# Math-123: Insolvability of the quintic

Sebastien Vasey

Harvard University

April 24, 2020

Today we study the following:

#### Question

If  $f(x) \in \mathbb{Q}[x]$ , when is there a formula for the roots of f(x) using just addition, multiplication, and extraction of roots?

We first study adjunctions of *n*th roots.

## Definition

An extension K/F is a simple radical extension if it is obtained (for some *n*) by adjoining the *n*th root of an element *a* of *F*: K = F(b), where  $b^n = a$ .

We first study adjunctions of *n*th roots.

## Definition

An extension K/F is a simple radical extension if it is obtained (for some *n*) by adjoining the *n*th root of an element *a* of *F*: K = F(b), where  $b^n = a$ . Abuse of notation: we will also write  $K = F(\sqrt[n]{a})$ .

We first study adjunctions of *n*th roots.

## Definition

An extension K/F is a simple radical extension if it is obtained (for some *n*) by adjoining the *n*th root of an element *a* of *F*: K = F(b), where  $b^n = a$ . Abuse of notation: we will also write  $K = F(\sqrt[n]{a})$ .

Note: such an extension K/F will be Galois if and only if it contains *all* the roots of  $x^n - a$  if and only if F contains all the *n*th roots of unity.

We first study adjunctions of *n*th roots.

## Definition

An extension K/F is a simple radical extension if it is obtained (for some *n*) by adjoining the *n*th root of an element *a* of *F*: K = F(b), where  $b^n = a$ . Abuse of notation: we will also write  $K = F(\sqrt[n]{a})$ .

Note: such an extension K/F will be Galois if and only if it contains *all* the roots of  $x^n - a$  if and only if F contains all the *n*th roots of unity.

This explains why  $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$  is Galois, but  $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$  is not: -1, 1 are the square roots of unity, but  $\mathbb{Q}$  does not contain all cube roots of unity.

An extension K/F is *cyclic* if it is Galois with cyclic Galois group.

An extension K/F is *cyclic* if it is Galois with cyclic Galois group.

## Proposition

Let *F* be a field of characteristic not dividing *n*, containing all the *n*th roots of unity. For any  $a \in F$ ,  $K = F(\sqrt[n]{a})$  is cyclic over *F*, of degree dividing *n*.

#### Proof.

 $x^n - a$  is separable because the characteristic does not divide n.

An extension K/F is *cyclic* if it is Galois with cyclic Galois group.

## Proposition

Let *F* be a field of characteristic not dividing *n*, containing all the *n*th roots of unity. For any  $a \in F$ ,  $K = F(\sqrt[n]{a})$  is cyclic over *F*, of degree dividing *n*.

#### Proof.

 $x^n - a$  is separable because the characteristic does not divide *n*. K/F is the splitting field, hence a Galois extension.

An extension K/F is cyclic if it is Galois with cyclic Galois group.

## Proposition

Let *F* be a field of characteristic not dividing *n*, containing all the *n*th roots of unity. For any  $a \in F$ ,  $K = F(\sqrt[n]{a})$  is cyclic over *F*, of degree dividing *n*.

#### Proof.

 $x^n - a$  is separable because the characteristic does not divide *n*. K/F is the splitting field, hence a Galois extension. If  $\sigma \in \operatorname{Aut}(K/F)$ , then  $\sigma(\sqrt[n]{a})$  is also a root of  $x^n - a$ , so  $\sigma(\sqrt[n]{a}) = \zeta_{\sigma}\sqrt[n]{a}$ , for some *n*th root of unity  $\zeta_{\sigma}$ .

An extension K/F is cyclic if it is Galois with cyclic Galois group.

### Proposition

Let *F* be a field of characteristic not dividing *n*, containing all the *n*th roots of unity. For any  $a \in F$ ,  $K = F(\sqrt[n]{a})$  is cyclic over *F*, of degree dividing *n*.

#### Proof.

 $x^n - a$  is separable because the characteristic does not divide *n*. K/F is the splitting field, hence a Galois extension. If  $\sigma \in \operatorname{Aut}(K/F)$ , then  $\sigma(\sqrt[n]{a})$  is also a root of  $x^n - a$ , so  $\sigma(\sqrt[n]{a}) = \zeta_{\sigma}\sqrt[n]{a}$ , for some *n*th root of unity  $\zeta_{\sigma}$ . Thus  $\sigma \mapsto \zeta_{\sigma}$  gives a map  $\operatorname{Aut}(K/F) \to \mu_n$ , where  $\mu_n$  is the group of *n*th root of unity. This map is an injective homomorphism, and  $\mu_n$  is cyclic of order *n*.

An extension K/F is *cyclic* if it is Galois with cyclic Galois group.

## Proposition

Let *F* be a field of characteristic not dividing *n*, containing all the *n*th roots of unity. For any  $a \in F$ ,  $K = F(\sqrt[n]{a})$  is cyclic over *F*, of degree dividing *n*.

