Math-123: Galois groups of polynomials

Sebastien Vasey

Harvard University

April 21, 2020

Recall:

Definition

The *Galois group* of a separable polynomial $f(x) \in F[x]$ is the Galois group of the splitting field of $f(x)$ over F.

Recall:

Definition

The *Galois group* of a separable polynomial $f(x) \in F[x]$ is the Galois group of the splitting field of $f(x)$ over F.

For example, the Galois group of $(x^2 - 2)(x^2 - 3)$ is $\mathsf{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})\cong Z_2\times Z_2.$

Recall:

Definition

The *Galois group* of a separable polynomial $f(x) \in F[x]$ is the Galois group of the splitting field of $f(x)$ over F.

For example, the Galois group of $(x^2 - 2)(x^2 - 3)$ is $\mathsf{Aut}(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})\cong Z_2\times Z_2.$

We will try to study how to compute the Galois group directly from the polynomial.

Let $f(x) \in F[x]$ be separable, with splitting field K. Let $\alpha_1, \ldots, \alpha_n \in K$ be its roots.

Let $f(x) \in F[x]$ be separable, with splitting field K. Let $\alpha_1, \ldots, \alpha_n \in K$ be its roots.

Any $\sigma \in$ Aut(K/F) permutes $\{\alpha_1, \ldots, \alpha_n\}$, hence permutes $\{1, 2, \ldots, n\}.$

Let $f(x) \in F[x]$ be separable, with splitting field K. Let $\alpha_1, \ldots, \alpha_n \in K$ be its roots.

Any $\sigma \in$ Aut(K/F) permutes $\{\alpha_1, \ldots, \alpha_n\}$, hence permutes $\{1, 2, \ldots, n\}.$

This gives an injective homomorphism of Aut(K/F) into S_n .

Let $f(x) \in F[x]$ be separable, with splitting field K. Let $\alpha_1, \ldots, \alpha_n \in K$ be its roots.

Any $\sigma \in$ Aut(K/F) permutes $\{\alpha_1, \ldots, \alpha_n\}$, hence permutes $\{1, 2, \ldots, n\}.$

This gives an injective homomorphism of Aut(K/F) into S_n .

Therefore the Galois group of a polynomial of order n is a subgroup of S_n .

Let $f(x) \in F[x]$ be separable, with splitting field K. Let $\alpha_1, \ldots, \alpha_n \in K$ be its roots.

Any $\sigma \in$ Aut(K/F) permutes $\{\alpha_1, \ldots, \alpha_n\}$, hence permutes $\{1, 2, \ldots, n\}.$

This gives an injective homomorphism of Aut(K/F) into S_n .

Therefore the Galois group of a polynomial of order n is a subgroup of S_n .

Recall we showed splitting fields have order at most n!. We just gave a group-theoretic proof!

If $f(x)$ is a separable poly of degree n, its Galois group is a subgroup of S_n .

If $f(x)$ is a separable poly of degree n, its Galois group is a subgroup of S_n .

We can be more precise: suppose $f(x) = f_1(x) f_2(x) \dots f_k(x)$, with each f_i irreducible of degree n_i .

If $f(x)$ is a separable poly of degree n, its Galois group is a subgroup of S_n .

We can be more precise: suppose $f(x) = f_1(x) f_2(x) \dots f_k(x)$, with each f_i irreducible of degree n_i .

Each automorphism permutes roots of the f_i 's. Thus the Galois group is a subgroup of $\mathcal{S}_{n_1}\times\mathcal{S}_{n_2}\times\ldots\times\mathcal{S}_{n_k}$.

If $f(x)$ is a separable poly of degree n, its Galois group is a subgroup of S_n .

We can be more precise: suppose $f(x) = f_1(x) f_2(x) \dots f_k(x)$, with each f_i irreducible of degree n_i .

Each automorphism permutes roots of the f_i 's. Thus the Galois group is a subgroup of $\mathcal{S}_{n_1}\times\mathcal{S}_{n_2}\times\ldots\times\mathcal{S}_{n_k}$.

For each *i*, the Galois group is *transitive* on the roots of $f_i(x)$: for any two roots of $f_i(x)$, there is an automorphism sending one to the other.

Example:
$$
f(x) = (x^2 - 2)(x^2 - 3)
$$

Let
$$
\alpha_1 = \sqrt{2}
$$
, $\alpha_2 = -\sqrt{2}$, $\alpha_3 = \sqrt{3}$, $\alpha_4 = -\sqrt{3}$.

Example:
$$
f(x) = (x^2 - 2)(x^2 - 3)
$$

Let
$$
\alpha_1 = \sqrt{2}
$$
, $\alpha_2 = -\sqrt{2}$, $\alpha_3 = \sqrt{3}$, $\alpha_4 = -\sqrt{3}$.

Identify the Galois group G with a subgroup of S_4 . Any permutation of G must permute 1 and 2, and permute 3 and 4.

