Math-123: The primitive element theorem, Galois
group of cyclotomic extensions

Sebastien Vasey

Harvard University

April 15, 2020



Announcements

» The final exam will be a 48 hours “take home” and will be
published on the last day of class (April 29).



Announcements

» The final exam will be a 48 hours “take home” and will be
published on the last day of class (April 29).

» A sample exam, and more information, is on the course
website.



Announcements

» The final exam will be a 48 hours “take home” and will be
published on the last day of class (April 29).

» A sample exam, and more information, is on the course
website.

> Assignment 11 will be the last assignment of the semester.



The primitive element theorem

Recall: an extension K/F is simple if K = F(0) for some 6. We
call 8 a primitive element for K.



The primitive element theorem

Recall: an extension K/F is simple if K = F(0) for some 6. We
call 8 a primitive element for K.

For example, Q(v/2) is simple and v/2 is a primitive element.



The primitive element theorem

Recall: an extension K/F is simple if K = F(0) for some 6. We
call 8 a primitive element for K.
For example, Q(ﬁ) is simple and /2 is a primitive element.

A less trivial example: Q(ﬂ, \/§) is in fact simple: 8 = V2 + /3
is a primitive element (seen in assignments).



The primitive element theorem

Recall: an extension K/F is simple if K = F(0) for some 6. We
call 8 a primitive element for K.

For example, Q(v/2) is simple and v/2 is a primitive element.

A less trivial example: Q(ﬂ, \/§) is in fact simple: 8 = V2 + /3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?



The primitive element theorem

Recall: an extension K/F is simple if K = F(0) for some 6. We
call 8 a primitive element for K.

For example, Q(v/2) is simple and v/2 is a primitive element.

A less trivial example: Q(ﬂ, \/§) is in fact simple: 8 = V2 + /3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.



The primitive element theorem

Recall: an extension K/F is simple if K = F(0) for some 6. We
call 8 a primitive element for K.

For example, Q(v/2) is simple and v/2 is a primitive element.

A less trivial example: Q(\@, \/§) is in fact simple: 8 = V2 + /3
is a primitive element (seen in assignments).

Question: When is a finite extension K/F simple?

Theorem (Primitive element theorem)

If K/F is finite and separable, then K/F is simple.

Recall that an extension K/F is separable if every element of K is
the root of a separable polynomial in F[x]. In characteristic zero
(more generally for perfect fields F), any finite extension is
separable.
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Let K/F be a finite extension. Then K/F is simple if and only if
there exists only finitely-many subfields of K containing F.

Proof of =: Assume K = F(0). Let E be a subfield of K
containing F.

Let f(x) € F[x] be the minimal poly of 6, let g(x) € E[x] be the
minimal poly of 6 over E.

We have that g divides f (in E[x]).

Let E/ C E be the subfield generated by the coefficients of g(x).
The minimal poly of 8 over E’ is still g(x), so [E’ : F] is the degree
of g, which is equal to [E : F]. Thus E = E’.

E was arbitrary, so we have seen any subfield of K is generated by
the coefficients of a monic divisor of f(x) (in K[x]). There are only
finitely-many such divisors. Thus K has finitely-many subfields.
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Let K/F be a finite extension. Then K/F is simple if and only if
there exists only finitely-many subfields of K containing F.

Proof of <: Assume K has finitely-many subfields containing F.

If Fis a finite field, we saw F is a simple extension last time, so
assume F is infinite.

Let o, 5 € K. We will show F(«,3)/F is simple. Induction then
gives the result.

Consider the subfields F(a + ¢f), ¢ € F. They are subfields of
There are infinitely-many choices for ¢, finitely-many subfields, so
for some c #c € F, Fl(a+ ¢f) = F(a+ ¢'B).

Thus a+ ¢ — (a+c'B) € Fla+cB), so (c — c')B € F(a+ cB),
so B € F(a+cf), so a € F(a+ cf), as desired.
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Lemma (Key lemma)

Let K/F be a finite extension. Then K/F is simple if and only if
there exists only finitely-many subfields of K containing F.

Theorem (Primitive element theorem)

If K/F is finite and separable, then K /F is simple.

Proof.

Let L/F be the Galois closure of K/F: the smallest Galois
extension of F containing L (we saw last time it exists — we use
separability here).

Since L/F is finite, Aut(L/F) is finite, so by the Galois
correspondence, L/F has finitely-many intermediate fields.

Thus also K/F has finitely-many intermediate fields. Apply the key
lemma. Ol
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Example: splitting field of x3 — 2
Let F =Q, K = Q(v/2, e2™/3).

By the primitive element theorem, K /F is simple. The proof shows
a generator is of the form a. = V2 + ce?™/3, ¢ e Q.

Which ¢ works? We are in a Galois extension, so let's study what
the Galois group does to ac.

The Galois group has order 6. Say it is generated by o (sending v/2
to e2™/33/2, fixing e2’”/3) and by 7 (fixing V2, sending e2m/3 to
e47ri/3).

o(ac) = e2mi/33/2 + ce?™/3 This is different from a.

m(ac) = V2 + ce* /3. This is different from a if ¢ # 0.

