
MATH 141A: COMPUTABILITY AND ARITHMETIC

SEBASTIEN VASEY

In these notes, we investigate some consequences of the completeness and compact-
ness theorem to computability and models of arithmetic. We have observed that
one advantage of working syntactically rather than semantically is that there are
algorithms to check proofs. Let’s make this precise:

Definition 1. Fix a countable signature σ. A set A of formulas in the language of
σ is decidable if there is a computer program that, given as input a formula φ will
output yes or no depending on whether φ ∈ A.

Note that we are not making precise here what a computer program is (one possible
definition is the notion of a Turing machine, that you may encounter in a class such
as CS-121). Also, there are no requirements on how fast the computer program
should be. All that is asked is that in a finite time (that may depend on φ) it
will terminate and output yes or no. Finally, we are assuming that the computer
program has some way to read φ, i.e. that φ is coded in some way as a string of 0
and 1’s. For example, one could represent the ith constant symbol by a pair 〈0, i〉,
the ith function symbol by a pair 〈1, i〉, etc. Then further fix a way to code 〈a, b〉
into a single string of 0 and 1’s. All of this can be done. In the rest of these notes,
σ denotes a countable signature.

For example, any finite set is decidable (one can just hardcode the formulas in
the program). Thus the axioms of non-empty dense chains without endpoints are
decidable. On the other hand, there are uncountably-many sets of formulas, but
only countably-many computer programs (say if we think of them as finite strings
of zeroes and ones), so in fact “most” sets will not be decidable. Still, almost all
of the sets of axioms that one would write down explicitly in practice are decidable
(even if they are infinite): for example the axioms of generic graphs, or of infinite
sets are decidable.

We will often be interested in whether the set of consequences of the axioms are
decidable. This will enable us to figure out, for example, whether a specific sentence
φ is true of any non-empty dense chain without endpoints. For this, it will be helpful
to know that we can check proofs using computers:

Remark 2. Given a decidable set A, there is a computer program that takes as
input a sequence φ1, . . . , φn of formulas and outputs yes or no depending on whether
φ1, . . . , φn is a formal proof of φn from A.

Proof. For each i ≤ n, the program checks whether φi ∈ A (this can be done
because A is assumed to be decidable), whether for some j, k < i φi the formula φk
is φj → φk (this is easy to do), or whether φi is a logical axiom. The latter can also
be done, because the set of all logical axioms is decidable: just check whether the
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formula given as input is of one of the types. For example, to check a formula is a
propositional tautology, one just enumerates its basic subformulas (there are only
finitely-many) and check for all truth assignment of these basic formulas whether
the corresponding assignment evaluates to 1 on the input formula. �

Let us now recall some definitions: a sentence φ is a consequence of a set of sentences
A (written A |= φ) if any model of A is a model of φ. We write Th(A) (the theory
of A) for the set {φ | A |= φ}. For a model M , we write Th(M) for {φ | M |= φ}.
A theory is a set of sentences A that is consistent and is closed under consequences
(i.e. A |= φ implies φ ∈ A). A theory T is complete if for any sentence φ, φ ∈ T or
¬φ ∈ T . A consistent set A of sentences is complete if Th(A) is complete.

In general, for a σ-structure M , Th(M) is always a complete theory, and if M |= A,
then Th(A) ⊆ Th(M), with equality if and only if A is itself complete. These
statements follow quickly from the definitions, you should be able to give the proofs.

The following gives a criteria for when the set of consequences is decidable:

Theorem 3. If A is decidable and complete, then Th(A) is decidable.

Proof. We use that (by the completeness theorem), φ is a consequence of A if and
only if A ` φ. So given a sentence φ as input, the program enumerates all the
possible sequences ψ̄0 = (ψ0

i )i≤n0 , ψ̄1 = (ψ1
i )i≤n1 , ... of sentences (there are only

countably many). For each j, the program checks whether ψ̄j is a formal proof of
φ from A (this is possible by Remark 2, we are using that A is decidable). If it is,
then output “yes”. If it is not, check whether ψ̄j is a formal proof of ¬φ from A.
If it is, output “no”. The program will terminate: since A is complete, we know
that either φ ∈ Th(A) or ¬φ ∈ Th(A). By the completeness theorem, this means
that either A ` φ or A ` ¬φ. Since we are going through all possible sequences of
sentences, we must eventually hit on one witnessing that A ` φ or A ` ¬φ. �

This simple proof has several interesting consequences:

• We have shown (using the back and forth method) that the set A of axioms
of non-empty dense chains without endpoints is complete. Since A is finite,
it is also decidable. Therefore by the theorem, Th(A) is decidable. In
words, the theory of non-empty dense chains without endpoints is decidable.
In particular, there is an algorithm that takes as input a sentence φ and
outputs yes or no depending on whether (Q, <) |= φ. In the assignments,
you saw another (more constructive) algorithm that proceeded by removing
the quantifiers from φ.
• The theory of non-empty discrete chains without endpoints is decidable (it

is complete by 1.8 in Poizat). Thus there is for example an algorithm to
decide whether a formula holds of (Z, <).
• The theory of generic graphs is also decidable (you proved in assignment 4

that it was complete).
• We will see later in the class that T = Th((C,+, ·, 0, 1)) can be axiomatized

by a complete and decidable set, and hence is decidable by the theorem. The
theory T is called the theory of algebraically closed fields of characteristic
zero.
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• We may also see later in the class that T = Th((R,+, ·, 0, 1)) is axiomatized
by a complete and decidable set. The theory T is called the theory of real
closed fields.

Of course, the fact that there is an algorithm may not necessarily mean that there
is a fast algorithm. Even for the simple case of non-empty dense chains without
endpoints, the best algorithm has (in the worst case) double exponential complexity
(if the input formula has n symbols, the program will take approximately 22

n

steps
before returning an answer). Figuring out algorithms that will run fast in “practice”
(while maybe still being inefficient in the worst case) is an active research area in
computer science.

We have looked at C, R, Q and Z (with varying operations). What about N?
Specifically, what about (N,+, ·, 0, 1)? Here is one attempt to axiomatize it:

Definition 4. Peano’s arithmetic (PA) is the following set of axioms, in the signa-
ture {+, ·, 0, 1} (where + and · are binary function symbols and 0, 1 are constant
symbols):

• (∀x∀y)(x + y = y + x ∧ x · y = y · x) [Addition and multiplication are
commutative]
• (∀x)(x+ 1 6= 0) [Zero is not the sucessor of any natural number]
• (∀x∀y)(x+ 1 = y + 1→ x = y) [The successor function is injective]
• (∀x)(x+ 0 = x) [Zero is the additive identity]
• (∀x)(x · 0 = 0) [Zero times anything is zero]
• (∀x∀y)(x + y) + 1 = x + (y + 1) [Relationship between addition and the

successor operation]
• (∀x∀y)(x · (y + 1)) = (x · y) + x [Relationship between multiplication and

the successor operation]
• For any formula φ(x),

(φ(0) ∧ (∀x)(φ(x)→ φ(x+ 1)))→ (∀x)φ(x)

This is the induction axiom schema (it really is a set of axioms, one for
each formula φ).

Exercise 5. Using the induction axiom schema, show that PA |= (∀x) (x = 0 ∨ (∃y)(x = y + 1)).

It is easily seen that (N,+, ·, 0, 1) |= PA. What do the other models of PA look
like? Let M |= PA. Then (N,+, ·, 0, 1) is isomorphic to a substructure of M (the
one induced by sums of 1’s). So by some renaming we can assume without loss of
generality that N is already a substructure of M . If M 6= N, M has other numbers
than sums of ones (called “nonstandard numbers”) that sit above all the regular
natural numbers. More precisely, we can define an ordering < on M by a < b if and
only if there exists x ∈M such that b = a+ x (note that this is a definable subset
of M2). This coincides with the usual orderings on the natural numbers. Also, it
follows from the axioms of PA that 0 is minimal in that ordering (exercise!). In fact
it can be shown (see the extra credit problem of assignment 7) that (univ(M), <)
is isomorphic to (N, <) +Z×D, where D is a dense chain without endpoints! The
structure of nonstandard models of PA is very mysterious, yet they satisfy all the
consequences of PA (for example, M |= (∀x∃y)x = (1 + 1) · y ∨ x = (1 + 1) · y + 1:
every nonstandard number is either even or odd).
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While the orderings of each countable nonstandard models of PA are all isomorphic
(why?), once we add the extra structure we get a lot of different models. Note first
that a nonstandard model is not isomorphic to (N,+, ·, 0, 1), so PA has at least two
non-isomorphic countable models. In fact:

Theorem 6. PA has 2ℵ0 non-isomorphic countable models.

Proof. First, PA (or really any set of axiom in a countable signature) has at most
2ℵ0 non-isomorphic countable models (exercise!). We show that PA has at least
2ℵ0-many. First, add a constant symbol c to the signature of PA. Call the resulting
signature σ′. For each set of (standard!) primes P , build (as in assignment 6) a
countable model MP of PA such that (MP , aP ) satisfies the sentence saying that c
is divisible by a prime p if and only if p ∈ P . Clearly, for P1 6= P2, the expanded
σ′-structure (MP1 , aP1) is not isomorphic to (MP2 , aP2): in fact they do not even
satisfy the same sentences. Since there are 2ℵ0-many sets of primes, that tells
us that there are 2ℵ0 countable σ′-structures that are models of PA. Still, that
may not tell us that MP1

(without the interpretation of the constant symbol) is
not isomorphic to MP2

(because an isomorphism may send aM1 elsewhere than to
aM2). Instead, we will do a little bit of (infinite) counting.