Example:
$$
f(x) = (x^2 - 2)(x^2 - 3)
$$

Let
$$
\alpha_1 = \sqrt{2}
$$
, $\alpha_2 = -\sqrt{2}$, $\alpha_3 = \sqrt{3}$, $\alpha_4 = -\sqrt{3}$.

Identify the Galois group G with a subgroup of $S₄$. Any permutation of G must permute 1 and 2, and permute 3 and 4.

.
We know fixing $\sqrt{3}$ and sending $\sqrt{2}$ to $-$ √ 2 is an automorphism. This corresponds to $\sigma = (12) \in G$. Similarly $\tau = (34) \in G$.

Example:
$$
f(x) = (x^2 - 2)(x^2 - 3)
$$

Let
$$
\alpha_1 = \sqrt{2}
$$
, $\alpha_2 = -\sqrt{2}$, $\alpha_3 = \sqrt{3}$, $\alpha_4 = -\sqrt{3}$.

Identify the Galois group G with a subgroup of $S₄$. Any permutation of G must permute 1 and 2, and permute 3 and 4.

.
We know fixing $\sqrt{3}$ and sending $\sqrt{2}$ to $-$ √ 2 is an automorphism. This corresponds to $\sigma = (12) \in G$. Similarly $\tau = (34) \in G$.

The Galois group is the group generated by these two (Klein 4-group).

Let
$$
\alpha_1 = \sqrt[3]{2}
$$
, $\alpha_2 = e^{2\pi i/3} \sqrt[3]{2}$, $\alpha_3 = e^{4\pi i/3} \sqrt[3]{2}$.

Let
$$
\alpha_1 = \sqrt[3]{2}
$$
, $\alpha_2 = e^{2\pi i/3} \sqrt[3]{2}$, $\alpha_3 = e^{4\pi i/3} \sqrt[3]{2}$.

The Galois group G is a subgroup of S_3 .

Let $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = e^{2\pi i/3} \sqrt[3]{2}$, $\alpha_3 = e^{4\pi i/3} \sqrt[3]{2}$. The Galois group G is a subgroup of S_3 . We know sending $\sqrt[3]{2}$ to $\sqrt[3]{2}$ and $e^{2\pi i/3}$ to $e^{4\pi i/3}$ gives an automorphism. This corresponds to $\tau = (23) \in G$.

Let $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = e^{2\pi i/3} \sqrt[3]{2}$, $\alpha_3 = e^{4\pi i/3} \sqrt[3]{2}$. The Galois group G is a subgroup of S_3 . We know sending $\sqrt[3]{2}$ to $\sqrt[3]{2}$ and $e^{2\pi i/3}$ to $e^{4\pi i/3}$ gives an automorphism. This corresponds to $\tau = (23) \in G$. We know sending $\sqrt[3]{2}$ to $e^{2\pi i/3}\sqrt[3]{2}$ and fixing $e^{2\pi i/3}$ gives an automorphism. This corresponds to $\tau = (123) \in G$.

Let $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = e^{2\pi i/3} \sqrt[3]{2}$, $\alpha_3 = e^{4\pi i/3} \sqrt[3]{2}$. The Galois group G is a subgroup of S_3 . We know sending $\sqrt[3]{2}$ to $\sqrt[3]{2}$ and $e^{2\pi i/3}$ to $e^{4\pi i/3}$ gives an automorphism. This corresponds to $\tau = (23) \in G$. We know sending $\sqrt[3]{2}$ to $e^{2\pi i/3}\sqrt[3]{2}$ and fixing $e^{2\pi i/3}$ gives an automorphism. This corresponds to $\tau = (123) \in G$.

They generate the entire S_3 , so $G = S_3$.

Question: for each *n*, is there a polynomial of degree *n* with S_n as Galois group?

Question: for each *n*, is there a polynomial of degree *n* with S_n as Galois group?

The short answer is yes! Intuitively, such polynomials are "generic": they have no relations between their roots.

Question: for each *n*, is there a polynomial of degree *n* with S_n as Galois group?

The short answer is yes! Intuitively, such polynomials are "generic": they have no relations between their roots.

The full answer requires some theory.

Definition

Let x_1, x_2, \ldots, x_n be "indeterminates". The elementary symmetric functions s_1, \ldots, s_n are defined by:

 \triangleright $s_1 = x_1 + x_2 + \ldots + x_n$.

Definition

Let x_1, x_2, \ldots, x_n be "indeterminates". The *elementary symmetric* functions s_1, \ldots, s_n are defined by:

$$
\bullet \ \ s_1 = x_1 + x_2 + \ldots + x_n.
$$

I $s_2 = x_1x_2 + x_1x_3 + \ldots + x_2x_3 + \ldots + x_{n-1}x_n = \sum_{i < j \le n} x_i x_j$.