#### Proof.

 $x^n - a$  is separable because the characteristic does not divide *n*. K/F is the splitting field, hence a Galois extension. If  $\sigma \in \operatorname{Aut}(K/F)$ , then  $\sigma(\sqrt[n]{a})$  is also a root of  $x^n - a$ , so  $\sigma(\sqrt[n]{a}) = \zeta_{\sigma}\sqrt[n]{a}$ , for some *n*th root of unity  $\zeta_{\sigma}$ . Thus  $\sigma \mapsto \zeta_{\sigma}$  gives a map  $\operatorname{Aut}(K/F) \to \mu_n$ , where  $\mu_n$  is the group of *n*th root of unity. This map is an injective homomorphism, and  $\mu_n$  is cyclic of order *n*.

#### Question: What about the converse?

Let K/F be a cyclic extension of degree *n*. If the characteristic of *F* does not divide *n* and *F* contains the *n*th roots of unity, then  $K = F(\sqrt[n]{a})$  for some  $a \in F$ .

Let K/F be a cyclic extension of degree *n*. If the characteristic of *F* does not divide *n* and *F* contains the *n*th roots of unity, then  $K = F(\sqrt[n]{a})$  for some  $a \in F$ .

**Proof:** Fix a generator  $\sigma \in Aut(K/F)$ .

Let K/F be a cyclic extension of degree *n*. If the characteristic of *F* does not divide *n* and *F* contains the *n*th roots of unity, then  $K = F(\sqrt[n]{a})$  for some  $a \in F$ .

#### **Proof:** Fix a generator $\sigma \in Aut(K/F)$ .

#### Definition

For  $\alpha \in K$  and any *n*th roof of unity  $\zeta$ , the Lagrange resolvent of  $\alpha$  and  $\zeta$  is:

$$(\alpha,\zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$$

Let K/F be a cyclic extension of degree *n*. If the characteristic of *F* does not divide *n* and *F* contains the *n*th roots of unity, then  $K = F(\sqrt[n]{a})$  for some  $a \in F$ .

#### **Proof:** Fix a generator $\sigma \in Aut(K/F)$ .

#### Definition

For  $\alpha \in K$  and any *n*th roof of unity  $\zeta$ , the Lagrange resolvent of  $\alpha$  and  $\zeta$  is:

$$(\alpha,\zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$$

Since  $\zeta \in F$ , it is fixed by  $\sigma$ , so:

$$\sigma((\alpha,\zeta)) = \sigma(\alpha) + \zeta \sigma^2(\alpha) + \ldots + + \zeta^{n-2} \sigma^{n-1}(\alpha) + \zeta^{n-1} \alpha$$

Let K/F be a cyclic extension of degree *n*. If the characteristic of *F* does not divide *n* and *F* contains the *n*th roots of unity, then  $K = F(\sqrt[n]{a})$  for some  $a \in F$ .

#### **Proof:** Fix a generator $\sigma \in Aut(K/F)$ .

#### Definition

For  $\alpha \in K$  and any *n*th roof of unity  $\zeta$ , the Lagrange resolvent of  $\alpha$  and  $\zeta$  is:

$$(\alpha,\zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$$

Since  $\zeta \in F$ , it is fixed by  $\sigma$ , so:

$$\sigma((\alpha,\zeta)) = \sigma(\alpha) + \zeta \sigma^{2}(\alpha) + \ldots + + \zeta^{n-2} \sigma^{n-1}(\alpha) + \zeta^{n-1} \alpha$$

Thus  $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$ 

## **Setup:** $\sigma$ a generator of Aut(K/F), $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$

# **Setup:** $\sigma$ a generator of Aut(K/F), $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$ $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$

# Setup: $\sigma$ a generator of Aut(K/F), $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$ $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$ So $\sigma((\alpha, \zeta)^n) = \zeta^{-n}(\alpha, \zeta)^n = (\alpha, \zeta)^n$ . This shows $(\alpha, \zeta)^n \in F$ .

Setup:  $\sigma$  a generator of Aut(K/F),  $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$   $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$ So  $\sigma((\alpha, \zeta)^n) = \zeta^{-n}(\alpha, \zeta)^n = (\alpha, \zeta)^n$ . This shows  $(\alpha, \zeta)^n \in F$ . Let  $\zeta$  be a *primitive n*th root of unity. We now want to see  $K = F((\alpha, \zeta))$ , for some  $\alpha \in K$ .

**Setup:** 
$$\sigma$$
 a generator of Aut( $K/F$ ),  
 $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$   
 $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$   
So  $\sigma((\alpha, \zeta)^n) = \zeta^{-n}(\alpha, \zeta)^n = (\alpha, \zeta)^n$ . This shows  $(\alpha, \zeta)^n \in F$ .  
Let  $\zeta$  be a *primitive n*th root of unity. We now want to see  
 $K = F((\alpha, \zeta))$ , for some  $\alpha \in K$ .

