K_H = K \cap F'$.

Let H be the image of ϕ . Let K_H be the fixed field of H (in K/F). Every element of H fixes F', so $F' \cap K \subseteq K_H$.

 $K_H F'$ is fixed by $\text{Aut}(KF'/F')$: if $\sigma \in \text{Aut}(KF'/F')$, then σ fixes F', and $\sigma \restriction K$ is in the image of ϕ , so fixes K_H .

So we have $K_H \subseteq F'$, so $K_H = K \cap F'$.

Thus $H = Aut(K/K \cap F')$, and we are done (first iso theorem).

$$
[\mathsf{KF}':\mathsf{F}] = \frac{[\mathsf{K}:\mathsf{F}][\mathsf{F}':\mathsf{F}]}{[\mathsf{K}\cap\mathsf{F}':\mathsf{F}]}
$$

Proof.
\n
$$
[KF': F] = [KF': F'][F': F] = [K : K \cap F'][F': F].
$$

$$
[\mathit{KF}':\mathit{F}]=\frac{[\mathit{K}:\mathit{F}][\mathit{F}':\mathit{F}]}{[\mathit{K}\cap\mathit{F}':\mathit{F}]}
$$

 \Box

Corollary

Let K_1/F , K_2/F be Galois extensions. Then:

Let K_1/F , K_2/F be Galois extensions. Then:

1. $(K_1 \cap K_2)/F$ is Galois.

Let K_1/F , K_2/F be Galois extensions. Then:

- 1. $(K_1 \cap K_2)/F$ is Galois.
- 2. K_1K_2/F is Galois, with Galois group isomorphic to the subgroup of Aut(K_1/F) × Aut(K_2/F) consisting of pairs (σ_1, σ_2) agreeing on $K_1 \cap K_2$.

Let K_1/F , K_2/F be Galois extensions. Then:

- 1. $(K_1 \cap K_2)/F$ is Galois.
- 2. K_1K_2/F is Galois, with Galois group isomorphic to the subgroup of Aut(K_1/F) × Aut(K_2/F) consisting of pairs (σ_1, σ_2) agreeing on $K_1 \cap K_2$.

Proof that $(K_1 \cap K_2)/F$ is Galois: Let $p(x) \in F[x]$ be irreducible with a root α in $K_1 \cap K_2$.

Proof that $(K_1 \cap K_2)/F$ is Galois: Let $p(x) \in F[x]$ be irreducible with a root α in $K_1 \cap K_2$.

All the roots of $p(x)$ lie in K_1 and in K_2 (characterization of Galois extensions). Thus all the roots of $p(x)$ lie in $K_1 \cap K_2$. Thus $K_1 \cap K_2/F$ is Galois.

Proof that $(K_1K_2)/F$ is Galois: Say K_1/F is the splitting field of a separable $f_1(x)$, K_2/F is the splitting field of a separable $f_2(x)$.

Proof that $(K_1K_2)/F$ is Galois: Say K_1/F is the splitting field of a separable $f_1(x)$, K_2/F is the splitting field of a separable $f_2(x)$.

Then K_1K_2 is the splitting field of $f_1(x)f_2(x)$. Removing repeated irreducible factors, we get that K_1K_2 is the splitting field of a separable polynomial.

Description of the Galois group of K_1K_2/F **: Consider** ϕ : Aut $(K_1K_2/F) \rightarrow$ Aut $(K_1/F) \times$ Aut (K_2/F) given by $\phi(\sigma) = (\sigma \upharpoonright K_1, \sigma \upharpoonright K_2).$

Description of the Galois group of K_1K_2/F **: Consider** ϕ : Aut $(K_1K_2/F) \to$ Aut $(K_1/F) \times$ Aut (K_2/F) given by $\phi(\sigma) = (\sigma \upharpoonright K_1, \sigma \upharpoonright K_2).$

The kernel is trivial, so ϕ is injective.

Description of the Galois group of K_1K_2/F **: Consider** ϕ : Aut(K₁K₂/F) \rightarrow Aut(K₁/F) \times Aut(K₂/F) given by $\phi(\sigma) = (\sigma \upharpoonright K_1, \sigma \upharpoonright K_2).$

The kernel is trivial, so ϕ is injective.

Let H be the subgroup of Aut(K_1/F) \times Aut(K_2/F) of all (σ_1, σ_2) that agree on $K_1 \cap K_2$. The image of ϕ is contained in H.

Description of the Galois group of K_1K_2/F **: Consider** ϕ : Aut $(K_1K_2/F) \to$ Aut $(K_1/F) \times$ Aut (K_2/F) given by $\phi(\sigma) = (\sigma \upharpoonright K_1, \sigma \upharpoonright K_2).$

The kernel is trivial, so ϕ is injective.

Let H be the subgroup of Aut(K_1/F) \times Aut(K_2/F) of all (σ_1, σ_2) that agree on $K_1 \cap K_2$. The image of ϕ is contained in H.

We will show that $|H| = |\text{Aut}(K_1K_2/F)|$, so the image has to be all of H .

