
Math-123: Constructibility of the n-gon, and the
fundamental theorem of algebra

Sebastien Vasey

Harvard University

April 17, 2020



Revenge of the straightedge and compass

We saw a while back that three problems from Greek geometry are
impossible:

I Squaring the circle.

I Doubling the cube.

I Trisecting the angle.

Today: for which n can we construct the regular n-gon using
straightedge and compass?

What is a regular n-gon? A polygon with n sides of equal length,
with the same angles between adjacent sides.

n = 2: a line segment, n = 3: an equilateral triangle, n = 4: a
square, n = 5: a pentagon, n = 6: a hexagon, etc.
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History of the problem

The Greek knew how to construct a 2-gon, 3-gon, 5-gon.

They also knew that if the regular n-gon can be constructed, then
the regular 2n-gon can be constructed.

They did not know how to construct the regular n-gon for
n = 7, 9, 11, 13, . . ..

At age 19 (1796), Gauss showed how to construct the regular
17-gon. He wanted the construction inscribed on his tomb (but it
was not...).

Five years later, he proved a sufficient for constructibility (and
stated without proof it was necessary). In 1837, Wantzel proved
that the condition was also necessary.

In particular, it is impossible to construct the 7-gon, the 9-gon, the
11-gon, and the 13-gon....

But it is possible to construct the 257-gon!
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Review: constructible numbers

By definition, a point is constructible if it can be constructed
starting from (0, 0) and (0, 1) using just straightedge and compass.

By definition, a real number α is constructible if |α| is the length
of a straight line between two constructible points.

Theorem

A real number α is constructible if and only if there exists
Q = K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ Km such that Km is a subfield of
R and [Ki+1 : Ki ] = 2 for all i ≤ m.
In particular, if α is constructible then [Q(α) : Q] is a power of 2.

By definition, an angle θ can be constructed if it is the angle
between two lines going through several constructible points, and
intersecting at a constructible point.

Fact: θ can be constructed if and only if cos(θ) is constructible.
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Definition

We say that the regular n-gon can be constructed if the angle
2π/n can be constructed.

This definition makes sense: if 2π/n can be constructed, then the
roots of unity (cos(2kπ/n), sin(2kπ/n)), k = 1, 2, . . . , n can be
constructed, and they form the vertices of a regular n-gon.

Note cos(2π/n) is constructible if and only if cos(π/n) is
constructible (use the half angle and double angle formulas).

Note if n = 2, cos(π/2) = 0 is constructible. If n = 3,

cos(π/3) = 0.5 is constructible. If n = 4, cos(π/4) =
√
2
2 is

constructible.

In general, cos(π/n) is constructible, then cos(π/(2n)) is
constructible (half angle formula again).

For n = 5, cos(π/5) = 1+
√
5

4 (exercise!), so is constructible.
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Constructibility of the n-gon: sufficient condition
Let ζn := e2πi/n. Observe that ζn + ζ−1n = 2 cos(2π/n), so the
regular n-gon can be constructed if and only if α = ζn + ζ−1n is
constructible.

Thus we have to study the extension Q(α). This is a proper
subfield of Q(ζn) (it contains only reals).

On the other hand, ζ2n − 2αζn + 1 = 0. So [Q(ζn) : Q(α)] = 2.

Q(ζn) has degree φ(n), so Q(α) has degree φ(n)
2 .

If α is constructible, then φ(n)
2 is a power of 2, so φ(n) is a power

of 2.

We have shown:

Theorem (Gauss)

If the regular n-gon can be constructed, then φ(n) is a power of 2.

For example, φ(3) = 2, φ(5) = 4 are powers of 2, but φ(7) = 6 is
not, so the regular 7-gon cannot be constructed.
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Theorem (Wantzel)

If φ(n) is a power of 2, then the regular n-gon can be constructed.

Proof: Assume φ(n) = 2m. Then Q(ζn)/Q has degree 2m, and
Q(α) has degree 2m−1 (α = ζn + ζ−1n ).

Recall that Galois group of Q(ζn)/Q is (Z/nZ)×, which is abelian.

So Q(α)/Q is Galois, with abelian Galois group G of order 2m−1.

By basic facts about abelian groups, we can find a chain
1 = G0 ⊆ G1 ⊆ G2 ⊆ . . . ⊆ Gm−1 = G of subgroups of G , where
[Gi+1 : Gi ] = 2 for all i .

