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Announcements

I The final exam will be a 48 hours “take home” and will be
published on the last day of class (April 29).

I A sample exam, and more information, is on the course
website.

I Assignment 11 will be the last assignment of the semester.
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The primitive element theorem

Recall: an extension K/F is simple if K = F (θ) for some θ. We
call θ a primitive element for K .

For example, Q(
√

2) is simple and
√

2 is a primitive element.

A less trivial example: Q(
√

2,
√

3) is in fact simple: θ =
√

2 +
√

3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F [x ]. In characteristic zero
(more generally for perfect fields F ), any finite extension is
separable.



The primitive element theorem

Recall: an extension K/F is simple if K = F (θ) for some θ. We
call θ a primitive element for K .

For example, Q(
√

2) is simple and
√

2 is a primitive element.

A less trivial example: Q(
√

2,
√

3) is in fact simple: θ =
√

2 +
√

3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F [x ]. In characteristic zero
(more generally for perfect fields F ), any finite extension is
separable.



The primitive element theorem

Recall: an extension K/F is simple if K = F (θ) for some θ. We
call θ a primitive element for K .

For example, Q(
√

2) is simple and
√

2 is a primitive element.

A less trivial example: Q(
√

2,
√

3) is in fact simple: θ =
√

2 +
√

3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F [x ]. In characteristic zero
(more generally for perfect fields F ), any finite extension is
separable.



The primitive element theorem

Recall: an extension K/F is simple if K = F (θ) for some θ. We
call θ a primitive element for K .

For example, Q(
√

2) is simple and
√

2 is a primitive element.

A less trivial example: Q(
√

2,
√

3) is in fact simple: θ =
√

2 +
√

3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F [x ]. In characteristic zero
(more generally for perfect fields F ), any finite extension is
separable.



The primitive element theorem

Recall: an extension K/F is simple if K = F (θ) for some θ. We
call θ a primitive element for K .

For example, Q(
√

2) is simple and
√

2 is a primitive element.

A less trivial example: Q(
√

2,
√

3) is in fact simple: θ =
√

2 +
√

3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F [x ]. In characteristic zero
(more generally for perfect fields F ), any finite extension is
separable.



The primitive element theorem

Recall: an extension K/F is simple if K = F (θ) for some θ. We
call θ a primitive element for K .

For example, Q(
√

2) is simple and
√

2 is a primitive element.

A less trivial example: Q(
√

2,
√

3) is in fact simple: θ =
√

2 +
√

3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F [x ]. In characteristic zero
(more generally for perfect fields F ), any finite extension is
separable.



Lemma (Key lemma)

Let K/F be a finite extension. Then K/F is simple if and only if
there exists only finitely-many subfields of K containing F .

Proof of ⇒: Assume K = F (θ). Let E be a subfield of K
containing F .

Let f (x) ∈ F [x ] be the minimal poly of θ, let g(x) ∈ E [x ] be the
minimal poly of θ over E .

We have that g divides f (in E [x ]).

Let E ′ ⊆ E be the subfield generated by the coefficients of g(x).

The minimal poly of θ over E ′ is still g(x), so [E ′ : F ] is the degree
of g , which is equal to [E : F ]. Thus E = E ′.

E was arbitrary, so we have seen any subfield of K is generated by
the coefficients of a monic divisor of f (x) (in K [x ]). There are only
finitely-many such divisors. Thus K has finitely-many subfields.
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Proof of ⇐: Assume K has finitely-many subfields containing F .

If F is a finite field, we saw F is a simple extension last time, so
assume F is infinite.

Let α, β ∈ K . We will show F (α, β)/F is simple. Induction then
gives the result.

Consider the subfields F (α + cβ), c ∈ F . They are subfields of
F (α, β).

There are infinitely-many choices for c , finitely-many subfields, so
for some c 6= c ′ ∈ F , F (α + cβ) = F (α + c ′β).

Thus α+ cβ − (α+ c ′β) ∈ F (α+ cβ), so (c − c ′)β ∈ F (α+ cβ),
so β ∈ F (α + cβ), so α ∈ F (α + cβ), as desired.
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Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Proof.

Let L/F be the Galois closure of K/F : the smallest Galois
extension of F containing L (we saw last time it exists – we use
separability here).
Since L/F is finite, Aut(L/F ) is finite, so by the Galois
correspondence, L/F has finitely-many intermediate fields.
Thus also K/F has finitely-many intermediate fields. Apply the key
lemma.
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Example: splitting field of x3 − 2

Let F = Q, K = Q( 3
√

2, e2πi/3).

By the primitive element theorem, K/F is simple. The proof shows
a generator is of the form αc = 3

√
2 + ce2πi/3, c ∈ Q.

Which c works? We are in a Galois extension, so let’s study what
the Galois group does to αc .

