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Recall

We saw last time that polynomials of degree at most 4 have a
formula for their roots, in terms of sums, products, and root
extraction.

What is this formula?

For degree 1 and 2, it is well known...

Today we look at degree 3 (degree 4 can be reduced to degree 3).

Disclaimer: If you ever have to do this in practice, it’s probably
better (and easier) to just use numerical approximations...
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Some (very partial and Western-centric) history

Contributions from the Babylonians, Egyptians, Greeks, Chinese,
Indians, Persians, and Italians...

Early 16th century: Del Ferro solves x3 + mx = n.

This is in fact the general case if one allows m and n to be
negative... But Del Ferro didn’t know about negative numbers!
(while well known to everybody else, they were accepted in the
West only in the 19th century!!!)

He keeps his achievement secret until his death (1526), when he
tells his student Antonio Fior.

1530: Tartaglia announces he can solve some cubics. This leads to
a contest between Fior and Tartaglia!

Tartaglia gets asked about x3 + mx = n, for which he had worked
out the method.

Fior gets asked about x3 + mx2 = n, and cannot do it!
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History continued

In 1539, Cardano persuades Tartaglia to reveal his method (as a
poem!). He has to promise he will never himself reveal it (or at
least give time to Tartaglia to reveal it first).

Cardano gets around the promise by publishing the method in 1545
as the work of Del Ferro...

Tartaglia challenges Cardano to a competition, etc.

In the end, the solution is known as Cardano’s formula.

For more about the solution and poem, see
https://www.maa.org/press/periodicals/convergence/

how-tartaglia-solved-the-cubic-equation-cubic-equations.

There is also a recent book (I haven’t read): The secret formula,
by Toscano.

https://www.maa.org/press/periodicals/convergence/how-tartaglia-solved-the-cubic-equation-cubic-equations
https://www.maa.org/press/periodicals/convergence/how-tartaglia-solved-the-cubic-equation-cubic-equations
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Cubic: beginning of the solution

Consider f (x) = x3 + ax2 + bx + c . Make the substitution
x = y − a/3.

We get g(y) = y3 + py + q, where p = 1
3(3b − a2),

q = 1
27(2a3 − 9ab + 27c).

The splitting field for f and g are the same.

Recall the discriminant of a polynomial is D =
∏

i<j(αi − αj)
2, for

roots α1, ..., αn. In our case, the difference between the roots of
f (x) and the roots of g(x) is the same, so they have the same
discriminant.

Let α, β, γ be the roots of g(y). Let’s try to compute a simple
expression for D, in terms of p and q.

We have g(y) = (y − α)(y − β)(y − γ). It follows that
g ′(α) = (α− β)(α− γ), g ′(β) = (β − α)(β − γ),
g ′(γ) = (γ − α)(γ − β).

So D = −g ′(α)g ′(β)g ′(γ).
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We have: D = −g ′(α)g ′(β)g ′(γ), g(y) = y3 + py + q.

Since g ′(y) = 3y2 + p, we have:

−D = (3α2 + p)(3β2 + p)(3γ2 + p).

From the class on symmetric functions: if we have a “general”
polynomial x3 − s1x

2 + s2x − s3 = (x − α)(x − β)(x − γ), then
s1 = α + β + γ, s2 = αβ + αγ + βγ, s3 = αβγ. Here, s1 = 0,
s2 = p, s3 = −q.

Expanding D, get:

−D = 27α2β2γ2+9p(α2β2+α2γ2+β2γ2)+3p2(α2+β2+γ2)+p3

Expressing this in terms of s1, s2, s3, this simplifies to
−D = 27(−q)2 + 9p(p2) + 3p2(−2p) + p3.

So D = −4p3 − 27q2.
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Discriminant and behavior of roots

The discriminant of g(y) = y3 + py + q is D = −4p3 − 27q2.

Recall D = (α− β)2(α− γ)2(β − γ)2.

We know g(y) has at least one real root. Say it is α. If β and γ
are not real, then they are conjugates.

In this case, α− β and α− γ are conjugates too, so
(α− β)2(α− γ)2 is real, and β − γ is purely imaginary, so D < 0.