Taking fixed fields (and using the fundamental theorem of Galois
theory), this corresponds to a chain
Q = Fm−1 ⊆ Fm−2 ⊆ . . . ⊆ F0 = Q(α) of subfields of Q(α) with
[Fi+1 : Fi ] = 2 for all i .

Therefore α is constructible, hence the regular n-gon can be
constructed.
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Theorem (Gauss-Wantzel, version 1)

The regular n-gon can be constructed if and only if φ(n) is a power
of 2.

For example, φ(17) = 16 which is a power of 2, so the regular
17-gon can be constructed.

The proof is actually constructive! DF outline how to deduce that:

cos(2π/17)=
−1+
√

17+
√

2(17−
√
17)+2

√
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√
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When is φ(n) a power of 2? We can characterize it using the prime
factorization.

Say n = pk11 . . . pkmm , with p1, . . . , pm distinct primes. Then

φ(n) = φ(pk11 ) . . . φ(pkmm ).

Thus φ(n) is a power of 2 if and only if φ(pkii ) is a power of 2 for
all i .

Exercise: show that φ(pk) = pk−1(p − 1) for p a prime.

So φ(2k) = 2k−1, a power of 2.

On the other hand, for p an odd prime, φ(pk) = pk−1(p − 1) is a
power of 2 if and only if k = 1 and p − 1 is a power of 2.

p − 1 = 2` means that 2` ≡ −1 mod p, so 22` ≡ 1 mod p.

By Lagrange’s theorem, 2` divides p − 1, which is a power of 2, so
` is a power of 2.

Thus p − 1 is a power of 2 if and only if p is a prime of the form
22

s
+ 1, called a Fermat prime.
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Theorem (Gauss-Wantzel, version 2)

The regular n-gon can be constructed if and only if n is the
product of a power of 2 and distinct Fermat primes.

Example of Fermat primes: 22
0

+ 1 = 3, 22
1

+ 1 = 5, 22
2

= 17,
22

3
+ 1 = 257, 22

4
+ 1 = 65537... (22

5
+ 1 is divisible by 641...).

It is not known whether there are infinitely-many Fermat primes.
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The fundamental theorem of algebra

Theorem

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.

There are many proofs. You may have seen some of them in real
analysis, topology, or complex analysis.

They all use some analysis though. At some point we have to use
properties of R...

Also, we don’t really need this theorem. We know algebraically
closed fields exist anyway.

“The fundamental theorem of algebra is neither fundamental, nor a
theorem of algebra.”

Still it is fun to prove.



The fundamental theorem of algebra

Theorem

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.

There are many proofs. You may have seen some of them in real
analysis, topology, or complex analysis.

They all use some analysis though. At some point we have to use
properties of R...

Also, we don’t really need this theorem. We know algebraically
closed fields exist anyway.

“The fundamental theorem of algebra is neither fundamental, nor a
theorem of algebra.”

Still it is fun to prove.



The fundamental theorem of algebra

Theorem

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.

There are many proofs. You may have seen some of them in real
analysis, topology, or complex analysis.

They all use some analysis though. At some point we have to use
properties of R...

Also, we don’t really need this theorem. We know algebraically
closed fields exist anyway.

“The fundamental theorem of algebra is neither fundamental, nor a
theorem of algebra.”

Still it is fun to prove.



The fundamental theorem of algebra

Theorem

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.

There are many proofs. You may have seen some of them in real
analysis, topology, or complex analysis.

They all use some analysis though. At some point we have to use
properties of R...

Also, we don’t really need this theorem. We know algebraically
closed fields exist anyway.

“The fundamental theorem of algebra is neither fundamental, nor a
theorem of algebra.”

Still it is fun to prove.



The fundamental theorem of algebra

Theorem

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.

There are many proofs. You may have seen some of them in real
analysis, topology, or complex analysis.

They all use some analysis though. At some point we have to use
properties of R...

Also, we don’t really need this theorem. We know algebraically
closed fields exist anyway.

“The fundamental theorem of algebra is neither fundamental, nor a
theorem of algebra.”

Still it is fun to prove.



The fundamental theorem of algebra

Theorem

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.

There are many proofs. You may have seen some of them in real
analysis, topology, or complex analysis.

They all use some analysis though. At some point we have to use
properties of R...

Also, we don’t really need this theorem. We know algebraically
closed fields exist anyway.

“The fundamental theorem of algebra is neither fundamental, nor a
theorem of algebra.”

Still it is fun to prove.



Analytic proof (sketch)

Let f (x) = anx
n + . . .+ a0 ∈ C[x ] (n ≥ 1, an 6= 0). Suppose for a

contradiction f (z) 6= 0 for any complex number z .

