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Today we study the following:

Question

If f (x) ∈ Q[x ], when is there a formula for the roots of f (x) using
just addition, multiplication, and extraction of roots?



Simple radical extensions

We first study adjunctions of nth roots.

Definition

An extension K/F is a simple radical extension if it is obtained (for
some n) by adjoining the nth root of an element a of F :
K = F (b), where bn = a.

Abuse of notation: we will also write K = F ( n
√
a).

Note: such an extension K/F will be Galois if and only if it
contains all the roots of xn − a if and only if F contains all the nth
roots of unity.

This explains why Q(
√

2)/Q is Galois, but Q( 3
√

2)/Q is not: −1, 1
are the square roots of unity, but Q does not contain all cube roots
of unity.
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Definition

An extension K/F is cyclic if it is Galois with cyclic Galois group.

Proposition

Let F be a field of characteristic not dividing n, containing all the
nth roots of unity. For any a ∈ F , K = F ( n

√
a) is cyclic over F , of

degree dividing n.

Proof.

xn − a is separable because the characteristic does not divide n.
K/F is the splitting field, hence a Galois extension.
If σ ∈ Aut(K/F ), then σ( n

√
a) is also a root of xn − a, so

σ( n
√
a) = ζσ n

√
a, for some nth root of unity ζσ.

Thus σ 7→ ζσ gives a map Aut(K/F )→ µn, where µn is the group
of nth root of unity. This map is an injective homomorphism, and
µn is cyclic of order n.

Question: What about the converse?
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Theorem

Let K/F be a cyclic extension of degree n. If the characteristic of
F does not divide n and F contains the nth roots of unity, then
K = F ( n

√
a) for some a ∈ F .

Proof: Fix a generator σ ∈ Aut(K/F ).

Definition

For α ∈ K and any nth roof of unity ζ, the Lagrange resolvent of
α and ζ is:

(α, ζ) := α + ζσ(α) + ζ2σ2(α) + . . .+ ζn−1σn−1(α)

Since ζ ∈ F , it is fixed by σ, so:

σ((α, ζ)) = σ(α) + ζσ2(α) + . . .+ +ζn−2σn−1(α) + ζn−1α

Thus σ((α, ζ)) = ζ−1(α, ζ).
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Setup: σ a generator of Aut(K/F ),
(α, ζ) := α + ζσ(α) + ζ2σ2(α) + . . .+ ζn−1σn−1(α)

σ((α, ζ)) = ζ−1(α, ζ).

So σ((α, ζ)n) = ζ−n(α, ζ)n = (α, ζ)n. This shows (α, ζ)n ∈ F .

Let ζ be a primitive nth root of unity. We now want to see
K = F ((α, ζ)), for some α ∈ K .

Recall from the proof of the fundamental theorem of Galois theory
that 1, σ, σ2, . . . , σn−1 are linearly independent characters. Thus
there must exist α ∈ K so that (α, ζ) 6= 0.

Since ζ is primitive, ζ−i (α, ζ) 6= (α, ζ) for any 1 ≤ i < n. Thus σi

does not fix (α, ζ) for 1 ≤ i < n.

By the fundamental theorem of Galois theory, F ((α, ζ)) is not a
proper subfield of K : F ((α, ζ)) = K . This completes the proof.
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Root extensions

From now on, let F be a field of characteristic zero.

Definition

An extension K/F is a root extension if there exists a chain of
subfields F = K0 ⊆ K1 ⊆ . . . ⊆ Ks = K , where for all i < s, Ki+1

is a simple radical extension of Ki (Ki+1 = Ki ( n
√
ai ), for some

ai ∈ Ki ).

Definition

An element α (in some extension of F ) can be expressed by
radicals if α is in a root extension of F .

Definition

A polynomial f (x) ∈ F [x ] can be solved by radicals if all its roots
can be expressed by radicals.
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Example

I 171
√√

2 +
√

5 can be expressed by radicals over Q:

take
K0 = Q, K1 = Q(

√
2), K2 = K1(

√
5),

K3 = K2(
171
√√

2 +
√

5).