In general, if ¢ # 0, a. is not fixed by any non-identity
automorphism.

So if ¢ # 0, the field Q(c) corresponds to the group {1}, which
has fixed field K, so a. is a primitive element.
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Cyclotomic extensions

Let ¢, := €2™/". We have already determined that Q((,) is an
extension of degree ¢(n). It is a Galois extension (splitting field of
x" — 1, which is separable). What is its Galois group?

Theorem

The Galois group of Q(¢,) is isomorphic to (Z/nZ)*, the units of
Z/nZ under multiplication.

Proof.

Any automorphism must send (, to a primitive root of unity. There
are ¢(n)-many automorphisms, so each possible such mapping
gives an automorphism.

Let o, send ¢, to (3, a coprime to n.

The map a — o, is an isomorphism from (Z/nZ)* to

Aut(Q(¢n)/Q).
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Corollary

ai a2

Let n = pi*p32 ... p;*, pj distinct primes. Then the Q(¢,e)'s
intersect only in Q, and their composite is Q(¢,). Thus:

Aut(Q(¢n)/Q) = Aut(Q(C,n)/Q) x .. x Aut(Q(C,x)/Q)

Compare to the Chinese remainder theorem:

(Z/nZ)* = (Z/p22)* % ... x (Z/pT)"
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Corollary

ai a2

Let n = pi'p3? ... p*, pi distinct primes. Then the Q(Cp«_a,-)'s
intersect only in Q, and their composite is Q(¢,)

1

Proof of Corollary: Note Q(Cpf") is a subfield of Q(¢,) (p'
divides n).

The composite of the Q(C i)'s contains the product
Cpflcp? ...( %, which is a pr|m|t|ve nth root of unity (not a dth

root of unity for any strict divisor d of n).
Thus the composite is Q(¢n).
The degree of Q(¢n)/Q is ¢(n), which is the product of ¢(p?).

By counting automorphisms (and using induction), we get that the
intersection must be Q.
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Example: Q((s)

¢(5) = 4, so the extension has degree 4.
The Galois group is (Z/5Z2)* = 7 /4AZ.

So here we have an extension of degree 4 with a cyclic Galois
group. A generator would be the automorphism ¢ sending (5 to C52.

The only nontrivial subgroup is {1,52}. What is the fixed field?

Note o2 sends (5 to (= CS_I. So o= (5 + C5_1 is a member of
the fixed field.

Note av = 2 cos(27/5). By the fundamental theorem, it must
generate the fixed field: a quadratic extension.

Using that x* + x3 + x? 4+ x + 1 is the minimal polynomial of (s,
one can deduce that a® + a — 1 = 0, and solving we get that
Q(a) = Q(V5).

[Another way: fun exercise: cos(m/5) = @]

For more fun, see DF on computing the subfields of Q((13).
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Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G =2y X Zn, X ... x Zy, for natural numbers nq, ..., ny.

If we had n; = p; — 1, for p1, ..., px distinct primes, we would be
done: take Q((p,...p,)-

We use as a black box that for any natural number n > 2, there
are infinitely-many primes p with p =1 mod n. (a proof is outlined
in DF). [Example for n=5: p=11,31,41,51,61,71,101,...]

Find distinct primes p1, ..., px so that p; =1 mod n;. Let
n=pip2...PpPk.

The Galois group of Q(¢,) is (Z/p1p2 ... pxZ)* =
(Z/p1Z)X X ... X (Z/ka)X = p1—1 X ...Zpkfl.



Theorem

Any finite abelian group is the Galois group of an extension of Q
(in fact of a subfield of a cyclotomic extension).

Proof: Let G be an abelian group. We know
G =2y X Zn, X ... x Zy, for natural numbers nq, ..., ny.

If we had n; = p; — 1, for p1, ..., px distinct primes, we would be
done: take Q((p,...p,)-

We use as a black box that for any natural number n > 2, there
are infinitely-many primes p with p =1 mod n. (a proof is outlined
in DF). [Example for n=5: p=11,31,41,51,61,71,101,...]

Find distinct primes p1, ..., px so that p; =1 mod n;. Let
n=pip2...PpPk.

The Galois group of Q(¢,) is (Z/p1p2 ... pxZ)* =

(Z/p1Z)X X ... X (Z/ka)X = Zp1,1 X .. .Zpkfl.

n; divides p; — 1, so find H; a subgroup of Z,_1 of index n;. The
fixed field of Hy x ... Hy is the desired extension.



The following is not known...

Question (The inverse Galois problem)

If G is an arbitrary finite group, is G the Galois group of an
extension of Q7



Summary

» Any finite separable extension is simple (primitive element
theorem). Sometimes we can compute the generator using
Galois theory.
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Summary

» Any finite separable extension is simple (primitive element
theorem). Sometimes we can compute the generator using
Galois theory.

» The Galois group of Q(¢,)/Q is (Z/nZ)*.

» Any finite abelian group occurs as the Galois group of a
subfield of a cyclotomic extension.

Next time: for which n can we construct the n-gon with just
straightedge and compass?