For each set P of primes, let FP denote the collection of all sets of primes Q
such that MP has an element divisible exactly by the primes in Q. For example,
P ∈ FP , but FP will contain more elements (for example it will contain all finite
sets of primes). Still, FP is a countable set, because MP has only countably-many
elements, and two elements with a distinct set of prime divisors must be different.
We now build sets of primes (Pα)α<2ℵ0 by transfinite induction on α as follows:

• For α = 0, take any set of primes. For example P0 = ∅.
• Given any other β > 0 and (Pα)α<β , we know that FPα is countable for

all α < β, and β < 2ℵ0 . Therefore F =
⋃
α<β FPα has cardinality at most

ℵ0 · |β| < 2ℵ0 . Thus by cardinality considerations, there must exist a set of
prime not in F . Let that set be Pβ .

Now note that for α < β < 2ℵ0 , MPα is not isomorphic to MPβ . Indeed, MPβ

contains an element aPβ divisible exactly by the primes in Pβ . By construction,
Pβ /∈ FPα , but for each element x of MPα , the set of prime divisors of x must be
a member of FPα . Since any isomorphism of MPβ onto MPα would send a aPβ to
something still divisible exactly by the primes in Pβ , we conclude that MPα and
MPβ are not isomorphic. �

It is easily seen that PA itself is decidable: by inspecting it, it is easy to check
whether a sentence is an axiom of PA or not. However PA is not complete. More
generally, Gödel’s incompleteness theorem (to be discussed in 141b) says that any
decidable extension of PA is incomplete. Contrapositively, a complete extension of
PA cannot be decidable. For example, the theory TA = Th(N,+, ·, 0, 1) (TA stands
for “true arithmetic”) is of course complete, hence cannot be decidable. Thus there
is no algorithm that would take as input a sentence and output whether it is true
of the natural numbers.

To see what this means, consider for example Goldbach’s conjecture, one of the
oldest unsolved problems in number theory: any even natural number greater than
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or equal to 4 is the sum of two primes. There is a sentence φ in the signature of
Peano’s arithmetic that describes it (exercise). Still it seems hard to check using a
computer: you can keep checking examples and not know whether your computer
fails to find a counterexample because there are no counterexample, or because the
counterexample is too big. Is Goldbach’s conjecture true or false? What do we
even mean? There are three possibilities:

(1) PA |= φ: somehow we have managed to figure out that Goldbach’s conjec-
ture is true in any model of PA (maybe using lots of fancy proof techniques
like transfinite induction, the axiom of choice, etc). In this case, the com-
pleteness theorem tells us that PA ` φ. Thus there is a proof of φ from
the axioms of PA in the very simple style we have seen in class (that proof
may be much longer but nevertheless will exist). In particular, TA |= φ, so
Goldbach’s conjecture is true of (N,+, ·, 0, 1).

(2) PA |= ¬φ: then similarly we will have a proof from the axioms of PA
that Goldbach’s conjecture fails. In fact, we will in particular have that
(N,+, ·, 0, 1) |= ¬φ, so we will have an explicit (standard) natural number
n that is a counterexample (it is even, greater than 4, and cannot be written
as a sum of two primes). The proof could for example simply write this
number as a sum of ones and check all the lower numbers by hand (there
are only finitely many).

(3) PA 6|= φ and PA 6|= ¬φ: this means that Goldbach’s conjecture is indepen-
dent of the axioms of Peano’s arithmetic: some models of PA satisfy it,
others don’t. But what about the “true” natural numbers? A-priori, there
are two possibilities here:
• φ ∈ TA. Then Goldbach’s conjecture is true of (N,+, ·, 0, 1). Never-

theless, it is false in some nonstandard model M of PA. Still, all sums
of ones in M satisfy Goldbach’s conjecture (since it is true in N). Thus
the counterexample will have to be a nonstandard number!

• φ /∈ TA. Then since TA is complete ¬φ ∈ TA. Thus (N,+, ·, 0, 1) |=
¬φ, so as before there must be a counterexample in N. This example
can be written as a sum of ones, so since the statement of Goldbach’s
conjecture is very simple, you should convince yourself that any other
model of PA will have to satisfy ¬φ as well, just because there is a
very long finite sentence saying that that finite sum of one is not a
sum of two other smaller prime finite sum of ones. Thus in this case
we should have that PA |= ¬φ, and so that case does not happen.

Thus in case Goldbach’s conjecture is independent of PA, we would still
have that it is true for the standard natural numbers! (but we would not
have an actual proof for it in PA – though there could be natural extensions
of PA that prove it). To get a feeling for what this could mean you will
in your assignment construct a model of a weak subset of PA that fails
Goldbach’s conjecture.