I Any constructible number can be expressed by radicals over Q.

I 3
√

2 can be expressed by radicals over Q, but is not
constructible.



Example

I 171
√√

2 +
√

5 can be expressed by radicals over Q: take
K0 = Q, K1 = Q(

√
2), K2 = K1(

√
5),

K3 = K2(
171
√√

2 +
√

5).

I Any constructible number can be expressed by radicals over Q.

I 3
√

2 can be expressed by radicals over Q, but is not
constructible.



Example

I 171
√√

2 +
√

5 can be expressed by radicals over Q: take
K0 = Q, K1 = Q(

√
2), K2 = K1(

√
5),

K3 = K2(
171
√√

2 +
√

5).

I Any constructible number can be expressed by radicals over Q.

I 3
√

2 can be expressed by radicals over Q, but is not
constructible.



Composite of root extensions
Lemma

The composite of a simple radical extension with a root extension
is a root extension.

Proof.

Let F = K0 ⊆ K1 . . . ⊆ Ks = K be a root extension, and let K ′/F
be a simple radical extension: K ′ = F ( n

√
a).

Say Ki+1 = Ki ( ni
√
ai ). Then K ′Ki+1 = (K ′Ki )( ni

√
ai ).

So F ⊆ K ′ = K0K
′ ⊆ K1K

′ ⊆ . . . ⊆ KsK
′ = KK ′ shows KK ′ is a

root extension.

Lemma

Composite of root extensions are root extensions.

Proof.

Say F = K0 ⊆ . . . ⊆ Ks = K is a root extension, K ′/F is another
root extension. Then F ⊆ K0K

′ ⊆ . . . ⊆ KsK
′ is an iteration of

root extensions, hence a root extension.
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More lemmas on root extensions

Lemma

If K/F is a root extension, then its Galois closure L/F is a root
extension.

Proof.

Let F = K0 ⊆ K1 ⊆ . . . ⊆ Ks = K witness that K is a root
extension.
If σ ∈ Aut(L/F ), then we get a chain of subfields
F = K0 = σ[K0] ⊆ σ[K1] ⊆ . . . ⊆ σ[Ks ] = σ[K ].
Note σ[Ki+1]/σ[Ki ] is a simple radical extension. Thus σ[K ]/F is a
root extension.
L is the composite of all the σ[K ]/F ’s, for σ ∈ Aut(K/F ), so is a
root extension.
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One more lemma

Lemma

If K/F is a Galois root extension. Then there exists subfields
F = K ′0 ⊆ K ′1 ⊆ . . . ⊆ K ′s = K such that K ′i+1/K

′
i is cyclic.

Proof: Let F = K0 ⊆ K1 ⊆ . . . ⊆ Ks = K witness that K is a root
extension. Say Ki+1 = ni

√
ai , ai ∈ Ki .

Since K/F is Galois, K/Ki is Galois for all i , so all the ni th roots
of ai are in K , so the ni th roots of unity are in K .

Let F ′ be the smallest extension of F with all the ni th roots of
unity, for each i . This is a root extension.

We get a chain F ⊆ F ′ = F ′K0 ⊆ F ′K1 . . . ⊆ F ′Ks = K .

For each i , F ′Ki+1/F
′Ki is a simple radical extension where the

base contains the relevant roots of unity so it is a cyclic extension.
F ′/F is a composite of cyclotomic extensions, hence abelian, so
can be written as an iteration of cyclic extensions. Done!
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In conclusion, we have shown:

Theorem

If K/F is a root extension, then there is an extension L of K such
that:

1. L/F is Galois.

2. There exists subfield F = L0 ⊆ L1 ⊆ . . . ⊆ Ls = L such that
Li+1/Li is a cyclic extension.



Some group theory

Definition

A finite group G is solvable if there exists a chain of subgroups
1 = Gs ⊆ Gs−1 ⊆ . . . ⊆ G0 = G such that Gi/Gi+1 is cyclic for all
i .

Exercise 1: If H is a normal subgroup of G , then G is solvable if
and only if G/H and H are both solvable.