Definition

Let x_1, x_2, \ldots, x_n be "indeterminates". The *elementary symmetric* functions s_1, \ldots, s_n are defined by:

$$
s_1 = x_1 + x_2 + \ldots + x_n.
$$

\n
$$
s_2 = x_1x_2 + x_1x_3 + \ldots + x_2x_3 + \ldots + x_{n-1}x_n = \sum_{i < j \le n} x_i x_j.
$$

\n...
\n
$$
s_n = x_1x_2 \ldots x_n.
$$

Definition

Let x_1, x_2, \ldots, x_n be "indeterminates". The *elementary symmetric* functions s_1, \ldots, s_n are defined by:

•
$$
s_1 = x_1 + x_2 + \ldots + x_n
$$
.

\n• $s_2 = x_1x_2 + x_1x_3 + \ldots + x_2x_3 + \ldots + x_{n-1}x_n = \sum_{i < j \le n} x_i x_j$.

\n• \ldots

\n• $s_n = x_1x_2 \ldots x_n$.

\n• \ldots

\n• $s_n = x_1x_2 \ldots x_n$.

\n• $\sum_{S \subseteq \{1, \ldots, n\}, |S| = k} \prod_{i \in S} x_i$.

Definition

Let x_1, x_2, \ldots, x_n be "indeterminates". The *elementary symmetric* functions s_1, \ldots, s_n are defined by:

•
$$
s_1 = x_1 + x_2 + \ldots + x_n
$$

\n• $s_2 = x_1x_2 + x_1x_3 + \ldots + x_2x_3 + \ldots + x_{n-1}x_n = \sum_{i < j \le n} x_i x_j$

\n• \ldots

\n• $s_n = x_1x_2 \ldots x_n$

\n• \ldots

\n• $s_n = x_1x_2 \ldots x_n$

\n• $\sum_{S \subseteq \{1, \ldots, n\}, |S| = k} \prod_{i \in S} x_i$

Formally, we think of these as members of the field $F(x_1, x_2, \ldots, x_n)$ of rational functions in x_1, x_2, \ldots, x_n .

Definition

Let x_1, x_2, \ldots, x_n be "indeterminates". The *elementary symmetric* functions s_1, \ldots, s_n are defined by:

•
$$
s_1 = x_1 + x_2 + \ldots + x_n
$$

\n• $s_2 = x_1x_2 + x_1x_3 + \ldots + x_2x_3 + \ldots + x_{n-1}x_n = \sum_{i < j \le n} x_i x_j$

\n• \ldots

\n• $s_n = x_1x_2 \ldots x_n$

\n• \ldots

\n• $s_n = x_1x_2 \ldots x_n$

\n• $\sum_{S \subseteq \{1, \ldots, n\}, |S| = k} \prod_{i \in S} x_i$

Formally, we think of these as members of the field $F(x_1, x_2, \ldots, x_n)$ of rational functions in x_1, x_2, \ldots, x_n .

Definition

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Thus the coefficients of the general polynomial of degree *n* are \pm elementary symmetric functions: $f(x) \in F(s_1, s_2, \ldots, s_n)[x]$.

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Thus the coefficients of the general polynomial of degree *n* are \pm elementary symmetric functions: $f(x) \in F(s_1, s_2, \ldots, s_n)[x]$.

Thus $F(x_1, x_2, \ldots, x_n)$ is a splitting field of $f(x)$ over $F(s_1, s_2, \ldots, s_n).$
The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Thus the coefficients of the general polynomial of degree *n* are \pm elementary symmetric functions: $f(x) \in F(s_1, s_2, \ldots, s_n)[x]$.

Thus $F(x_1, x_2, \ldots, x_n)$ is a splitting field of $f(x)$ over $F(s_1, s_2, \ldots, s_n)$. Question: What is its Galois group?

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Thus the coefficients of the general polynomial of degree *n* are \pm elementary symmetric functions: $f(x) \in F(s_1, s_2, \ldots, s_n)[x]$.

Thus $F(x_1, x_2, \ldots, x_n)$ is a splitting field of $f(x)$ over $F(s_1, s_2, \ldots, s_n)$. Question: What is its Galois group?

The Galois group must be a subgroup of S_n . Moreover for any $\sigma \in S_n$, σ yields an automorphism of $F(x_1, \ldots, x_n)/F$ by permutting the x_i 's.

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Thus the coefficients of the general polynomial of degree *n* are \pm elementary symmetric functions: $f(x) \in F(s_1, s_2, \ldots, s_n)[x]$.

Thus $F(x_1, x_2, \ldots, x_n)$ is a splitting field of $f(x)$ over $F(s_1, s_2, \ldots, s_n)$. Question: What is its Galois group?

The Galois group must be a subgroup of S_n . Moreover for any $\sigma \in S_n$, σ yields an automorphism of $F(x_1, \ldots, x_n)/F$ by permutting the x_i 's.