H is the subgroup of $Aut(K_1/F) \times Aut(K_2/F)$ of all (σ_1, σ_2) that agree on $K_1 \cap K_2$.

If $\sigma_1 \in$ Aut (K_1/F) , how many $\sigma_2 \in$ Aut (K_2/F) are there so that $(\sigma_1, \sigma_2) \in H?$

If $\sigma_1 \in$ Aut (K_1/F) , how many $\sigma_2 \in$ Aut (K_2/F) are there so that $(\sigma_1, \sigma_2) \in H?$

Exactly $|Aut(K_2/K_1 \cap K_2)|$ (exercise).

If $\sigma_1 \in$ Aut (K_1/F) , how many $\sigma_2 \in$ Aut (K_2/F) are there so that $(\sigma_1, \sigma_2) \in H?$

Exactly $|Aut(K_2/K_1 \cap K_2)|$ (exercise).

 $|H| = |\text{Aut}(K_1/F)| |\text{Aut}(K_2/K_1 \cap K_2)| = |\text{Aut}(K_1/F)| \frac{|\text{Aut}(K_2/F)|}{|\text{Aut}(K_1 \cap K_2/F)|}$ $|\mathsf{Aut}(\mathsf{K}_1\!\cap\!\mathsf{K}_2/\mathsf{F})|$.

If $\sigma_1 \in$ Aut (K_1/F) , how many $\sigma_2 \in$ Aut (K_2/F) are there so that $(\sigma_1, \sigma_2) \in H?$

Exactly $|\text{Aut}(K_2/K_1 \cap K_2)|$ (exercise).

 $|H| = |\text{Aut}(K_1/F)| |\text{Aut}(K_2/K_1 \cap K_2)| = |\text{Aut}(K_1/F)| \frac{|\text{Aut}(K_2/F)|}{|\text{Aut}(K_1 \cap K_2/F)|}$ $\frac{|Aut(K_2/F)|}{|Aut(K_1 \cap K_2/F)|}$. Using the previous corollary, $|H| = [K_1K_2 : F]$, as desired.

Let K_1/F , K_2/F be Galois extensions. If $K_1 \cap K_2 = F$, then Aut(K₁K₂/F) ≅ Aut(K₁/F) × Aut(K₂/F).

Let K_1/F , K_2/F be Galois extensions. If $K_1 \cap K_2 = F$, then Aut(K₁K₂/F) ≅ Aut(K₁/F) × Aut(K₂/F).

For example: take $\mathcal{F}=\mathbb{Q}$, $\mathcal{K}_1=\mathbb{Q}(\sqrt{2}), \mathcal{K}_2=\mathbb{Q}(\sqrt{2})$ 3).

Let K_1/F , K_2/F be Galois extensions. If $K_1 \cap K_2 = F$, then Aut(K₁K₂/F) ≅ Aut(K₁/F) × Aut(K₂/F).

For example: take $\mathcal{F}=\mathbb{Q}$, $\mathcal{K}_1=\mathbb{Q}(\sqrt{2}), \mathcal{K}_2=\mathbb{Q}(\sqrt{2})$ 3).

Each extension is Galois, with Galois group Z_2 (= $\mathbb{Z}/2\mathbb{Z}$).

Let K_1/F , K_2/F be Galois extensions. If $K_1 \cap K_2 = F$, then Aut(K₁K₂/F) ≅ Aut(K₁/F) × Aut(K₂/F).

For example: take $\mathcal{F}=\mathbb{Q}$, $\mathcal{K}_1=\mathbb{Q}(\sqrt{2}), \mathcal{K}_2=\mathbb{Q}(\sqrt{2})$ 3). Each extension is Galois, with Galois group Z_2 (= $\mathbb{Z}/2\mathbb{Z}$). We know $\sqrt{3} \notin \mathbb{Q}(\sqrt{3})$ 2), so $K_1 \neq K_2$.

Let K_1/F , K_2/F be Galois extensions. If $K_1 \cap K_2 = F$, then Aut(K₁K₂/F) ≅ Aut(K₁/F) × Aut(K₂/F).

For example: take $\mathcal{F}=\mathbb{Q}$, $\mathcal{K}_1=\mathbb{Q}(\sqrt{2}), \mathcal{K}_2=\mathbb{Q}(\sqrt{2})$ 3).

Each extension is Galois, with Galois group Z_2 (= $\mathbb{Z}/2\mathbb{Z}$).

We know
$$
\sqrt{3} \notin \mathbb{Q}(\sqrt{2})
$$
, so $K_1 \neq K_2$.

Thus $F \subseteq K_1 \cap K_2 \subseteq K_1$. By the Galois correspondence (or just looking at degrees), $F = K_1 \cap K_2$.

Let K_1/F , K_2/F be Galois extensions. If $K_1 \cap K_2 = F$, then Aut(K₁K₂/F) ≅ Aut(K₁/F) × Aut(K₂/F).

For example: take $\mathcal{F}=\mathbb{Q}$, $\mathcal{K}_1=\mathbb{Q}(\sqrt{2}), \mathcal{K}_2=\mathbb{Q}(\sqrt{2})$ 3).