Conversely, if D < 0, then g(y) has non-real roots.
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Galois group of a cubic

Let g(y) = y3 + py + q ∈ Q[x ].

If g(y) is reducible, it factors either as a linear term times a
quadratic, or as the product of three linear factors. The Galois
group is either Z2 or 1.

If g(y) is irreducible, the Galois group is a subgroup of S3 of order
divisible by 3. Thus it is either A3 = Z3 or S3.

If it is Z3, the splitting field has degree 3 so is obtained by adding
any root.

If it is S3, we saw that
√
D /∈ Q. The splitting field has degree 6,

so is obtained by adding any root and
√
D.
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Cardano’s formula
It would take too long to derive it, and the derivation is not super
interesting anyway.

So here it is!

Let A = 3

√
−27
2 q + 3

2

√
−3D.

Let B = 3

√
−27
2 q − 3

2

√
−3D.

Then a root of g(y) = y3 + py + q is given by α = A+B
3 .

The other roots are:

β = ρ2A+ρB
3 .

γ = ρA+ρ2B
3 .

Where ρ = e2πi/3.

This works for any D (if D = 0, then A = B so β = γ).

Cardano was puzzled by the case D > 0 (“Casus irreducibilis”)
because of the complex number

√
−3D. He could manage it

without really understanding.
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Complex numbers are unavoidable

If D > 0 (as with x3 + x2 − 2x − 1), then there are three distinct
real roots. Still, Cardano’s formula requires going through complex
numbers.

Can complex numbers be avoided? The answer is no!

Suppose we had an irreducible polynomial f (x) ∈ Q[x ] with three
distinct real roots, and we could express one of these roots by
radicals involving just reals.

Then the splitting field of f (x) is contained in a root extension
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R.

where Ki+1/Ki is a simple radical extension.

Note s ≥ 2, since the splitting field of f (x) has degree divisible by
3, and Q(

√
D) has degree 2.

We will prove this is not possible.
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Q = K0 ⊆ K1 = Q(
√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with Ki+1/Ki is a

simple radical extension: Ki+1 = Ki ( ni
√
ai ), ai ∈ Ki .

Without loss of generality, ni = pi is prime: otherwise ni = miki ,
and ni

√
ai = mi

√
ki
√
ai . It follows the degree is 1 or pi :

Lemma

If F is a subfield of R, a ∈ F , and p is a prime, then
d := [F ( p

√
a) : F ] is either 1 or p.

Proof.

The minimal polynomial for α = p
√
a is

∏
σ∈Aut(L/F )(x − σ(α)),

where L is the Galois closure of F ( p
√
a)/F .

So the constant term of the minimal poly is αdζ, ζ a pth root of
unity.
Since α is a real number and αdζ ∈ F is real, ζ is real, so ζ = ±1.
Thus αd ∈ F and αp = a ∈ F too. If d 6= p, then can write
1 = ad + bp and get α ∈ F , so d = 1.
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We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



We have so far: f (x) is irreducible, has three distinct real roots,
so D > 0, and its splitting field is contained in
Q = K0 ⊆ K1 = Q(

√
D) ⊆ . . . ⊆ Ks = K ⊆ R, with

Ki+1 = Ki ( pi
√
ai ), ai ∈ Ki , [Ki+1 : Ki ] = pi

We saw any extension containing
√
D and a root of f (x) must

contain the entire splitting field. So without loss of generality Ks−1
does not contain a root of f (x) (otherwise it could replace Ks).

In particular, f (x) is irreducible over Ks−1. So Ks/Ks−1 has degree
divisible by 3.

Since the degree is prime, it must be exactly 3.

Ks is a splitting field of f (x) over Ks−1, so is Galois.

Since Ks = Ks−1( 3
√
as−1), it contains the other cube roots of as−1.

In particular, Ks contains the cube roots of unity, so cannot be
contained in the reals.



The End!

I The last exam will be on the course webpage soon: click on
“Last exam” in the last row of the table, or use the “File”
menu in Canvas. Good luck!

I I hope you enjoyed the class.