Recall from the proof of the fundamental theorem of Galois theory that  $1, \sigma, \sigma^2, \ldots, \sigma^{n-1}$  are linearly independent characters. Thus there must exist  $\alpha \in K$  so that  $(\alpha, \zeta) \neq 0$ .

Setup: 
$$\sigma$$
 a generator of Aut( $K/F$ ),  
 $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$   
 $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$   
So  $\sigma((\alpha, \zeta)^n) = \zeta^{-n}(\alpha, \zeta)^n = (\alpha, \zeta)^n$ . This shows  $(\alpha, \zeta)^n \in F$ .  
Let  $\zeta$  be a *primitive n*th root of unity. We now want to see  
 $K = F((\alpha, \zeta))$ , for some  $\alpha \in K$ .

Recall from the proof of the fundamental theorem of Galois theory that  $1, \sigma, \sigma^2, \ldots, \sigma^{n-1}$  are linearly independent characters. Thus there must exist  $\alpha \in K$  so that  $(\alpha, \zeta) \neq 0$ .

Since  $\zeta$  is primitive,  $\zeta^{-i}(\alpha, \zeta) \neq (\alpha, \zeta)$  for any  $1 \leq i < n$ . Thus  $\sigma^i$  does not fix  $(\alpha, \zeta)$  for  $1 \leq i < n$ .

**Setup:** 
$$\sigma$$
 a generator of Aut $(K/F)$ ,  
 $(\alpha, \zeta) := \alpha + \zeta \sigma(\alpha) + \zeta^2 \sigma^2(\alpha) + \ldots + \zeta^{n-1} \sigma^{n-1}(\alpha)$   
 $\sigma((\alpha, \zeta)) = \zeta^{-1}(\alpha, \zeta).$   
So  $\sigma((\alpha, \zeta)^n) = \zeta^{-n}(\alpha, \zeta)^n = (\alpha, \zeta)^n$ . This shows  $(\alpha, \zeta)^n \in F$ .  
Let  $\zeta$  be a *primitive n*th root of unity. We now want to see  
 $K = F((\alpha, \zeta))$ , for some  $\alpha \in K$ .

Recall from the proof of the fundamental theorem of Galois theory that  $1, \sigma, \sigma^2, \ldots, \sigma^{n-1}$  are linearly independent characters. Thus there must exist  $\alpha \in K$  so that  $(\alpha, \zeta) \neq 0$ .

Since  $\zeta$  is primitive,  $\zeta^{-i}(\alpha, \zeta) \neq (\alpha, \zeta)$  for any  $1 \leq i < n$ . Thus  $\sigma^i$  does not fix  $(\alpha, \zeta)$  for  $1 \leq i < n$ .

By the fundamental theorem of Galois theory,  $F((\alpha, \zeta))$  is not a proper subfield of K:  $F((\alpha, \zeta)) = K$ . This completes the proof.

From now on, let F be a field of characteristic zero.

From now on, let F be a field of characteristic zero.

#### Definition

An extension K/F is a *root extension* if there exists a chain of subfields  $F = K_0 \subseteq K_1 \subseteq ... \subseteq K_s = K$ , where for all i < s,  $K_{i+1}$  is a simple radical extension of  $K_i$  ( $K_{i+1} = K_i(\sqrt[n]{a_i})$ , for some  $a_i \in K_i$ ).

From now on, let F be a field of characteristic zero.

### Definition

An extension K/F is a *root extension* if there exists a chain of subfields  $F = K_0 \subseteq K_1 \subseteq ... \subseteq K_s = K$ , where for all i < s,  $K_{i+1}$  is a simple radical extension of  $K_i$  ( $K_{i+1} = K_i(\sqrt[n]{a_i})$ , for some  $a_i \in K_i$ ).

## Definition

An element  $\alpha$  (in some extension of *F*) can be expressed by radicals if  $\alpha$  is in a root extension of *F*.

From now on, let F be a field of characteristic zero.

### Definition

An extension K/F is a *root extension* if there exists a chain of subfields  $F = K_0 \subseteq K_1 \subseteq ... \subseteq K_s = K$ , where for all i < s,  $K_{i+1}$  is a simple radical extension of  $K_i$  ( $K_{i+1} = K_i(\sqrt[n]{a_i})$ , for some  $a_i \in K_i$ ).

#### Definition

An element  $\alpha$  (in some extension of *F*) can be expressed by radicals if  $\alpha$  is in a root extension of *F*.

#### Definition

A polynomial  $f(x) \in F[x]$  can be solved by radicals if all its roots can be expressed by radicals.





# Example

▶ 
$$\sqrt[171]{\sqrt{2} + \sqrt{5}}$$
 can be expressed by radicals over  $\mathbb{Q}$ : take  $K_0 = \mathbb{Q}, K_1 = \mathbb{Q}(\sqrt{2}), K_2 = K_1(\sqrt{5}), K_3 = K_2(\sqrt[171]{\sqrt{2} + \sqrt{5}}).$ 

► Any constructible number can be expressed by radicals over Q.

