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Galois groups of finite fields

F=F, K=Fp.

We showed earlier K was the splitting field of x?" — x, a separable
polynomial, so K/F is Galois, and |Aut(K/F)| = [K : F] = n.

An example of an automorphism: the Frobenius map o sending

ars aP forall ae F.

. k .
In fact, for each k > 1, 0%, the map sending a to aP is also an
automorphism.

What is the order of o7 Note ¢” is the identity: by construction,
" =aforallacF.

Also, for each k < n, the equation xP* = x has at most pX

solutions, so 0¥ is not the identity.

Thus o has order n, so the Galois group of K/F is cyclic of order
n, generated by the Frobenius map: Aut(K/F) = Z/nZ.
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o has order n, so the Galois group of K/F is cyclic of order n,
generated by the Frobenius map: Aut(K/F) = Z/nZ.

By the fundamental theorem, subfields of IFp» and subgroups of
Z,/nZ are in one to one correspondence.

Subgroups of Z/nZ are those generated by d, d a divisor of n.

So for every divisor d of n, there is a unique subfield E of Fj», and
there are no other subfields.

More precisely: if o is the Frobenius map, d a divisor of n, H the
subgroup generated by 09, then |H| = 5. so if E is the fixed field,
[K:E]= 5 and [E: F]=d.

By uniqueness of finite fields, £ = F 4.

Since cyclic groups are abelian, all the subgroups are normal, so
E/F is Galois (which we knew already).
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Irreducible polynomials over I,

Remember that in the assighments you built some finite fields by
hand by exhibiting irreducible elements in F,[x] of certain degrees.

In general they are not so easy to find: given n and p, is there even
an irreducible polynomial of degree n in F,[x]? The answer is yes:

Theorem

The extension Fpn /I, is simple: Fpn = F,(0) for some 6. In
particular, the minimal polynomial of 6 is irreducible in Fy[x] of
degree n.

Proof.

We say any finite subgroup of the group of units of a field is cyclic,
so IE";,, is cyclic: take 0 to be a generator. [
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Theorem

For each prime p and each n, there are irreducible polynomials in
Fp[x] of degree n.

Okay, but what are these irreducible polynomials?

Say Fpn = Fp(6). Since Fpn is just the set of all roots of the
polynomial xP" — x, this means @ is a root, so its minimal
polynomial divides xP" — x.

Conversely, if p(x) € Fp[x] is any irreducible polynomial of degree
d which divides xP" — x, and p(a) = 0, then F,(a) is a subfield of
Fpn of degree d.

We have just seen that Fy(a) = Fa. In particular, d divides n.
Since () is Galois, it contains all the roots of p(x).

Putting all of this together: xP" — x is the product of (x — 3), for
a root. 3 has a certain minimal polynomial of degree d. That
degree must divide n. Conversely, any irreducible poly with degree
d dividing n must generate F,s C Fpn, so divides xP" — x.



Theorem

xP" — x is the product of all the distinct irreducible polynomials in
Fp[x] of degree d, where d runs through all the divisors of n.

This can be used to produce irreducible polynomials recursively,
count how many there are, etc. (see DF)
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A fun result

Theorem

The irreducible x* + 1 € Z[x] is reducible modulo every prime.

Proof: If p=2, x* + 1 = (x + 1)*. Assume now p is odd.
Modulo 8, p is either 1, 3, 5, 7, so 8 divides p2 —1.

Thus x8 — 1 divides xP"~1 — 1. [Why? Think about properties of
groups of roots of unity!]

We have: x* + 1|x8 — 1|xP*~1 —1|xP* — x. Thus all roots of x* 4 1
are roots of xP° — x, so are in Fp.

If x* + 1 were irreducible over F,[x], then it would generate an

extension K of degree 4, with F, C K C Fpo. However sz/Fp has
degree 2, contradiction.
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Composite extensions

Theorem

Suppose K/F is a Galois extension and F’/F is any extension.
Then KF'/F' is a Galois extension.
The Galois group is Aut(KF'/F') = Aut(K/K N F").
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Proof of Theorem: K/F is the splitting field of a separable

f(x) € F[x]. Thus KF'/F’ is the splitting field of f(x), seen as a
poly in F'[x]. Thus KF'/F' is Galois.

Define a map ¢ : Aut(KF'/F') — Aut(K/F) by ¢(c) =0 | K.
Since K/F is a Galois extension, it is a well-defined map (seen last
time).

The elements of the kernel fix both K and F’, hence fix KF’. Thus
the kernel is trivial: ¢ is injective.
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¢ Aut(KF'/F'") — Aut(K/F), ¢(0) = o | K is injective.

Let H be the image of ¢. Let Ky be the fixed field of H (in K/F).
Every element of H fixes F/, so FF N K C Ky.

KuF' is fixed by Aut(KF'/F'): if o € Aut(KF'/F'), then o fixes
F’, and o | K is in the image of ¢, so fixes K.

So we have Ky C F/, so Ky = KN F'.
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¢ Aut(KF'/F'") — Aut(K/F), ¢(0) = o | K is injective.

Let H be the image of ¢. Let Ky be the fixed field of H (in K/F).
Every element of H fixes F/, so FF N K C Ky.

KuF' is fixed by Aut(KF'/F'): if o € Aut(KF'/F'), then o fixes
F’, and o | K is in the image of ¢, so fixes K.

