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Today we study Galois theory from the point of view of
polynomials!

Recall:

Definition

The Galois group of a separable polynomial f (x) ∈ F [x ] is the
Galois group of the splitting field of f (x) over F .

For example, the Galois group of (x2 − 2)(x2 − 3) is
Aut(Q(

√
2,
√

3)/Q) ∼= Z2 × Z2.

We will try to study how to compute the Galois group directly
from the polynomial.
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Observations about Galois groups of polynomials

Let f (x) ∈ F [x ] be separable, with splitting field K . Let
α1, . . . , αn ∈ K be its roots.

Any σ ∈ Aut(K/F ) permutes {α1, . . . , αn}, hence permutes
{1, 2, . . . , n}.
This gives an injective homomorphism of Aut(K/F ) into Sn.

Therefore the Galois group of a polynomial of order n is a
subgroup of Sn.

Recall we showed splitting fields have order at most n!. We just
gave a group-theoretic proof!
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Galois groups of irreducible polynomials

If f (x) is a separable poly of degree n, its Galois group is a
subgroup of Sn.

We can be more precise: suppose f (x) = f1(x)f2(x) . . . fk(x), with
each fi irreducible of degree ni .

Each automorphism permutes roots of the fi ’s. Thus the Galois
group is a subgroup of Sn1 × Sn2 × . . .× Snk .

For each i , the Galois group is transitive on the roots of fi (x): for
any two roots of fi (x), there is an automorphism sending one to
the other.
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Example: f (x) = (x2 − 2)(x2 − 3)

Let α1 =
√

2, α2 = −
√

2, α3 =
√

3, α4 = −
√

3.

Identify the Galois group G with a subgroup of S4. Any
permutation of G must permute 1 and 2, and permute 3 and 4.

We know fixing
√

3 and sending
√

2 to −
√

2 is an automorphism.
This corresponds to σ = (12) ∈ G . Similarly τ = (34) ∈ G .

The Galois group is the group generated by these two (Klein
4-group).
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Example: f (x) = x3 − 2

Let α1 = 3
√

2, α2 = e2πi/3 3
√

2, α3 = e4πi/3 3
√

2.

The Galois group G is a subgroup of S3.

We know sending 3
√

2 to 3
√

2 and e2πi/3 to e4πi/3 gives an
automorphism. This corresponds to τ = (23) ∈ G .

We know sending 3
√

2 to e2πi/3 3
√

2 and fixing e2πi/3 gives an
automorphism. This corresponds to τ = (123) ∈ G .

They generate the entire S3, so G = S3.
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Question: for each n, is there a polynomial of degree n with Sn as
Galois group?

The short answer is yes! Intuitively, such polynomials are
“generic”: they have no relations between their roots.

The full answer requires some theory.
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Let F be a field.

Definition

Let x1, x2, . . . , xn be “indeterminates”. The elementary symmetric
functions s1, . . . , sn are defined by:

I s1 = x1 + x2 + . . .+ xn.

I s2 = x1x2 + x1x3 + . . .+ x2x3 + . . .+ xn−1xn =
∑

i<j≤n xixj .

I ...

I sn = x1x2 . . . xn.

In general, sk =
∑

S⊆{1,...,n},|S|=k

∏
i∈S xi .

Formally, we think of these as members of the field
F (x1, x2, . . . , xn) of rational functions in x1, x2, . . . , xn.

Definition

The general polynomial of degree n is (x − x1)(x − x2) . . . (x − xn),
a member of F (x1, . . . , xn)[x ].
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Definition

The general polynomial of degree n is (x − x1)(x − x2) . . . (x − xn),
a member of F (x1, . . . , xn)[x ].

Exercise:
(x−x1)(x−x2) . . . (x−xn) = xn− s1x

n−1 + s2x
n−2− . . .+(−1)nsn.

Thus the coefficients of the general polynomial of degree n are ±
elementary symmetric functions: f (x) ∈ F (s1, s2, . . . , sn)[x ].

Thus F (x1, x2, . . . , xn) is a splitting field of f (x) over
F (s1, s2, . . . , sn). Question: What is its Galois group?

The Galois group must be a subgroup of Sn. Moreover for any
σ ∈ Sn, σ yields an automorphism of F (x1, . . . , xn)/F by
permutting the xi ’s.

It is easy to see σ fixes the si ’s, so σ yields a member of
Aut(F (x1, . . . , xn)/F (s1, . . . , sn)).

This shows Aut(F (x1, . . . , xn)/F (s1, . . . , sn)) ∼= Sn.
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Let us call a rational function f (x1, . . . , xn) ∈ F (x1, . . . , xn)
symmetric if it is not changed by permutting the xi ’s.
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Examples

I (x1 − x2)2 is a symmetric function.

It is equal to
x21 − 2x1x2 + x22 = (x1 + x2)2 − 4x1x2 = s21 − 4s2.

I x21 +x22 +x23 = (x1+x2+x3)2−2(x1x2+x1x3+x2x3) = s21−2s2.
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A change of point of view

Recall
(x−x1)(x−x2) . . . (x−xn) = xn− s1x

n−1 + s2x
n−2− . . .+(−1)nsn.

Let us now change notation: think of s1, s2, . . . , sn as
indeterminates (formally, we work over F (s1, . . . , sn), where the si ’s
are just variables).

Look at the polynomial xn − s1x
n−1 + . . .+ (−1)nsn over that

field. Add roots x1, x2, . . . , xn.

The above formula shows that the si ’s are the elementary
symmetric functions in x1, . . . , xn!