# Example

- ▶  $\sqrt[171]{\sqrt{2} + \sqrt{5}}$  can be expressed by radicals over  $\mathbb{Q}$ : take  $K_0 = \mathbb{Q}, K_1 = \mathbb{Q}(\sqrt{2}), K_2 = K_1(\sqrt{5}), K_3 = K_2(\sqrt[171]{\sqrt{2} + \sqrt{5}}).$
- Any constructible number can be expressed by radicals over Q.
   <sup>3</sup>√2 can be expressed by radicals over Q, but is not constructible.

Lemma

The composite of a simple radical extension with a root extension is a root extension.

#### Lemma

The composite of a simple radical extension with a root extension is a root extension.

### Proof.

Let  $F = K_0 \subseteq K_1 \ldots \subseteq K_s = K$  be a root extension, and let K'/F be a simple radical extension:  $K' = F(\sqrt[n]{a})$ .

#### Lemma

The composite of a simple radical extension with a root extension is a root extension.

#### Proof.

Let  $F = K_0 \subseteq K_1 \ldots \subseteq K_s = K$  be a root extension, and let K'/F be a simple radical extension:  $K' = F(\sqrt[n]{a})$ . Say  $K_{i+1} = K_i(\sqrt[n]{a_i})$ . Then  $K'K_{i+1} = (K'K_i)(\sqrt[n]{a_i})$ .

#### Lemma

The composite of a simple radical extension with a root extension is a root extension.

#### Proof.

Let  $F = K_0 \subseteq K_1 \ldots \subseteq K_s = K$  be a root extension, and let K'/Fbe a simple radical extension:  $K' = F(\sqrt[n]{a})$ . Say  $K_{i+1} = K_i(\sqrt[n]{a_i})$ . Then  $K'K_{i+1} = (K'K_i)(\sqrt[n]{a_i})$ . So  $F \subseteq K' = K_0K' \subseteq K_1K' \subseteq \ldots \subseteq K_sK' = KK'$  shows KK' is a root extension.

#### Lemma

The composite of a simple radical extension with a root extension is a root extension.

#### Proof.

Let  $F = K_0 \subseteq K_1 \ldots \subseteq K_s = K$  be a root extension, and let K'/Fbe a simple radical extension:  $K' = F(\sqrt[n]{a})$ . Say  $K_{i+1} = K_i(\sqrt[n]{a_i})$ . Then  $K'K_{i+1} = (K'K_i)(\sqrt[n]{a_i})$ . So  $F \subseteq K' = K_0K' \subseteq K_1K' \subseteq \ldots \subseteq K_sK' = KK'$  shows KK' is a root extension.

#### Lemma

Composite of root extensions are root extensions.

# Composite of root extensions

#### Lemma

The composite of a simple radical extension with a root extension is a root extension.

## Proof.

Let  $F = K_0 \subseteq K_1 \ldots \subseteq K_s = K$  be a root extension, and let K'/Fbe a simple radical extension:  $K' = F(\sqrt[n]{a})$ . Say  $K_{i+1} = K_i(\sqrt[n]{a_i})$ . Then  $K'K_{i+1} = (K'K_i)(\sqrt[n]{a_i})$ . So  $F \subseteq K' = K_0K' \subseteq K_1K' \subseteq \ldots \subseteq K_sK' = KK'$  shows KK' is a root extension.

#### Lemma

Composite of root extensions are root extensions.

### Proof.

Say  $F = K_0 \subseteq ... \subseteq K_s = K$  is a root extension, K'/F is another root extension. Then  $F \subseteq K_0K' \subseteq ... \subseteq K_sK'$  is an iteration of root extensions, hence a root extension.

## Lemma

If K/F is a root extension, then its Galois closure L/F is a root extension.

### Lemma

If K/F is a root extension, then its Galois closure L/F is a root extension.

## Proof.

Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension.

### Lemma

If K/F is a root extension, then its Galois closure L/F is a root extension.

### Proof.

Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension.

If  $\sigma \in \operatorname{Aut}(L/F)$ , then we get a chain of subfields  $F = K_0 = \sigma[K_0] \subseteq \sigma[K_1] \subseteq \ldots \subseteq \sigma[K_s] = \sigma[K]$ .

#### Lemma

If K/F is a root extension, then its Galois closure L/F is a root extension.

#### Proof.

Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension.

If  $\sigma \in \operatorname{Aut}(L/F)$ , then we get a chain of subfields  $F = K_0 = \sigma[K_0] \subseteq \sigma[K_1] \subseteq \ldots \subseteq \sigma[K_s] = \sigma[K]$ . Note  $\sigma[K_{i+1}]/\sigma[K_i]$  is a simple radical extension. Thus  $\sigma[K]/F$  is a root extension.

#### Lemma

If K/F is a root extension, then its Galois closure L/F is a root extension.

#### Proof.

Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension.

