
MATH 141A: INTRODUCTION TO THE MODEL THEORY OF

FIELDS

SEBASTIEN VASEY

1. Basics of fields

We want to use logical tools to study fields: certain kind of algebraic objects with
an addition and multiplication. First, let’s introduce a signature in which we will
study them:

Definition 1.1. The signature of fields σf contains two binary function symbols
+ and ·, one unary function symbol −, and two constant symbols 0 and 1.

Definition 1.2. A field is a model of the set AF containing the axioms of fields,
defined below:

• Axioms for addition:
– Associativity: (∀x∀y∀z)((x+ y) + z = x+ (y + z)).
– Commutativity: (∀x∀y)(x+ y = y + x).
– 0 is the identity: (∀x)(x+ 0 = x).
– Existence of additive inverse: (∀x)(x+ (−x) = 0).

• Axioms for multiplication:
– Associativity: (∀x∀y∀z)((x · y) · z = x · (y · z)).
– Commutativity: (∀x∀y)(x · y = y · x).
– 1 is the identity: (∀x)(x · 1 = x).
– Existence of multiplicative inverse (for nonzero numbers): (∀x∃y)(x =

0 ∨ x · y = 1).
• Distributivity: (∀x∀y∀z)(x · (y + z) = (x · y) + (x · z)).
• Non-triviality: 0 6= 1.

As usual when working with numbers, we write xy instead of x·y, drop the parenthe-
ses when associativity makes it clear they don’t matter, and assume that multiplica-
tion has priority over addition (so for example s+xy+z really means s+((x·y)+z)).
The multiplicative inverse of a nonzero element x is unique, and we write x−1 for it.
We write x− y for x+ (−y) and x

y for xy−1. Often, we do not distinguish between

the field and its universe, and say for example that “x is an element of the field F”
(where we really mean that x is an element of univ(F )). Two other useful bits of
notation are:

Definition 1.3. Let F be a field. We write 1F (or just 1) instead of 1F , and
similarly for 0F . For an integer n, define nF as follows:
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nF =



0F if n = 0

1F + 1F + . . .+ 1F︸ ︷︷ ︸
n times

if n > 0

−(1F + 1F + . . .+ 1F︸ ︷︷ ︸
|n| times

) if n < 0

When F is clear from context, we may forget it and just write n. Also define, for
an element x of F :

xn =



1F if n = 0

x · x · . . . · x︸ ︷︷ ︸
n times

if n > 0

x−1 · x−1 · . . . · x−1︸ ︷︷ ︸
|n| times

) if n < 0

Example 1.4.

• (Q,+, ·,−, 0, 1), (R,+, ·,−, 0, 1), C,+, ·,−, 0, 1) are fields. We may abuse
notation and just write Q, R, C for the corresponding fields.
• For a natural number n > 0, let Fn denote the structure ({0, 1, 2, 3, . . . , n−

1},+, ·,−, 0, 1), where addition, multiplication, and inversion, is done mod-
ulo p (i.e. we take the remainder of the result divided by p. For example,
if n = 3, then 1 + 2 = 0, 1 + 3 = 1, 2 · 2 = 1, etc. It is a (nonobvious) basic
fact from algebra that Fp is a field when p is a prime. On the other hand if
we look for example at F6, then one can check that 2 has no multiplicative
inverse. In general, Fn is a field if and only if n is prime.

• (Z,+, ·,−, 0, 1) is not a field, as multiplicative inverses are lacking.

Many usual properties of numbers that you are used to (such as the fact that
0 · x = 0 for any x) follow from the axioms of field. For example:

Fact 1.5. Assume F is a field. For all elements x, y, z, w of F and all integers n
and m, we have:

• (xy)n = xnyn.
• xnxm = xn+m.
• (xn)m = xnm.
• (n+m)F = nF +mF .
• (n ·m)F = nF ·mF .
• x · 0 = 0.
• −(xy) = (−x)y.
• −x = (−1)x.
• (−x)(−y) = xy.
• If xy = 0, then x = 0 or y = 0 (or both).
• (x+ y)(z + w) = xz + xw + yz + yw,
• (x+ y)2 = x2 + 2xy + y2.
• (x− y)2 = x2 − 2xy + y2.
• (x+ y)(x− y) = x2 − y2.
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We omit the proofs (if you prefer, just add these statements to the axioms of fields).
We will use these property freely.