It is easy to see σ fixes the s_i 's, so σ yields a member of Aut $(F(x_1, ..., x_n)/F(s_1, ..., s_n))$.

The general polynomial of degree n is $(x - x_1)(x - x_2) \dots (x - x_n)$, a member of $F(x_1, \ldots, x_n)[x]$.

Exercise:

 $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Thus the coefficients of the general polynomial of degree *n* are \pm elementary symmetric functions: $f(x) \in F(s_1, s_2, \ldots, s_n)[x]$.

Thus $F(x_1, x_2, \ldots, x_n)$ is a splitting field of $f(x)$ over $F(s_1, s_2, \ldots, s_n)$. Question: What is its Galois group?

The Galois group must be a subgroup of S_n . Moreover for any $\sigma \in S_n$, σ yields an automorphism of $F(x_1, \ldots, x_n)/F$ by permutting the x_i 's.

It is easy to see σ fixes the s_i 's, so σ yields a member of Aut $(F(x_1, ..., x_n)/F(s_1, ..., s_n)).$

This shows Aut($F(x_1, \ldots, x_n)/F(s_1, \ldots, s_n)$) ≅ S_n .

For example, $\frac{x_1+x_2}{x_1x_2}$ is a symmetric function, but $x_1 + x_2 - x_3$ is not.

Let us call a rational function $f(x_1, \ldots, x_n) \in F(x_1, \ldots, x_n)$ symmetric if it is not changed by permutting the x_i 's. For example, $\frac{x_1+x_2}{x_1x_2}$ is a symmetric function, but $x_1 + x_2 - x_3$ is not. Corollary (Fundamental theorem of symmetric functions) Any symmetric function $f(x_1, \ldots, x_n)$ is a rational function in the elementary symmetric functions s_1, s_2, \ldots, s_n : $f(x_1, ..., x_n) \in F(s_1, ..., s_n).$

Let us call a rational function $f(x_1, \ldots, x_n) \in F(x_1, \ldots, x_n)$ symmetric if it is not changed by permutting the x_i 's. For example, $\frac{x_1+x_2}{x_1x_2}$ is a symmetric function, but $x_1 + x_2 - x_3$ is not. Corollary (Fundamental theorem of symmetric functions) Any symmetric function $f(x_1, \ldots, x_n)$ is a rational function in the elementary symmetric functions s_1, s_2, \ldots, s_n :

 $f(x_1, ..., x_n) \in F(s_1, ..., s_n).$

Proof.

By definition of a symmetric function, $f(x_1, \ldots, x_n)$ is in the fixed field of the subgroup of $Aut(F(x_1, \ldots, x_n)/F(s_1, \ldots, s_n))$ given by the automorphisms permutting the x_i 's.

For example, $\frac{x_1+x_2}{x_1x_2}$ is a symmetric function, but $x_1 + x_2 - x_3$ is not.

Corollary (Fundamental theorem of symmetric functions)

Any symmetric function $f(x_1, \ldots, x_n)$ is a rational function in the elementary symmetric functions s_1, s_2, \ldots, s_n : $f(x_1, ..., x_n) \in F(s_1, ..., s_n).$

Proof.

By definition of a symmetric function, $f(x_1, \ldots, x_n)$ is in the fixed field of the subgroup of Aut $(F(x_1, \ldots, x_n)/F(s_1, \ldots, s_n))$ given by the automorphisms permutting the x_i 's.

We have just seen this subgroup is the whole Galois group.

For example, $\frac{x_1+x_2}{x_1x_2}$ is a symmetric function, but $x_1 + x_2 - x_3$ is not.

Corollary (Fundamental theorem of symmetric functions)

Any symmetric function $f(x_1, \ldots, x_n)$ is a rational function in the elementary symmetric functions s_1, s_2, \ldots, s_n : $f(x_1, ..., x_n) \in F(s_1, ..., s_n).$

Proof.

By definition of a symmetric function, $f(x_1, \ldots, x_n)$ is in the fixed field of the subgroup of Aut $(F(x_1, \ldots, x_n)/F(s_1, \ldots, s_n))$ given by the automorphisms permutting the x_i 's. We have just seen this subgroup is the whole Galois group. Thus the corresponding fixed field is $F(s_1, \ldots, s_n)$, by the fundamental theorem of Galois theory!

For example, $\frac{x_1+x_2}{x_1x_2}$ is a symmetric function, but $x_1 + x_2 - x_3$ is not.

Corollary (Fundamental theorem of symmetric functions)

Any symmetric function $f(x_1, \ldots, x_n)$ is a rational function in the elementary symmetric functions s_1, s_2, \ldots, s_n : $f(x_1, ..., x_n) \in F(s_1, ..., s_n).$

Proof.