If  $\sigma \in \operatorname{Aut}(L/F)$ , then we get a chain of subfields  $F = K_0 = \sigma[K_0] \subseteq \sigma[K_1] \subseteq \ldots \subseteq \sigma[K_s] = \sigma[K]$ . Note  $\sigma[K_{i+1}]/\sigma[K_i]$  is a simple radical extension. Thus  $\sigma[K]/F$  is a root extension.

*L* is the composite of all the  $\sigma[K]/F$ 's, for  $\sigma \in Aut(K/F)$ , so is a root extension.

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

**Proof:** Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension. Say  $K_{i+1} = \sqrt[n_i]{a_i}$ ,  $a_i \in K_i$ .

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

**Proof:** Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension. Say  $K_{i+1} = \sqrt[n_i]{a_i}$ ,  $a_i \in K_i$ .

Since K/F is Galois,  $K/K_i$  is Galois for all *i*, so all the  $n_i$ th roots of  $a_i$  are in K, so the  $n_i$ th roots of unity are in K.

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

**Proof:** Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension. Say  $K_{i+1} = \sqrt[n_i]{a_i}$ ,  $a_i \in K_i$ .

Since K/F is Galois,  $K/K_i$  is Galois for all *i*, so all the  $n_i$ th roots of  $a_i$  are in K, so the  $n_i$ th roots of unity are in K.

Let F' be the smallest extension of F with all the  $n_i$ th roots of unity, for each i. This is a root extension.

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

**Proof:** Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension. Say  $K_{i+1} = \sqrt[n_i]{a_i}$ ,  $a_i \in K_i$ .

Since K/F is Galois,  $K/K_i$  is Galois for all *i*, so all the  $n_i$ th roots of  $a_i$  are in K, so the  $n_i$ th roots of unity are in K.

Let F' be the smallest extension of F with all the  $n_i$ th roots of unity, for each i. This is a root extension.

We get a chain  $F \subseteq F' = F'K_0 \subseteq F'K_1 \ldots \subseteq F'K_s = K$ .

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

**Proof:** Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension. Say  $K_{i+1} = \sqrt[n_i]{a_i}$ ,  $a_i \in K_i$ .

Since K/F is Galois,  $K/K_i$  is Galois for all *i*, so all the  $n_i$ th roots of  $a_i$  are in K, so the  $n_i$ th roots of unity are in K.

Let F' be the smallest extension of F with all the  $n_i$ th roots of unity, for each i. This is a root extension.

We get a chain  $F \subseteq F' = F'K_0 \subseteq F'K_1 \ldots \subseteq F'K_s = K$ .

For each *i*,  $F'K_{i+1}/F'K_i$  is a simple radical extension where the base contains the relevant roots of unity so it is a cyclic extension.

#### Lemma

If K/F is a Galois root extension. Then there exists subfields  $F = K'_0 \subseteq K'_1 \subseteq \ldots \subseteq K'_s = K$  such that  $K'_{i+1}/K'_i$  is cyclic.

**Proof:** Let  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  witness that K is a root extension. Say  $K_{i+1} = \sqrt[n_i]{a_i}$ ,  $a_i \in K_i$ .

Since K/F is Galois,  $K/K_i$  is Galois for all *i*, so all the  $n_i$ th roots of  $a_i$  are in K, so the  $n_i$ th roots of unity are in K.

Let F' be the smallest extension of F with all the  $n_i$ th roots of unity, for each i. This is a root extension.

We get a chain  $F \subseteq F' = F'K_0 \subseteq F'K_1 \ldots \subseteq F'K_s = K$ .

For each *i*,  $F'K_{i+1}/F'K_i$  is a simple radical extension where the base contains the relevant roots of unity so it is a cyclic extension. F'/F is a composite of cyclotomic extensions, hence abelian, so can be written as an iteration of cyclic extensions. Done!

In conclusion, we have shown:

#### Theorem

If K/F is a root extension, then there is an extension L of K such that:

1. L/F is Galois.

2. There exists subfield  $F = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_s = L$  such that  $L_{i+1}/L_i$  is a cyclic extension.

## Definition

A finite group G is *solvable* if there exists a chain of subgroups  $1 = G_s \subseteq G_{s-1} \subseteq \ldots \subseteq G_0 = G$  such that  $G_i/G_{i+1}$  is cyclic for all *i*.

## Definition

A finite group G is *solvable* if there exists a chain of subgroups  $1 = G_s \subseteq G_{s-1} \subseteq \ldots \subseteq G_0 = G$  such that  $G_i/G_{i+1}$  is cyclic for all *i*.

**Exercise 1:** If H is a normal subgroup of G, then G is solvable if and only if G/H and H are both solvable.

## Definition

A finite group G is *solvable* if there exists a chain of subgroups  $1 = G_s \subseteq G_{s-1} \subseteq \ldots \subseteq G_0 = G$  such that  $G_i/G_{i+1}$  is cyclic for all *i*.