An important property of a field is its characteristic:

Definition 1.6. The characteristic of a field F , denoted char(F ), is the least
positive natural number n such that nF = 0, or 0 if there is no such natural
number.

For example, Q, R, C are fields of characteristic zero, but for p a prime, Fp is a field
of characteristic p. Note that if n = char(F ) > 0, and n = mk for natural numbers
m and k, then mF kF = 0, so multiplying both sides by k−1F , mF = 0. Since nF
was least, mF = nF . This shows that the characteristic of a field is either zero or
a prime number.

A subfield of a field F is a field F0 which is a substructure of F . We also say that
F is an extension of F0. Note that if F0 is a subfield of F , then F0 contains 1, and
so char(F0) = char(F ). The prime subfield of a field F is its smallest subfield, i.e.
the subfield generated by 1F . It is easily checked that the prime subfield of a field
F is isomorphic to Q if char(F ) = 0 and isomorphic to Fp if char(F ) = p for p a
prime.

Going back to logic, is the set AF of axioms of fields complete? The answer is no.
One trivial reason is that the characteristic has not been specified in the axioms,
so for example Fp |= pF = 0 but Q |= pF 6= 0. Thus we define:

Definition 1.7. For p a prime, let AFp = AF∪{p = 0} ∪ {n 6= 0 | 1 ≤ n < p}
(where as before we are using the number p as an abbreviation for 1 + 1 + . . .+ 1︸ ︷︷ ︸

p times

).

Also define AF0 = AF∪{n 6= 0 | n > 0}.

Thus F |= AFp if and only if F has characteristic p. Is AFp complete? Not yet. For
example the field Q and R are not elementarily equivalent: R satisfies the sentence
(∃x)(x2 − 2 = 0) but Q does not (

√
2 is not rational). The underlying problem is

that polynomials may or may not have roots in a given field.

By the way, what is a polynomial in the language of logic? It is essentially a σf -term!
More precisely, given a field F , a polynomial (say in one variable) with coefficients
from F can be written as anx

n + an−1x
n−1 + . . . + a0, where n < ω and ai ∈ F .

Thus there is a σf -term τ(x, y0, y1, . . . , yn) such that F |= (∀x)(τ(x,a0, . . . , an) =
anx

n + . . .+ a0). Conversely, any term is equal to (after some use of distributivity)
a linear combination of products of its variables (and 0 and 1), which is just what
a polynomial is.

With this identification, what is an atomic formula in the language of σf? It is just
an equality τ = ρ of two polynomials. Keeping in mind that this is equivalent to
τ + (−ρ) = 0, an atomic formula exactly says that a certain polynomial has a root
(this is why we wanted to add − to the language). When working inside a field F ,
given a term τ(x1, . . . , xn), we can plug in elements of F into the free variables to
create a new polynomial in fewer variables but with coefficients from F .

It is a nontrivial basic fact of field theory that given a field and a (nontrivial)
polynomial in one variable with coefficients from this field, there is an extension of
this field with a root for that polynomial:
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Fact 1.8. If F is a field, n is a positive natural number, a0, a1, . . . , an are elements
of F with an 6= 0, and τ(x, a0, a1, . . . , an) = a0 + a1x+ . . .+ anx

n is a one variable
polynomial with coefficients from F , then there exists a field F ′ such F is a subfield
of F ′ and F ′ |= (∃x)(τ(x, a0, . . . , an) = 0).

We give elements that are roots of polynomials a name:

Definition 1.9. If F is a field and X is a subset of F , we say that an element a ∈ F
is algebraic over X if there exists a0, . . . , an ∈ X and a term τ(x, a0, . . . , an) such

that F |= (∃x)(τ(x, a0, . . . , an) 6= 0 ∧ τ(a, a0, . . . , an) = 0). We write aclF (X) (the
algebraic closure of X inside F ) for the set of all elements of F that are algebraic
over X. If a is not algebraic over X, we say that it is transcendental over X.