For example, consider f (x) = x2 + bx + c . If we know the roots:
f (x) = (x − α1)(x − α2), then we can get the coefficients:
b = −(α1 + α2), c = α1α2.
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The generic polynomial, revisited

Think of s1, s2, . . . , sn as indeterminates and look at the
polynomial xn − s1x

n−1 + . . .+ (−1)nsn over that field. Add roots
x1, x2, . . . , xn.

Observe there are no polynomial relations between x1, . . . , xn: if
p(t1, . . . , tn) is a polynomial in F [t1, . . . , tn] such that
p(x1, . . . , xn) = 0, then p∗ :=

∏
σ∈Sn p(tσ(1), tσ(2), . . . , tσ(n)) is a

symmetric polynomial in t1, . . . , tn with roots x1, . . . , xn.

By the fundamental theorem of symmetric functions, we get a
polynomial relation between the si ’s, which is impossible.
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We have just shown:

Theorem

If s1, s2, . . . , sn are indeterminates, then the general polynomial
xn − s1x

n−1 + s2x
n−2 + . . .+ (−1)nsn ∈ F (s1, . . . , sn) is separable

with Galois group Sn.

Intuitively: if there are no polynomial relations between the
coefficients s1, . . . , sn, then the polynomial with those coefficient is
also “generic” in the sense that the Galois group is the entire
symmetric group: there are no polynomial relations between the
roots.

If F = Q, let e1 ∈ C be transcendental over Q, e2 ∈ C be
transcendental over Q(e1), etc. Then the result shows
x2 − e1x

n−1 + e2x
n−2 + . . .+ (−1)nen is separable and has Galois

group Sn.

It it harder to find rational numbers an−1, . . . , a0 so that
xn + an−1x

n−1 + . . .+ a0 has Galois group Sn, but it can also be
done.
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Two warnings

1. Over Q, “generic” polynomials have Galois group Sn. Does it
mean that any field has an extension with Galois group Sn?

No: For example C has no nontrivial finite extensions at all!
Less trivially, Galois groups of finite extensions of Fp are all
cyclic.

2. Any group of order n is a subgroup of Sn, and Sn is the Galois
group of an extension of Q. Does it mean any group can be
realized as a Galois extension of Q?
No: the Galois correspondence is inclusion-reversing: if K/Q
has Galois group G = Sn and H is a subgroup of G , then the
fixed field E satisfies (if H is normal in G ) Aut(E/Q) ∼= G/H.
What is true is that Aut(K/E ) ∼= H, so any finite group is a
Galois group over a finite extension of Q.
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Let’s continue studying the extension F (x1, . . . , xn)/F (s1, . . . , sn)
(where the si ’s are the elementary symmetric functions in
x1, . . . , xn).

It is a Galois extension with Galois group Sn. Are there
intermediate Galois extensions?

If n ≥ 5, Sn has only one normal subgroup: the alternating group
An of index 2. So what is its fixed field?

Definition

The discriminant D of x1, . . . , xn is:

D =
∏
i<j

(xi − xj)
2

The discriminant of a polynomial is the discriminant of the roots of
the polynomial.

Note the discriminant is a symmetric function, so a member of
F (s1, . . . , sn).
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Alternating group and discriminant

For simplicity, let F = Q.

Exercise: A permutation σ ∈ Sn is in An if and only if σ fixes√
D :=

∏
i<j(xi − xj) ∈ Z[x1, . . . , xn].

Thus the fixed field of An is generated by
√
D, and is equal to

F (s1, . . . , sn)(
√
D).
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Discriminant and Galois group of polynomials

Let f (x) ∈ Q[x ], of degree at least 1. Let α1, . . . , αn be the roots
(counted with multiplicity).

The discriminant of f (x) is D =
∏

i<j(αi − αj)
2. Note D 6= 0 if

and only if f (x) is separable.

If f (x) is not separable, can look at the product of the distinct
irreducible factors of f (x) and get the same splitting field. This
product is separable. Thus without loss f (x) is separable.

Since D is symmetric in the roots of f (x), it is fixed by all the
members of the Galois group, so is a member of Q.
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Theorem

The Galois group of f (x) is a subgroup of An if and only if the
discriminant D is the square of a member of F .

Proof.

The Galois group will be contained in An if and only if every
automorphism fixes

√
D (as seen before), which means that√
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Example: Galois group of quadratics

Consider x2 + bx + c , with roots α, β.

We think of x2 + bx + c as a “general” polynomial x2 − s1x + s2 in
the indeterminates s1, s2. Thus b = −s1, c = s2.

These indeterminates are symmetric functions in the roots!
s1 = α + β, s2 = αβ.

The discriminant is (α− β)2. We can write it as a polynomial in
the elementary symmetric functions:
(α + β)2 − 4αβ = s21 − 4s2 = (−b)2 − 4c .

This is the usual “high school’ discriminant” of a quadratic!

The polynomial is separable if and only if D = b2 − 4c 6= 0.

The Galois group is a subgroup of S2 = Z2. It is trivial if and only
if D is the square of a rational:

√
D ∈ Q.
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See DF for explicit analysis of Galois group of degree 3 and degree
4 polynomials.



Summary

I The Galois group of a polynomial of degree n is a subgroup of
Sn. If the polynomial is irreducible, the group is transitive.

I Fundamental theorem of symmetric functions: Every
symmetric function is a rational combination of elementary
symmetric functions.

I The general polynomial xn − s1x
n−1 + . . .+ (−1)nsn has

Galois group Sn over F (s1, . . . , sn).

I The fixed field of An is given by adjoining the square root of
the discriminant,

∏
i<j(xi − xj).
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