**Exercise 1:** If H is a normal subgroup of G, then G is solvable if and only if G/H and H are both solvable.

**Exercise 2:** Show that "cyclic" can be replaced by "abelian" in the definition.

## Definition

A finite group G is *solvable* if there exists a chain of subgroups  $1 = G_s \subseteq G_{s-1} \subseteq \ldots \subseteq G_0 = G$  such that  $G_i/G_{i+1}$  is cyclic for all *i*.

**Exercise 1:** If H is a normal subgroup of G, then G is solvable if and only if G/H and H are both solvable.

**Exercise 2:** Show that "cyclic" can be replaced by "abelian" in the definition.

**Exercise 3:** The alternating group  $A_n$  and the symmetric group  $S_n$  are solvable if and only if  $n \le 4$  (use that  $A_n$  is simple for  $n \ge 5$  — see DF).

## Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

### Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

## Corollary

If a polynomial in  $\mathbb{Q}[x]$  has Galois group  $S_n$  for  $n \ge 5$ , then it cannot be solved by radicals.

### Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

## Corollary

If a polynomial in  $\mathbb{Q}[x]$  has Galois group  $S_n$  for  $n \ge 5$ , then it cannot be solved by radicals.

We will also see that the polynomial  $f(x) = x^5 - 6x + 3$  has Galois group  $S_5$ , so is a specific example that cannot be solved by radicals.

### Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

## Corollary

If a polynomial in  $\mathbb{Q}[x]$  has Galois group  $S_n$  for  $n \ge 5$ , then it cannot be solved by radicals.

We will also see that the polynomial  $f(x) = x^5 - 6x + 3$  has Galois group  $S_5$ , so is a specific example that cannot be solved by radicals. On the other hand, any polynomial of degree 4 or less can be solved by radicals.

## Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Rightarrow$ : Assume f(x) can be solved by radicals. By definition each root of f(x) is contained in a root extension.

## Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Rightarrow$ : Assume f(x) can be solved by radicals. By definition each root of f(x) is contained in a root extension.

By previous lemmas, each root of f(x) is contained in a *Galois* root extension. Let L/F be the composite of these extensions. It is again a Galois root extension.

## Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Rightarrow$ : Assume f(x) can be solved by radicals. By definition each root of f(x) is contained in a root extension.

By previous lemmas, each root of f(x) is contained in a *Galois* root extension. Let L/F be the composite of these extensions. It is again a Galois root extension.

Let  $L_0 = F \subseteq L_1 \subseteq \ldots \subseteq L_s = L$  be intermediate subfields such that  $L_{i+1}/L_i$  is cyclic for each i < s.

## Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Rightarrow$ : Assume f(x) can be solved by radicals. By definition each root of f(x) is contained in a root extension.

By previous lemmas, each root of f(x) is contained in a *Galois* root extension. Let L/F be the composite of these extensions. It is again a Galois root extension.

Let  $L_0 = F \subseteq L_1 \subseteq \ldots \subseteq L_s = L$  be intermediate subfields such that  $L_{i+1}/L_i$  is cyclic for each i < s.

Let  $G_i$  be the subgroup of the Galois group corresponding to  $L_i$ . By the fundamental theorem of Galois theory,  $G_i/G_{i+1}$  is cyclic. Thus the Galois group  $G_0 = \operatorname{Aut}(L/F)$  is solvable.

## Theorem

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Rightarrow$ : Assume f(x) can be solved by radicals. By definition each root of f(x) is contained in a root extension.

By previous lemmas, each root of f(x) is contained in a *Galois* root extension. Let L/F be the composite of these extensions. It is again a Galois root extension.

Let  $L_0 = F \subseteq L_1 \subseteq \ldots \subseteq L_s = L$  be intermediate subfields such that  $L_{i+1}/L_i$  is cyclic for each i < s.

Let  $G_i$  be the subgroup of the Galois group corresponding to  $L_i$ . By the fundamental theorem of Galois theory,  $G_i/G_{i+1}$  is cyclic. Thus the Galois group  $G_0 = \operatorname{Aut}(L/F)$  is solvable.

The splitting field of f(x) is a subfield of L, hence its Galois group is a quotient of  $G_0$ , hence solvable.

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Leftarrow$ : Assume the Galois group G of f(x) is solvable. Let K/F be the splitting field of f(x). Let  $1 = G_s \subseteq G_{s-1} \ldots \subseteq G_0 = G$  witness solvability, and let  $K_i$  be the fixed field of  $G_i$ .

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Leftarrow$ : Assume the Galois group G of f(x) is solvable. Let K/F be the splitting field of f(x). Let  $1 = G_s \subseteq G_{s-1} \ldots \subseteq G_0 = G$  witness solvability, and let  $K_i$  be the fixed field of  $G_i$ .

We have that  $F = K_0 \subseteq K_1 \subseteq ... \subseteq K_s = K$  are subfields so that  $K_{i+1}/K_i$  is a cyclic extension for each i < s.

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Leftarrow$ : Assume the Galois group G of f(x) is solvable. Let K/F be the splitting field of f(x). Let  $1 = G_s \subseteq G_{s-1} \ldots \subseteq G_0 = G$  witness solvability, and let  $K_i$  be the fixed field of  $G_i$ .