For example, working inside R,
√

2 is algebraic over Q, but e is transcendental over
Q. It turns out that, under some conditions, the algebraic closure of a set X is
itself a field. However we postpone proving this, as it will be easier to do once we
have developed some tools. For now, we will only use the following property, which
is an assignment problem:

Exercise 1.10. Let F be a field and X a subset of F . Then | aclF (X)| ≤ |X|+ℵ0.

It is often useful to consider fields generated by given elements:

Definition 1.11. Given a field F and X ⊆ F , we let 〈X〉 = 〈X〉F be the smallest
subfield of F containing X: it is the intersection of all subfields of F containing
X – alternatively, it is the substructure obtained when closing X under inverses,
addition, and multiplications (also adding 0 and 1). For F0 a subfield of F and
a ∈ F , we let F0(a) = (F0(a))F denote 〈F0 ∪ {a}〉F .

For example, Q = 〈∅〉, and C = R(i).

The following facts are fundamental (see any abstract algebra textbook for the
proof):

Fact 1.12. If F is a field, F0 is a finite subfield of F , and a ∈ F is algebraic over
F0, then F0(a) is finite.

Fact 1.13. Assume F is a field and F1, F2 are extensions of F . Assume a ∈ F1

and b ∈ F2. If one of the conditions below hold, then there exists an isomorphism
f : F (a)F1 ∼= F (b)F2 such that f fixes F and f(a) = b.

(1) a and b are transcendental over F .
(2) There exists a nonzero one variable polynomial τ(x, a0, . . . , an) with coeffi-

cients from F such that (in field-theoretic terms, a and b are algebraic over
F and have the same minimal polynomial):
(a) a is a root of τ and τ is of minimal degree with this property.
(b) b is a root of τ , and τ is of minimal degree with this property.

2. Algebraically closed fields

Fields where every polynomial has a root are given a name:



MATH 141A: INTRODUCTION TO THE MODEL THEORY OF FIELDS 5

Definition 2.1. The set of axioms of algebraically closed fields, ACF is the set:

ACF = AF∪{(∀y0 . . . yn∃x)(yn = 0 ∨ y0 + y1x+ . . .+ ynx
n = 0) | n > 0}

An algebraically closed field is a model of ACF. We also define for p a prime or
zero, ACFp = ACF∪AFp.

For example, neither Q nor R are algebraically closed (both are missing a root of
x2 + 1). The field Fp is also not algebraically closed. In fact:

Lemma 2.2. Any algebraically closed field is infinite.

Proof. Let F be a finite field. Say F = {a1, . . . , an}. Then the polynomial (x −
a1)(x− a2) . . . (x− an) + 1 has no roots in F . �

The fundamental theorem of algebra says that C is algebraically closed. This is,
however, not needed if we are just interested in building some algebraically closed
field:

Theorem 2.3. Any field has an algebraically closed extension.

Proof. Iterate Fact 1.8. You will have to give the details in an assignment problem.
�

Note that Theorem 2.3 shows in particular that ACFp is consistent for all p. We
will see that it is also complete. This is especially interesting because there is a
connection between AFp and AF0:

Lemma 2.4. Let A be a set of sentences and let φ be a sentence. If A∪AF0 |= φ,
then A ∪AFp |= φ for all sufficiently large primes p (that is, there exists a natural
number n such that A ∪AFp |= φ for all primes p ≥ n).

Proof. Assume that A∪AF0 |= φ. Then (for example by the completeness theorem
and finite character of proofs), there exists a finite A0 ⊆ A such that A0 |= φ. Thus
there exists a natural number n such that A0 is a subset of A ∪ AF∪{m 6= 0 |
1 ≤ m < n}. Take a prime p ≥ n. Then A0 ⊆ A ∪ AFp, so it follows that also
A ∪AFp |= φ. �

Theorem 2.5 (Transferring statements across characteristics). Let A be a set of
sentences such that A ∪ AF0 is complete, and let φ be a sentence. The following
are equivalent:

(1) A ∪AF0 |= φ.
(2) A ∪AFp |= φ for all sufficiently large primes p.
(3) A ∪AFp |= φ for infinitely-many primes p.