Exercise 2: Show that “cyclic” can be replaced by “abelian” in
the definition.

Exercise 3: The alternating group An and the symmetric group Sn
are solvable if and only if n ≤ 4 (use that An is simple for n ≥ 5 —
see DF).
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We will show:

Theorem

The polynomial f (x) ∈ F [x ] can be solved by radicals if and only if
the Galois group of f (x) is solvable.

Corollary

If a polynomial in Q[x ] has Galois group Sn for n ≥ 5, then it
cannot be solved by radicals.

We will also see that the polynomial f (x) = x5 − 6x + 3 has Galois
group S5, so is a specific example that cannot be solved by radicals.

On the other hand, any polynomial of degree 4 or less can be
solved by radicals.
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(recall that F has characteristic zero)

Theorem

The polynomial f (x) ∈ F [x ] can be solved by radicals if and only if
the Galois group of f (x) is solvable.

Proof of ⇒: Assume f (x) can be solved by radicals. By definition
each root of f (x) is contained in a root extension.

By previous lemmas, each root of f (x) is contained in a Galois
root extension. Let L/F be the composite of these extensions. It is
again a Galois root extension.

Let L0 = F ⊆ L1 ⊆ . . . ⊆ Ls = L be intermediate subfields such
that Li+1/Li is cyclic for each i < s.

Let Gi be the subgroup of the Galois group corresponding to Li .
By the fundamental theorem of Galois theory, Gi/Gi+1 is cyclic.
Thus the Galois group G0 = Aut(L/F ) is solvable.

The splitting field of f (x) is a subfield of L, hence its Galois group
is a quotient of G0, hence solvable.
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Theorem

The polynomial f (x) ∈ F [x ] can be solved by radicals if and only if
the Galois group of f (x) is solvable.

Proof of ⇐: Assume the Galois group G of f (x) is solvable. Let
K/F be the splitting field of f (x). Let
1 = Gs ⊆ Gs−1 . . . ⊆ G0 = G witness solvability, and let Ki be the
fixed field of Gi .

We have that F = K0 ⊆ K1 ⊆ . . . ⊆ Ks = K are subfields so that
Ki+1/Ki is a cyclic extension for each i < s.

Let ni := [Ki+1 : Ki ]. As before, let F ′ ⊆ K be the field obtaining
by adjoining all the ni th roots of unity, for each i .

Consider the chain F ⊆ F ′ = F ′K0 ⊆ F ′K1 ⊆ . . . ⊆ F ′Ks = K .

By previous work, Aut(F ′Ki+1/F
′Ki ) ∼= Aut(Ki+1/Ki+1 ∩ F ′) is a

subgroup of Aut(Ki+1/Ki ), hence cyclic. So F ′Ki+1/F
′Ki is a

cyclic extension.

As F ′ contains the relevant roots of unity, F ′Ki+1/F
′Ki is a simple

radical extension. As before F ′/F is a root extension. We’re done.
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Example: f (x) = x5 − 6x + 3x ∈ Q[x ]

We want to understand the roots of f (x).

I f (x) is irreducible (Eisenstein).

I Where do the roots of f (x) lie? Plug in some values, see
f (−2) = −17, f (0) = 3, f (1) = −2, f (2) = 23. So f (x) has at
least three real roots.

I The derivative is f ′(x) = 5x4 − 6. It has only two real roots. If
f (x) had more real roots, f ′(x) would have more real roots
(draw a picture).

I Thus f (x) has three real roots, two complex roots. The two
complex roots must be conjugate (not preserved by complex
conjugation).
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Example: f (x) = x5 − 6x + 3x , continued

So far we know: f (x) is irreducible with three real roots and two
complex roots, interchanged by complex conjugation.

I Let K be the splitting field. Adjoining one root of f (x) gives
an extension of degree 5, so K has degree divisible by 5.

I Thus the Galois group G is a subgroup of S5, with order
divisible by 5. In particular, it contains an element of order 5.

I This element of order 5 must be a 5-cycle.