We have that  $F = K_0 \subseteq K_1 \subseteq ... \subseteq K_s = K$  are subfields so that  $K_{i+1}/K_i$  is a cyclic extension for each i < s.

Let  $n_i := [K_{i+1} : K_i]$ . As before, let  $F' \subseteq K$  be the field obtaining by adjoining all the  $n_i$ th roots of unity, for each i.

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Leftarrow$ : Assume the Galois group G of f(x) is solvable. Let K/F be the splitting field of f(x). Let  $1 = G_s \subseteq G_{s-1} \ldots \subseteq G_0 = G$  witness solvability, and let  $K_i$  be the fixed field of  $G_i$ .

We have that  $F = K_0 \subseteq K_1 \subseteq ... \subseteq K_s = K$  are subfields so that  $K_{i+1}/K_i$  is a cyclic extension for each i < s.

Let  $n_i := [K_{i+1} : K_i]$ . As before, let  $F' \subseteq K$  be the field obtaining by adjoining all the  $n_i$ th roots of unity, for each i.

Consider the chain  $F \subseteq F' = F'K_0 \subseteq F'K_1 \subseteq \ldots \subseteq F'K_s = K$ .

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Leftarrow$ : Assume the Galois group G of f(x) is solvable. Let K/F be the splitting field of f(x). Let  $1 = G_s \subseteq G_{s-1} \ldots \subseteq G_0 = G$  witness solvability, and let  $K_i$  be the fixed field of  $G_i$ .

We have that  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  are subfields so that  $K_{i+1}/K_i$  is a cyclic extension for each i < s.

Let  $n_i := [K_{i+1} : K_i]$ . As before, let  $F' \subseteq K$  be the field obtaining by adjoining all the  $n_i$ th roots of unity, for each i.

Consider the chain  $F \subseteq F' = F'K_0 \subseteq F'K_1 \subseteq \ldots \subseteq F'K_s = K$ .

By previous work,  $\operatorname{Aut}(F'K_{i+1}/F'K_i) \cong \operatorname{Aut}(K_{i+1}/K_{i+1} \cap F')$  is a subgroup of  $\operatorname{Aut}(K_{i+1}/K_i)$ , hence cyclic. So  $F'K_{i+1}/F'K_i$  is a cyclic extension.

The polynomial  $f(x) \in F[x]$  can be solved by radicals if and only if the Galois group of f(x) is solvable.

**Proof of**  $\Leftarrow$ : Assume the Galois group G of f(x) is solvable. Let K/F be the splitting field of f(x). Let  $1 = G_s \subseteq G_{s-1} \ldots \subseteq G_0 = G$  witness solvability, and let  $K_i$  be the

fixed field of  $G_i$ .

We have that  $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_s = K$  are subfields so that  $K_{i+1}/K_i$  is a cyclic extension for each i < s.

Let  $n_i := [K_{i+1} : K_i]$ . As before, let  $F' \subseteq K$  be the field obtaining by adjoining all the  $n_i$ th roots of unity, for each i.

Consider the chain  $F \subseteq F' = F'K_0 \subseteq F'K_1 \subseteq \ldots \subseteq F'K_s = K$ .

By previous work,  $\operatorname{Aut}(F'K_{i+1}/F'K_i) \cong \operatorname{Aut}(K_{i+1}/K_{i+1} \cap F')$  is a subgroup of  $\operatorname{Aut}(K_{i+1}/K_i)$ , hence cyclic. So  $F'K_{i+1}/F'K_i$  is a cyclic extension.

As F' contains the relevant roots of unity,  $F'K_{i+1}/F'K_i$  is a simple radical extension. As before F'/F is a root extension. We're done.

Example:  $f(x) = x^5 - 6x + 3x \in \mathbb{Q}[x]$ 

We want to understand the roots of f(x).

Example:  $f(x) = x^5 - 6x + 3x \in \mathbb{Q}[x]$ 

We want to understand the roots of f(x).

► *f*(*x*) is irreducible (Eisenstein).

Example:  $f(x) = x^5 - 6x + 3x \in \mathbb{Q}[x]$ 

We want to understand the roots of f(x).

- ► *f*(*x*) is irreducible (Eisenstein).
- Where do the roots of f(x) lie? Plug in some values, see f(-2) = −17, f(0) = 3, f(1) = −2, f(2) = 23. So f(x) has at least three real roots.

Example:  $f(x) = x^5 - 6x + 3x \in \mathbb{Q}[x]$ 

We want to understand the roots of f(x).

- ► *f*(*x*) is irreducible (Eisenstein).
- Where do the roots of f(x) lie? Plug in some values, see f(-2) = −17, f(0) = 3, f(1) = −2, f(2) = 23. So f(x) has at least three real roots.
- ► The derivative is f'(x) = 5x<sup>4</sup> 6. It has only two real roots. If f(x) had more real roots, f'(x) would have more real roots (draw a picture).