The Galois group has order 6. Say it is generated by σ (sending 3
√

2
to e2πi/3 3

√
2, fixing e2πi/3) and by τ (fixing 3

√
2, sending e2πi/3 to

e4πi/3).

σ(αc) = e2πi/3 3
√

2 + ce2πi/3. This is different from αc .

τ(αc) = 3
√

2 + ce4πi/3. This is different from αc if c 6= 0.

In general, if c 6= 0, αc is not fixed by any non-identity
automorphism.

So if c 6= 0, the field Q(αc) corresponds to the group {1}, which
has fixed field K , so αc is a primitive element.
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Cyclotomic extensions

Let ζn := e2πi/n. We have already determined that Q(ζn) is an
extension of degree φ(n). It is a Galois extension (splitting field of
xn − 1, which is separable). What is its Galois group?

Theorem

The Galois group of Q(ζn) is isomorphic to (Z/nZ)×, the units of
Z/nZ under multiplication.

Proof.

Any automorphism must send ζn to a primitive root of unity. There
are φ(n)-many automorphisms, so each possible such mapping
gives an automorphism.
Let σa send ζn to ζan , a coprime to n.
The map a 7→ σa is an isomorphism from (Z/nZ)× to
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Corollary

Let n = pa11 pa22 . . . pakk , pi distinct primes. Then the Q(ζpaii
)’s

intersect only in Q, and their composite is Q(ζn).

Thus:

Aut(Q(ζn)/Q) ∼= Aut(Q(ζpa11
)/Q)× ...× Aut(Q(ζpakk

)/Q)

Compare to the Chinese remainder theorem:

(Z/nZ)× ∼= (Z/pa11 Z)× × . . .× (Z/pakk Z)×
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Proof of Corollary: Note Q(ζpaii
) is a subfield of Q(ζn) (paii

divides n).

The composite of the Q(ζpaii
)’s contains the product

ζpa11
ζpa22

. . . ζpakk
, which is a primitive nth root of unity (not a dth

root of unity for any strict divisor d of n).

Thus the composite is Q(ζn).

The degree of Q(ζn)/Q is φ(n), which is the product of φ(paii ).

By counting automorphisms (and using induction), we get that the
intersection must be Q.
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Example: Q(ζ5)

φ(5) = 4, so the extension has degree 4.

The Galois group is (Z/5Z)× ∼= Z/4Z.

So here we have an extension of degree 4 with a cyclic Galois
group. A generator would be the automorphism σ sending ζ5 to ζ25 .

The only nontrivial subgroup is {1, σ2}. What is the fixed field?

Note σ2 sends ζ5 to ζ45 = ζ−15 . So α = ζ5 + ζ−15 is a member of
the fixed field.

Note α = 2 cos(2π/5). By the fundamental theorem, it must
generate the fixed field: a quadratic extension.

Using that x4 + x3 + x2 + x + 1 is the minimal polynomial of ζ5,
one can deduce that α2 + α− 1 = 0, and solving we get that
Q(α) = Q(

√
5).

[Another way: fun exercise: cos(π/5) =
√
5+1
4 .].

For more fun, see DF on computing the subfields of Q(ζ13).
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Definition

A field extension K/F is called an abelian extension if K/F is
Galois and the Galois group is abelian.

They are the “nicest” Galois extensions: all the intermediate
extensions of abelian extensions are Galois and abelian.

We saw Q(ζn)/Q is always an abelian extension.

Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).
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Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G ∼= Zn1 × Zn2 × . . .× Znk for natural numbers n1, . . . , nk .

If we had ni = pi − 1, for p1, . . . , pk distinct primes, we would be
done: take Q(ζp1...pk ).

We use as a black box that for any natural number n ≥ 2, there
are infinitely-many primes p with p ≡ 1 mod n. (a proof is outlined
in DF). [Example for n = 5: p = 11, 31, 41, 51, 61, 71, 101, . . .]

Find distinct primes p1, . . . , pk so that pi ≡ 1 mod ni . Let
n = p1p2 . . . pk .

The Galois group of Q(ζn) is (Z/p1p2 . . . pkZ)× ∼=
(Z/p1Z)× × . . .× (Z/pkZ)× ∼= Zp1−1 × . . .Zpk−1.

ni divides pi − 1, so find Hi a subgroup of Zpi−1 of index ni . The
fixed field of H1 × . . .Hk is the desired extension.



The following is not known...

Question (The inverse Galois problem)

If G is an arbitrary finite group, is G the Galois group of an
extension of Q?



Summary

I Any finite separable extension is simple (primitive element
theorem). Sometimes we can compute the generator using
Galois theory.

I The Galois group of Q(ζn)/Q is (Z/nZ)×.

I Any finite abelian group occurs as the Galois group of a
subfield of a cyclotomic extension.

Next time: for which n can we construct the n-gon with just
straightedge and compass?
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