I G also contains a transposition: restricting complex
conjugation to K gives an automorphism which permute the
two complex roots and fixes the three real roots.

I Exercise: S5 is generated by any transposition together with
any 5-cycle.

I Therefore the Galois group of f (x) is S5.
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Summary

(In characteristic zero)

I Any simple radical extension over a field containing enough
roots of unity is cyclic.

I Conversely, any cyclic extension over a field containing enough
roots of unity is a simple radical extension.

I An element can be expressed by radicals if and only if it is is
in an iteration of simple radical extensions (called a root
extension).

I Using the Galois correspondence, a polynomial can be solved
by radicals if and only if its Galois group is solvable.

I In particular, any polynomial with Galois group Sn, n ≥ 5,
cannot be solved by radicals.

I In particular, any polynomial of degree 4 or less can be solved
by radicals, but x5 − 6x + 3 cannot be solved by radicals.



Summary

(In characteristic zero)

I Any simple radical extension over a field containing enough
roots of unity is cyclic.

I Conversely, any cyclic extension over a field containing enough
roots of unity is a simple radical extension.

I An element can be expressed by radicals if and only if it is is
in an iteration of simple radical extensions (called a root
extension).

I Using the Galois correspondence, a polynomial can be solved
by radicals if and only if its Galois group is solvable.

I In particular, any polynomial with Galois group Sn, n ≥ 5,
cannot be solved by radicals.

I In particular, any polynomial of degree 4 or less can be solved
by radicals, but x5 − 6x + 3 cannot be solved by radicals.



Summary

(In characteristic zero)

I Any simple radical extension over a field containing enough
roots of unity is cyclic.

I Conversely, any cyclic extension over a field containing enough
roots of unity is a simple radical extension.

I An element can be expressed by radicals if and only if it is is
in an iteration of simple radical extensions (called a root
extension).

I Using the Galois correspondence, a polynomial can be solved
by radicals if and only if its Galois group is solvable.

I In particular, any polynomial with Galois group Sn, n ≥ 5,
cannot be solved by radicals.

I In particular, any polynomial of degree 4 or less can be solved
by radicals, but x5 − 6x + 3 cannot be solved by radicals.



Summary

(In characteristic zero)

I Any simple radical extension over a field containing enough
roots of unity is cyclic.

I Conversely, any cyclic extension over a field containing enough
roots of unity is a simple radical extension.

I An element can be expressed by radicals if and only if it is is
in an iteration of simple radical extensions (called a root
extension).

I Using the Galois correspondence, a polynomial can be solved
by radicals if and only if its Galois group is solvable.

I In particular, any polynomial with Galois group Sn, n ≥ 5,
cannot be solved by radicals.

I In particular, any polynomial of degree 4 or less can be solved
by radicals, but x5 − 6x + 3 cannot be solved by radicals.



Summary

(In characteristic zero)

I Any simple radical extension over a field containing enough
roots of unity is cyclic.

I Conversely, any cyclic extension over a field containing enough
roots of unity is a simple radical extension.

I An element can be expressed by radicals if and only if it is is
in an iteration of simple radical extensions (called a root
extension).

I Using the Galois correspondence, a polynomial can be solved
by radicals if and only if its Galois group is solvable.

I In particular, any polynomial with Galois group Sn, n ≥ 5,
cannot be solved by radicals.

I In particular, any polynomial of degree 4 or less can be solved
by radicals, but x5 − 6x + 3 cannot be solved by radicals.



Summary

(In characteristic zero)

I Any simple radical extension over a field containing enough
roots of unity is cyclic.

I Conversely, any cyclic extension over a field containing enough
roots of unity is a simple radical extension.

I An element can be expressed by radicals if and only if it is is
in an iteration of simple radical extensions (called a root
extension).

I Using the Galois correspondence, a polynomial can be solved
by radicals if and only if its Galois group is solvable.

I In particular, any polynomial with Galois group Sn, n ≥ 5,
cannot be solved by radicals.

I In particular, any polynomial of degree 4 or less can be solved
by radicals, but x5 − 6x + 3 cannot be solved by radicals.