By definition of a symmetric function, $f(x_1, \ldots, x_n)$ is in the fixed field of the subgroup of Aut $(F(x_1, \ldots, x_n)/F(s_1, \ldots, s_n))$ given by the automorphisms permutting the x_i 's. We have just seen this subgroup is the whole Galois group. Thus the corresponding fixed field is $F(s_1, \ldots, s_n)$, by the fundamental theorem of Galois theory!

In fact it is true that symmetric *polynomials* are *polynomials* in the elementary symmetric functions (in any commutative ring).

Examples

$$
(x_1 - x_2)^2
$$
 is a symmetric function.

Examples

$$
(x_1 - x_2)^2
$$
 is a symmetric function. It is equal to

$$
x_1^2 - 2x_1x_2 + x_2^2 = (x_1 + x_2)^2 - 4x_1x_2 = s_1^2 - 4s_2.
$$

Examples

\n- $$
(x_1 - x_2)^2
$$
 is a symmetric function. It is equal to $x_1^2 - 2x_1x_2 + x_2^2 = (x_1 + x_2)^2 - 4x_1x_2 = s_1^2 - 4s_2.$
\n- $x_1^2 + x_2^2 + x_3^2 = (x_1 + x_2 + x_3)^2 - 2(x_1x_2 + x_1x_3 + x_2x_3) = s_1^2 - 2s_2.$
\n

Recall $(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.$

Recall

$$
(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.
$$

Let us now change notation: think of s_1, s_2, \ldots, s_n as indeterminates (formally, we work over $F(s_1,\ldots,s_n)$, where the s_i 's are just variables).

Recall

$$
(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.
$$

Let us now change notation: think of s_1, s_2, \ldots, s_n as indeterminates (formally, we work over $F(s_1,\ldots,s_n)$, where the s_i 's are just variables).

Look at the polynomial $x^n - s_1x^{n-1} + \ldots + (-1)^ns_n$ over that field. Add roots x_1, x_2, \ldots, x_n .

Recall

$$
(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.
$$

Let us now change notation: think of s_1, s_2, \ldots, s_n as indeterminates (formally, we work over $F(s_1,\ldots,s_n)$, where the s_i 's are just variables).

Look at the polynomial $x^n - s_1x^{n-1} + \ldots + (-1)^ns_n$ over that field. Add roots x_1, x_2, \ldots, x_n .

The above formula shows that the s_i 's are the elementary symmetric functions in $x_1, \ldots, x_n!$

Recall

$$
(x-x_1)(x-x_2)...(x-x_n) = x^n - s_1x^{n-1} + s_2x^{n-2} - ... + (-1)^n s_n.
$$

Let us now change notation: think of s_1, s_2, \ldots, s_n as indeterminates (formally, we work over $F(s_1,\ldots,s_n)$, where the s_i 's are just variables).

Look at the polynomial $x^n - s_1x^{n-1} + \ldots + (-1)^ns_n$ over that field. Add roots x_1, x_2, \ldots, x_n .

The above formula shows that the s_i 's are the elementary symmetric functions in $x_1, \ldots, x_n!$

For example, consider $f(x) = x^2 + bx + c$. If we know the roots: $f(x) = (x - \alpha_1)(x - \alpha_2)$, then we can get the coefficients: $b = -(\alpha_1 + \alpha_2)$, $c = \alpha_1 \alpha_2$.

The generic polynomial, revisited

Think of s_1, s_2, \ldots, s_n as indeterminates and look at the polynomial $x^n - s_1x^{n-1} + \ldots + (-1)^ns_n$ over that field. Add roots X_1, X_2, \ldots, X_n .

The generic polynomial, revisited

Think of s_1, s_2, \ldots, s_n as indeterminates and look at the polynomial $x^n - s_1x^{n-1} + \ldots + (-1)^ns_n$ over that field. Add roots X_1, X_2, \ldots, X_n .

Observe there are no polynomial relations between x_1, \ldots, x_n : if $p(t_1, \ldots, t_n)$ is a polynomial in $F[t_1, \ldots, t_n]$ such that $p(x_1,\ldots,x_n)=0$, then $p^*:=\prod_{\sigma\in S_n}p(t_{\sigma(1)},t_{\sigma(2)},\ldots,t_{\sigma(n)})$ is a symmetric polynomial in t_1, \ldots, t_n with roots x_1, \ldots, x_n .

The generic polynomial, revisited

Think of s_1, s_2, \ldots, s_n as indeterminates and look at the polynomial $x^n - s_1x^{n-1} + \ldots + (-1)^ns_n$ over that field. Add roots X_1, X_2, \ldots, X_n .

Observe there are no polynomial relations between x_1, \ldots, x_n : if $p(t_1, \ldots, t_n)$ is a polynomial in $F[t_1, \ldots, t_n]$ such that $p(x_1,\ldots,x_n)=0$, then $p^*:=\prod_{\sigma\in S_n}p(t_{\sigma(1)},t_{\sigma(2)},\ldots,t_{\sigma(n)})$ is a symmetric polynomial in t_1, \ldots, t_n with roots x_1, \ldots, x_n .