Each extension is Galois, with Galois group Z_2 (= $\mathbb{Z}/2\mathbb{Z}$).

We know
$$
\sqrt{3} \notin \mathbb{Q}(\sqrt{2})
$$
, so $K_1 \neq K_2$.

Thus $F \subseteq K_1 \cap K_2 \subseteq K_1$. By the Galois correspondence (or just looking at degrees), $F = K_1 \cap K_2$.

So $\mathsf{Aut}(K_1K_2/\mathcal{F}) = \mathsf{Aut}(\mathbb{Q}(\sqrt{3})$ 2, − $\sqrt{3})/\mathbb{Q}$) ≅ $Z_2 \times Z_2$.

Separable extensions

Definition

An extension E/F is separable if every element in E is the root of a separable polynomial in $F[x]$.

Separable extensions

Definition

An extension E/F is separable if every element in E is the root of a separable polynomial in $F[x]$.

Note: if F has characteristic zero (or more generally is perfect), then any irreducible polynomial is separable.

Separable extensions

Definition

An extension E/F is separable if every element in E is the root of a separable polynomial in $F[x]$.

Note: if F has characteristic zero (or more generally is perfect), then any irreducible polynomial is separable.

Thus any algebraic extension of a perfect field is separable.
If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

Proof.

Let $f_1(x), f_2(x), \ldots, f_n(x)$ be the minimal polynomials for a basis of E/F (they are separable).

If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

Proof.

Let $f_1(x), f_2(x), \ldots, f_n(x)$ be the minimal polynomials for a basis of E/F (they are separable). Let K_1/F , K_2/F , ..., K_n/F be the splitting fields. They are Galois extensions.

If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

Proof.

Let $f_1(x), f_2(x), \ldots, f_n(x)$ be the minimal polynomials for a basis of E/F (they are separable). Let K_1/F , K_2/F , ..., K_n/F be the splitting fields. They are Galois

extensions.

So $K_1K_2 \ldots K_n/F$ is a Galois extension containing E.

If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

Proof.

Let $f_1(x), f_2(x), \ldots, f_n(x)$ be the minimal polynomials for a basis of E/F (they are separable).

Let K_1/F , K_2/F , ..., K_n/F be the splitting fields. They are Galois extensions.

So $K_1K_2 \ldots K_n/F$ is a Galois extension containing E.

It has only finitely-many subfields, since the Galois group is finite.

If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

Proof.

Let $f_1(x), f_2(x), \ldots, f_n(x)$ be the minimal polynomials for a basis of E/F (they are separable).

Let K_1/F , K_2/F , ..., K_n/F be the splitting fields. They are Galois extensions.

So $K_1K_2 \ldots K_n/F$ is a Galois extension containing E. It has only finitely-many subfields, since the Galois group is finite. Take the intersection K of all the subfields containing E that are Galois over F.

If E/F is any finite separable extension, then E is contained in an extension K which is Galois over F , and is minimal (no proper subfield of K containing E is Galois over F).

Proof.

Let $f_1(x), f_2(x), \ldots, f_n(x)$ be the minimal polynomials for a basis of E/F (they are separable).

Let K_1/F , K_2/F , ..., K_n/F be the splitting fields. They are Galois extensions.

So $K_1K_2 \ldots K_n/F$ is a Galois extension containing E. It has only finitely-many subfields, since the Galois group is finite. Take the intersection K of all the subfields containing E that are Galois over F.

The Galois extension K is called the Galois closure of E over F .

Summary

The Galois group of $\mathbb{F}_{p^n}/\mathbb{F}_p$ is cyclic of order *n*, generated by the Frobenius map. Thus \mathbb{F}_{ρ^d} is the only subfield of \mathbb{F}_{ρ^n} , for d a divisor of n.

Summary

- The Galois group of $\mathbb{F}_{p^n}/\mathbb{F}_p$ is cyclic of order *n*, generated by the Frobenius map. Thus \mathbb{F}_{ρ^d} is the only subfield of \mathbb{F}_{ρ^n} , for d a divisor of n.
- **IF K**₁/F, K₂/F are Galois, then K₁ ∩ K₂/F and K₁K₂/F are Galois. If $K_1 \cap K_2 = F$, then the Galois group of K_1K_2/F is the product of the Galois groups of K_1/F and K_2/F .

Summary

- The Galois group of $\mathbb{F}_{p^n}/\mathbb{F}_p$ is cyclic of order *n*, generated by the Frobenius map. Thus \mathbb{F}_{ρ^d} is the only subfield of \mathbb{F}_{ρ^n} , for d a divisor of n.
- If K₁/F, K₂/F are Galois, then K₁ ∩ K₂/F and K₁K₂/F are Galois. If $K_1 \cap K_2 = F$, then the Galois group of K_1K_2/F is the product of the Galois groups of K_1/F and K_2/F .
- If E/F is any finite separable extension, then there is a minimal extension K/E which is Galois over F, called the Galois closure of E over F.