Pick z0 such that |f (z0)| is minimal.

z0 exists: if |z | is very big, then |f (z)| will be dominated by |zn|,
hence be very big. Thus we can pick a radius R > 0 sufficiently
large and think of f as a function with domain the closed disk of
radius R. By compactness, f achieves a minimum on this disk.

Now for ε a very small nonzero complex number, f (z0 + ε) is very
close to f (z0) + anε

n.

Taking ε pointing in the right direction, we obtain a lower
minimum than f (z0).
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Two facts from analysis, and their translation to algebra

1. Any odd degree polynomial with real coefficients has a real
root.

[Why: intermediate value theorem!].

2. Any equation ax2 + bx + c = 0 with a, b, c ∈ C, a 6= 0, has a
solution in C. [Why? Use the quadratic formula.]

Translated to algebra:

1. The only extension of R with odd degree is R itself. [Why?
Use the primitive element theorem: such an extension is
generated by a single element whose minimal poly has odd
degree.]

2. There are no extensions of C of degree 2.
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Algebraic proof: reducing to f (x) ∈ R[x ]

Let f (x) ∈ C[x ] of degree n ≥ 1.

If f (x) has no roots in C, then neither does the conjugate
polynomial τ(f )(x), where τ is the automorphism of complex
conjugation.

Thus the product f (x)τ(f )(x) has no roots in C. This polynomial
is fixed by τ , so has real coefficients.

Thus there is a polynomial with real coefficients with no roots in
C. Without loss of generality, f (x) ∈ R[x ].
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Algebraic proof 1, using group theory

f (x) ∈ R[x ] has degree n ≥ 1, with no roots in C.

Let K/R be the splitting field of f (x).

K (i) is a Galois extension of R (composite of K and C = R(i)).

Let G be the Galois group of K (i)/R.

|G | = 2km, for m odd, k ≥ 1. By Sylow’s theorems, there exists a
subgroup P2 of G of order 2k .

P2 has index m, so the fixed field has degree m.

There are no nontrivial odd degree extension of R, so m = 1.

Therefore G is a 2-group (its order is a power of 2). In particular,
G ′ = Aut(K (i)/C) is also a 2-group (of order 2k−1).

General result about p-groups, for p prime: they have subgroups of
all orders. In particular (if k 6= 1), G ′ has a subgroup H of index 2.

The fixed field of H must be a degree 2 extension of C,
contradiction. Therefore k = 1,m = 1: K (i) = C.
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was too much group theory don’t worry.

We will now look at a third proof, using “symmetric” polynomials.
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Algebraic proof 2, using polynomials

As before, assume f (x) ∈ R[x ] has degree n ≥ 1 and no roots in C.

Write n = 2km for m odd, k ≥ 0. Work by induction on k.

If k = 0, f has a root by the intermediate value theorem. Assume
now k ≥ 1.

Let K/R be the splitting field of f (x). As before, K (i)/R is Galois.
Write K = R(α1, . . . , αn, i), where α1, . . . , αn are the roots of
f (x).

For each t ∈ R, let:

Lt(x) :=
∏

1≤i<j≤n
(x − (αi + αj + tαiαj))

Lt(x) is fixed by any automorphism of K (i), so is in R[x ].

It has degree n(n−1)
2 = 2k−1m(2km − 1) = 2k−1m′, m′ odd.
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Reminder: n = 2km, working by induction on k. α1, . . . , αn roots
of f (x). Lt(x) :=

∏
1≤i<j≤n (x − (αi + αj + tαiαj)). Lt(x) ∈ R[x ],

with degree 2k−1m′, m′ odd.

By the induction hypothesis, Lt(x) has a root in C. Thus for some
i < j , x − (αi + αj + tαiαj) has a root: αiαj + tαiαj ∈ C.

This is true for each t ∈ R, there are infinitely-many and
finitely-many possibilities for i < j . Thus there are t 6= s in R and
i < j so that αi + αj + tαiαj ∈ C and αi + αj + sαiαj ∈ C.

Subtract them, get that b = αiαj ∈ C, and therefore
a = αi + αj ∈ C.

αi , αj are roots of x2 − ax + b, so are in C, as desired.

We will talk more about polynomials like Lt(x) next time!
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Summary

Theorem (Gauss-Wantzel)

The regular n-gon can be constructed if and only if n is the
product of a power of 2 and distinct Fermat primes.

Theorem (Fundamental theorem of algebra)

C is algebraically closed: if f (x) ∈ C[x ] is not constant, then it has
a root in C.