By the fundamental theorem of symmetric functions, we get a polynomial relation between the s_i 's, which is impossible.

Theorem

If s_1, s_2, \ldots, s_n are indeterminates, then the general polynomial $\mathsf{x}^n - s_1 \mathsf{x}^{n-1} + s_2 \mathsf{x}^{n-2} + \ldots + (-1)^n s_n \in F(s_1, \ldots, s_n)$ is separable with Galois group S_n .

Theorem

If s_1, s_2, \ldots, s_n are indeterminates, then the general polynomial $\mathsf{x}^n - s_1 \mathsf{x}^{n-1} + s_2 \mathsf{x}^{n-2} + \ldots + (-1)^n s_n \in F(s_1, \ldots, s_n)$ is separable with Galois group S_n .

Intuitively: if there are no polynomial relations between the coefficients s_1, \ldots, s_n , then the polynomial with those coefficient is also "generic" in the sense that the Galois group is the entire symmetric group: there are no polynomial relations between the roots.

Theorem

If s_1, s_2, \ldots, s_n are indeterminates, then the general polynomial $\mathsf{x}^n - s_1 \mathsf{x}^{n-1} + s_2 \mathsf{x}^{n-2} + \ldots + (-1)^n s_n \in F(s_1, \ldots, s_n)$ is separable with Galois group S_n .

Intuitively: if there are no polynomial relations between the coefficients s_1, \ldots, s_n , then the polynomial with those coefficient is also "generic" in the sense that the Galois group is the entire symmetric group: there are no polynomial relations between the roots.

If $F = \mathbb{Q}$, let $e_1 \in \mathbb{C}$ be transcendental over \mathbb{Q} , $e_2 \in \mathbb{C}$ be transcendental over $\mathbb{Q}(e_1)$, etc. Then the result shows $\alpha^2-e_1x^{n-1}+e_2x^{n-2}+\ldots+(-1)^ne_n$ is separable and has Galois group S_n .

Theorem

If s_1, s_2, \ldots, s_n are indeterminates, then the general polynomial $\mathsf{x}^n - s_1 \mathsf{x}^{n-1} + s_2 \mathsf{x}^{n-2} + \ldots + (-1)^n s_n \in F(s_1, \ldots, s_n)$ is separable with Galois group S_n .

Intuitively: if there are no polynomial relations between the coefficients s_1, \ldots, s_n , then the polynomial with those coefficient is also "generic" in the sense that the Galois group is the entire symmetric group: there are no polynomial relations between the roots.

If $F = \mathbb{Q}$, let $e_1 \in \mathbb{C}$ be transcendental over \mathbb{Q} , $e_2 \in \mathbb{C}$ be transcendental over $\mathbb{Q}(e_1)$, etc. Then the result shows $\alpha^2-e_1x^{n-1}+e_2x^{n-2}+\ldots+(-1)^ne_n$ is separable and has Galois group S_n .

It it harder to find rational numbers a_{n-1}, \ldots, a_0 so that $x_n + a_{n-1}x^{n-1} + \ldots + a_0$ has Galois group S_n , but it can also be done.

1. Over \mathbb{Q} , "generic" polynomials have Galois group S_n . Does it mean that any field has an extension with Galois group S_n ?

1. Over \mathbb{O} , "generic" polynomials have Galois group S_n . Does it mean that any field has an extension with Galois group S_n ? No: For example C has no nontrivial finite extensions at all! Less trivially, Galois groups of finite extensions of \mathbb{F}_p are all cyclic.

- 1. Over \mathbb{O} , "generic" polynomials have Galois group S_n . Does it mean that any field has an extension with Galois group S_n ? No: For example C has no nontrivial finite extensions at all! Less trivially, Galois groups of finite extensions of \mathbb{F}_p are all cyclic.
- 2. Any group of order n is a subgroup of S_n , and S_n is the Galois group of an extension of Q. Does it mean any group can be realized as a Galois extension of Q?

- 1. Over \mathbb{O} , "generic" polynomials have Galois group S_n . Does it mean that any field has an extension with Galois group S_n ? No: For example C has no nontrivial finite extensions at all! Less trivially, Galois groups of finite extensions of \mathbb{F}_p are all cyclic.
- 2. Any group of order n is a subgroup of S_n , and S_n is the Galois group of an extension of Q. Does it mean any group can be realized as a Galois extension of Q? **No:** the Galois correspondence is inclusion-reversing: if K/\mathbb{Q} has Galois group $G = S_n$ and H is a subgroup of G, then the fixed field E satisfies (if H is normal in G) Aut(E/\mathbb{Q}) $\cong G/H$.