Example:  $f(x) = x^5 - 6x + 3x \in \mathbb{Q}[x]$ 

We want to understand the roots of f(x).

- ► *f*(*x*) is irreducible (Eisenstein).
- Where do the roots of f(x) lie? Plug in some values, see f(-2) = −17, f(0) = 3, f(1) = −2, f(2) = 23. So f(x) has at least three real roots.
- ► The derivative is f'(x) = 5x<sup>4</sup> 6. It has only two real roots. If f(x) had more real roots, f'(x) would have more real roots (draw a picture).
- Thus f(x) has three real roots, two complex roots. The two complex roots must be conjugate (not preserved by complex conjugation).

So far we know: f(x) is irreducible with three real roots and two complex roots, interchanged by complex conjugation.

Let K be the splitting field. Adjoining one root of f(x) gives an extension of degree 5, so K has degree divisible by 5.

- Let K be the splitting field. Adjoining one root of f(x) gives an extension of degree 5, so K has degree divisible by 5.
- Thus the Galois group G is a subgroup of  $S_5$ , with order divisible by 5. In particular, it contains an element of order 5.

- Let K be the splitting field. Adjoining one root of f(x) gives an extension of degree 5, so K has degree divisible by 5.
- Thus the Galois group G is a subgroup of S<sub>5</sub>, with order divisible by 5. In particular, it contains an element of order 5.
- ► This element of order 5 must be a 5-cycle.

- Let K be the splitting field. Adjoining one root of f(x) gives an extension of degree 5, so K has degree divisible by 5.
- Thus the Galois group G is a subgroup of S<sub>5</sub>, with order divisible by 5. In particular, it contains an element of order 5.
- ▶ This element of order 5 must be a 5-cycle.
- G also contains a transposition: restricting complex conjugation to K gives an automorphism which permute the two complex roots and fixes the three real roots.

- Let K be the splitting field. Adjoining one root of f(x) gives an extension of degree 5, so K has degree divisible by 5.
- Thus the Galois group G is a subgroup of S<sub>5</sub>, with order divisible by 5. In particular, it contains an element of order 5.
- This element of order 5 must be a 5-cycle.
- G also contains a transposition: restricting complex conjugation to K gives an automorphism which permute the two complex roots and fixes the three real roots.
- Exercise: S<sub>5</sub> is generated by any transposition together with any 5-cycle.

- Let K be the splitting field. Adjoining one root of f(x) gives an extension of degree 5, so K has degree divisible by 5.
- Thus the Galois group G is a subgroup of S<sub>5</sub>, with order divisible by 5. In particular, it contains an element of order 5.
- This element of order 5 must be a 5-cycle.
- G also contains a transposition: restricting complex conjugation to K gives an automorphism which permute the two complex roots and fixes the three real roots.
- Exercise: S<sub>5</sub> is generated by any transposition together with any 5-cycle.
- Therefore the Galois group of f(x) is  $S_5$ .

(In characteristic zero)

Any simple radical extension over a field containing enough roots of unity is cyclic.

- Any simple radical extension over a field containing enough roots of unity is cyclic.
- Conversely, any cyclic extension over a field containing enough roots of unity is a simple radical extension.

- Any simple radical extension over a field containing enough roots of unity is cyclic.
- Conversely, any cyclic extension over a field containing enough roots of unity is a simple radical extension.
- An element can be expressed by radicals if and only if it is is in an iteration of simple radical extensions (called a *root extension*).

- Any simple radical extension over a field containing enough roots of unity is cyclic.
- Conversely, any cyclic extension over a field containing enough roots of unity is a simple radical extension.
- An element can be expressed by radicals if and only if it is is in an iteration of simple radical extensions (called a *root extension*).
- Using the Galois correspondence, a polynomial can be solved by radicals if and only if its Galois group is solvable.

- Any simple radical extension over a field containing enough roots of unity is cyclic.
- Conversely, any cyclic extension over a field containing enough roots of unity is a simple radical extension.
- An element can be expressed by radicals if and only if it is is in an iteration of simple radical extensions (called a *root extension*).
- Using the Galois correspondence, a polynomial can be solved by radicals if and only if its Galois group is solvable.
- ▶ In particular, any polynomial with Galois group  $S_n$ ,  $n \ge 5$ , cannot be solved by radicals.

- Any simple radical extension over a field containing enough roots of unity is cyclic.
- Conversely, any cyclic extension over a field containing enough roots of unity is a simple radical extension.
- An element can be expressed by radicals if and only if it is is in an iteration of simple radical extensions (called a *root extension*).
- Using the Galois correspondence, a polynomial can be solved by radicals if and only if its Galois group is solvable.
- ▶ In particular, any polynomial with Galois group  $S_n$ ,  $n \ge 5$ , cannot be solved by radicals.
- ► In particular, any polynomial of degree 4 or less can be solved by radicals, but x<sup>5</sup> - 6x + 3 cannot be solved by radicals.