So we have Ky C F/, so Ky = KN F'.
Thus H = Aut(K/K N F’), and we are done (first iso theorem).
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KF Fl =k m FA

Proof.

[KF': F] = [KF': F|[F': F] = [K : KN F'|[F: F].
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Corollary
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1. (K1 N Ky)/F is Galois.

2. KiKy/F is Galois, with Galois group isomorphic to the
subgroup of Aut(Ki/F) x Aut(K>/F) consisting of pairs
(01,02) agreeing on K1 N Ka.

KiKa
K1 K2
KiN Ky
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with a root o in K1 N K.
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Proof that (K1 N K»)/F is Galois: Let p(x) € F[x] be irreducible
with a root o in K1 N K.

All the roots of p(x) lie in K1 and in Ky (characterization of Galois
extensions). Thus all the roots of p(x) lie in K3 N Ky. Thus
K1 N Ky/F is Galois.
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Proof that (K1K>)/F is Galois: Say Ki/F is the splitting field of
a separable fi(x), Kz/F is the splitting field of a separable f(x).
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Proof that (K1K>)/F is Galois: Say Ki/F is the splitting field of
a separable fi(x), Kz/F is the splitting field of a separable f(x).
Then Ki K> is the splitting field of fi(x)f2(x). Removing repeated
irreducible factors, we get that K1 K is the splitting field of a
separable polynomial.
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Description of the Galois group of K;K>/F: Consider
¢ Aut(Kle/F) — Aut(Ki/F) x Aut(Kz/F) given by
(o) = (o | Ki,0 | K2).

The kernel is trivial, so ¢ is injective.

Let H be the subgroup of Aut(Ki/F) x Aut(K>/F) of all (o1, 07)
that agree on K1 N K,. The image of ¢ is contained in H.

We will show that |H| = |Aut(K1K2/F)|, so the image has to be
all of H.
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H is the subgroup of Aut(K1/F) x Aut(Ky/F) of all (o1,07) that
agree on K1 N K.
If o1 € Aut(K1/F), how many o2 € Aut(K>/F) are there so that
(01,0'2) € H?
Exactly |Aut(K2/K1 N Kz)| (exercise).

|H| = |Aut(K1/F)||Aut(Ka/ K1 N K)| = |Aut(Ky /F)| Aue/F)l

’ |Aut(KlﬂK2/F)| '
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K1 K>
KiN Ky

F
H is the subgroup of Aut(K1/F) x Aut(Ky/F) of all (o1,07) that
agree on K1 N K.

If o1 € Aut(K1/F), how many o2 € Aut(K>/F) are there so that
(01,0'2) € H?

Exactly |Aut(K2/K1 N Kz)| (exercise).

Aut(K/F
|H| = |Aut(Ki/F)||Aut(Ka/ Ky N Ko)| = |Aut(Ki/F)| itk
Using the previous corollary, |H| = [K1K2 : F], as desired.
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Corollary

Let Ki/F, Ka/F be Galois extensions. If K1 N Ky = F, then
Aut(Kle/F) = Aut(Kl/F) X Aut(Kz/F).

For example: take F = Q, K1 = Q(v/2),K2 = Q(+/3).
Each extension is Galois, with Galois group Z> (= Z/2Z).

We know v/3 ¢ Q(1/2), so K1 # K.

Thus F C K1 N Ky € Ki. By the Galois correspondence (or just
looking at degrees), F = K1 N Ka.

So Aut(K1Ka/F) = Aut(Q(v2,v/3)/Q) = Z, x 2.
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Separable extensions

Definition
An extension E/F is separable if every element in E is the root of
a separable polynomial in F[x].

Note: if F has characteristic zero (or more generally is perfect),
then any irreducible polynomial is separable.

Thus any algebraic extension of a perfect field is separable.
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If E/F is any finite separable extension, then E is contained in an
extension K which is Galois over F, and is minimal (no proper
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Let Ki/F, K2/F, ..., Kn/F be the splitting fields. They are Galois
extensions.



Corollary

If E/F is any finite separable extension, then E is contained in an
extension K which is Galois over F, and is minimal (no proper
subfield of K containing E is Galois over F).

Proof.

Let f1(x), f2(x), ..., fa(x) be the minimal polynomials for a basis of
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Proof.

Let f1(x), f2(x), ..., fa(x) be the minimal polynomials for a basis of
E/F (they are separable).

Let Ki/F, K2/F, ..., Kn/F be the splitting fields. They are Galois
extensions.

So KiK;...K,/F is a Galois extension containing E.

It has only finitely-many subfields, since the Galois group is finite.
Take the intersection K of all the subfields containing E that are
Galois over F. O

The Galois extension K is called the Galois closure of E over F.
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Summary

» The Galois group of Fpn/IF, is cyclic of order n, generated by
the Frobenius map. Thus de is the only subfield of Fpn, for d
a divisor of n.

» If K1/F, Kz/F are Galois, then K1 N K>/F and K1 Kz/F are
Galois. If K1 N Ky = F, then the Galois group of K1K/F is
the product of the Galois groups of Ki/F and Ky/F.

» If E/F is any finite separable extension, then there is a
minimal extension K/E which is Galois over F, called the
Galois closure of E over F.