- 1. Over \mathbb{O} , "generic" polynomials have Galois group S_n . Does it mean that any field has an extension with Galois group S_n ? No: For example C has no nontrivial finite extensions at all! Less trivially, Galois groups of finite extensions of \mathbb{F}_p are all cyclic.
- 2. Any group of order n is a subgroup of S_n , and S_n is the Galois group of an extension of Q. Does it mean any group can be realized as a Galois extension of Q? **No:** the Galois correspondence is inclusion-reversing: if K/\mathbb{Q} has Galois group $G = S_n$ and H is a subgroup of G, then the fixed field E satisfies (if H is normal in G) Aut(E/\mathbb{Q}) ≅ G/H . What is true is that Aut(K/E) \cong H, so any finite group is a Galois group over a finite extension of Q.

It is a Galois extension with Galois group S_n . Are there intermediate Galois extensions?

It is a Galois extension with Galois group S_n . Are there intermediate Galois extensions?

If $n > 5$, S_n has only one normal subgroup: the alternating group A_n of index 2. So what is its fixed field?

It is a Galois extension with Galois group S_n . Are there intermediate Galois extensions?

If $n > 5$, S_n has only one normal subgroup: the alternating group A_n of index 2. So what is its fixed field?

Definition

The *discriminant D* of x_1, \ldots, x_n is:

$$
D=\prod_{i
$$

The discriminant of a polynomial is the discriminant of the roots of the polynomial.

It is a Galois extension with Galois group S_n . Are there intermediate Galois extensions?

If $n > 5$, S_n has only one normal subgroup: the alternating group A_n of index 2. So what is its fixed field?

Definition

The discriminant D of x_1, \ldots, x_n is:

$$
D=\prod_{i
$$

The discriminant of a polynomial is the discriminant of the roots of the polynomial.

Note the discriminant is a symmetric function, so a member of $F(s_1,\ldots,s_n).$
Alternating group and discriminant

For simplicity, let $F = \mathbb{Q}$.

Exercise: A permutation $\sigma \in S_n$ is in A_n if and only if σ fixes $\overline{D} := \prod_{i < j} (x_i - x_j) \in \mathbb{Z}[x_1, \ldots, x_n].$

Alternating group and discriminant

For simplicity, let $F = \mathbb{Q}$.

Exercise: A permutation $\sigma \in S_n$ is in A_n if and only if σ fixes $\overline{D} := \prod_{i < j} (x_i - x_j) \in \mathbb{Z}[x_1, \ldots, x_n].$

Thus the fixed field of A_n is generated by \sqrt{D} , and is equal to Finds the fixed field $F(s_1, \ldots, s_n)(\sqrt{D}).$

Let $f(x) \in \mathbb{Q}[x]$, of degree at least 1. Let $\alpha_1, \ldots, \alpha_n$ be the roots (counted with multiplicity).

Let $f(x) \in \mathbb{Q}[x]$, of degree at least 1. Let $\alpha_1, \ldots, \alpha_n$ be the roots (counted with multiplicity).

The discriminant of $f(x)$ is $D=\prod_{i Note $D\neq 0$ if$ and only if $f(x)$ is separable.

Let $f(x) \in \mathbb{Q}[x]$, of degree at least 1. Let $\alpha_1, \ldots, \alpha_n$ be the roots (counted with multiplicity).

The discriminant of $f(x)$ is $D=\prod_{i Note $D\neq 0$ if$ and only if $f(x)$ is separable.

If $f(x)$ is not separable, can look at the product of the distinct irreducible factors of $f(x)$ and get the same splitting field. This product is separable. Thus without loss $f(x)$ is separable.

Let $f(x) \in \mathbb{Q}[x]$, of degree at least 1. Let $\alpha_1, \ldots, \alpha_n$ be the roots (counted with multiplicity).

The discriminant of $f(x)$ is $D=\prod_{i Note $D\neq 0$ if$ and only if $f(x)$ is separable.

If $f(x)$ is not separable, can look at the product of the distinct irreducible factors of $f(x)$ and get the same splitting field. This product is separable. Thus without loss $f(x)$ is separable.

Since D is symmetric in the roots of $f(x)$, it is fixed by all the members of the Galois group, so is a member of Q.

Theorem

The Galois group of $f(x)$ is a subgroup of A_n if and only if the discriminant D is the square of a member of F .

Theorem

The Galois group of $f(x)$ is a subgroup of A_n if and only if the discriminant D is the square of a member of F .

Proof.

The Galois group will be contained in A_n if and only if every The Galois group will be contained in A_n if and only if every
automorphism fixes \sqrt{D} (as seen before), which means that $\sqrt{D} \in F$.

Consider $x^2 + bx + c$, with roots α, β .

Consider $x^2 + bx + c$, with roots α, β . We think of $x^2 + bx + c$ as a "general" polynomial $x^2 - s_1x + s_2$ in the indeterminates s_1 , s_2 . Thus $b = -s_1$, $c = s_2$.

Consider $x^2 + bx + c$, with roots α, β . We think of $x^2 + bx + c$ as a "general" polynomial $x^2 - s_1x + s_2$ in the indeterminates s_1 , s_2 . Thus $b = -s_1$, $c = s_2$.

These indeterminates are symmetric functions in the roots! $s_1 = \alpha + \beta$, $s_2 = \alpha \beta$.

Consider $x^2 + bx + c$, with roots α, β .

We think of $x^2 + bx + c$ as a "general" polynomial $x^2 - s_1x + s_2$ in the indeterminates s_1 , s_2 . Thus $b = -s_1$, $c = s_2$.

These indeterminates are symmetric functions in the roots! $s_1 = \alpha + \beta$, $s_2 = \alpha \beta$.

The discriminant is $(\alpha - \beta)^2.$ We can write it as a polynomial in the elementary symmetric functions:

 $(\alpha + \beta)^2 - 4\alpha\beta = s_1^2 - 4s_2 = (-b)^2 - 4c.$

Consider $x^2 + bx + c$, with roots α, β .

We think of $x^2 + bx + c$ as a "general" polynomial $x^2 - s_1x + s_2$ in the indeterminates s_1 , s_2 . Thus $b = -s_1$, $c = s_2$.

These indeterminates are symmetric functions in the roots! $s_1 = \alpha + \beta$, $s_2 = \alpha \beta$.

The discriminant is $(\alpha - \beta)^2.$ We can write it as a polynomial in the elementary symmetric functions:

 $(\alpha + \beta)^2 - 4\alpha\beta = s_1^2 - 4s_2 = (-b)^2 - 4c.$

This is the usual "high school' discriminant" of a quadratic!

Consider $x^2 + bx + c$, with roots α, β .

We think of $x^2 + bx + c$ as a "general" polynomial $x^2 - s_1x + s_2$ in the indeterminates s_1 , s_2 . Thus $b = -s_1$, $c = s_2$.

These indeterminates are symmetric functions in the roots! $s_1 = \alpha + \beta$, $s_2 = \alpha \beta$.

The discriminant is $(\alpha - \beta)^2.$ We can write it as a polynomial in the elementary symmetric functions:

 $(\alpha + \beta)^2 - 4\alpha\beta = s_1^2 - 4s_2 = (-b)^2 - 4c.$

This is the usual "high school' discriminant" of a quadratic! The polynomial is separable if and only if $D=b^2-4c\neq 0.$

Consider $x^2 + bx + c$, with roots α, β .

We think of $x^2 + bx + c$ as a "general" polynomial $x^2 - s_1x + s_2$ in the indeterminates s_1 , s_2 . Thus $b = -s_1$, $c = s_2$.

These indeterminates are symmetric functions in the roots! $s_1 = \alpha + \beta$, $s_2 = \alpha \beta$.

The discriminant is $(\alpha - \beta)^2.$ We can write it as a polynomial in the elementary symmetric functions:

$$
(\alpha + \beta)^2 - 4\alpha\beta = s_1^2 - 4s_2 = (-b)^2 - 4c.
$$

This is the usual "high school' discriminant" of a quadratic!

The polynomial is separable if and only if $D=b^2-4c\neq 0.$

The Galois group is a subgroup of $S_2 = Z_2$. It is trivial if and only if D is the square of a rational: $\sqrt{D} \in \mathbb{Q}$.

See DF for explicit analysis of Galois group of degree 3 and degree 4 polynomials.

 \blacktriangleright The Galois group of a polynomial of degree *n* is a subgroup of S_n . If the polynomial is irreducible, the group is transitive.

Summary

- \blacktriangleright The Galois group of a polynomial of degree *n* is a subgroup of S_n . If the polynomial is irreducible, the group is transitive.
- \blacktriangleright Fundamental theorem of symmetric functions: Every symmetric function is a rational combination of elementary symmetric functions.

Summary

- \blacktriangleright The Galois group of a polynomial of degree *n* is a subgroup of S_n . If the polynomial is irreducible, the group is transitive.
- \blacktriangleright Fundamental theorem of symmetric functions: Every symmetric function is a rational combination of elementary symmetric functions.
- ▶ The general polynomial $x^n s_1x^{n-1} + \ldots + (-1)^n s_n$ has Galois group S_n over $F(s_1, \ldots, s_n)$.

Summary

- \blacktriangleright The Galois group of a polynomial of degree *n* is a subgroup of S_n . If the polynomial is irreducible, the group is transitive.
- \blacktriangleright Fundamental theorem of symmetric functions: Every symmetric function is a rational combination of elementary symmetric functions.
- ▶ The general polynomial $x^n s_1x^{n-1} + \ldots + (-1)^n s_n$ has Galois group S_n over $F(s_1, \ldots, s_n)$.
- \blacktriangleright The fixed field of A_n is given by adjoining the square root of the discriminant, $\prod_{i < j} (x_i - x_j)$.