Proof. IfA∪AF0 |= φ, thenA∪AFp |= φ for all sufficiently-large primes p by Lemma
2.4. If A∪AFp |= φ for all sufficiently-large primes p, then trivially A∪AFp |= φ for
infinitely-many primes p. Now if A∪AFp |= φ for infinitely-many primes p, assume
for a contradiction that A∪AF0 6|= φ. Since A∪AF0 is complete, A∪AF0 |= ¬φ. By
Lemma 2.4, A∪AFp |= ¬φ for all sufficiently-large primes p. This is a contradiction
to the hypothesis that A ∪AFp |= φ for infinitely-many primes p. �
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Applying Theorem 2.5 to A = ACF, we will get (once we have proven that ACF0

is complete) that to prove a statement about ACF0, it is necessary and sufficient
to prove it for infinitely-many non-zero characteristics!

3. Completeness of ACFp

Earlier in the class, we proved completeness (for example of the theory of non-
empty dense chains without endpoints) using back and forth systems. Since we are
working in a signature with function symbols, we have to generalize the definitions
a little bit and revisit Fräıssé’s theorem.

Definition 3.1. Assume σ is a signature, and assume M and N are σ-structures.

(1) A local isomorphism from M to N is a function s from a finite subset of the
universe of M to a finite subset of the universe of N satisfying the following
property: for any quantifier free formula φ(x1, . . . , xn) and any a1, . . . , an ∈
dom(s), M |= φ(a1, . . . , an) if and only if N |= φ(s(a1), . . . , s(an)).

(2) For an ordinal α, define inductively the notion of an α-isomorphism from
M to N :
(a) A 0-isomorphism is just a local isomorphism.
(b) An (α+ 1)-isomorphism is a local isomorphism s such that:

(i) (Forth) For any a in the universe of M , there exists b in the
universe of N such that s ∪ {(a, b)} is an α-isomorphism.

(ii) (Back) For any b in the universe of N , there exists a in the
universe of M such that s ∪ {(a, b)} is an α-isomorphism.

(c) For α limit, an α-isomorphism is a map that is a β-isomorphism for
all β < α.

An∞-isomorphism is a function that is an α-isomorphism for all ordinals
α.

(3) For tuples ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) of elements from the uni-
verse of M and N respectively, we write (M, ā) ∼α (N, b̄) if {(ai, bi) |
1 ≤ i ≤ n} is an α-isomorphism from M to N . We write M ∼α N if
(M, 〈〉) ∼α (N, 〈〉) (i.e. the tuples are empty). Equivalently, M ∼α N if the
empty map is an α-isomorphism from M to N . In this case we say that M
and N are α-equivalent.

(4) A local isomorphism s from M to N is called p-elementary if it preserves
formulas up to quantifier rank p. That is, for any formula φ(x1, . . . , xn) of
quantifier rank at most p, and any a1, . . . , an ∈ dom(s), M |= φ(a1, . . . , an)
if and only if N |= φ(s(a1), . . . , s(an)). We call s elementary if it is p-
elementary for all p < ω, i.e. it preserves all formulas.

Only one direction of Fräıssé’s theorem generalizes (the problem is that with func-
tion symbols, or with infinitely-many symbols in the signature, there can be infinitely-
many non-equivalent formulas of a given quantifier rank; see the discussion in
Poizat). Fortunately, this is the direction that is interesting to prove complete-
ness.

Theorem 3.2 (Fräıssé’s theorem). Assume p < ω and M and N σ-structures. If s
is a p-isomorphism, then s is p-elementary. In particular, if M ∼ω N , then M and
N are elementarily equivalent.
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Proof. Similar to the proof of Fräıssé’s theorem for a single relation. �

For fields, the following quickly follows from the fact that local isomorphisms pre-
serve quantifier-free formulas:

Exercise 3.3. Assume E and F are fields, s is a local isomorphism from E to F ,
E0 = 〈dom(s)〉 is the subfield of E generated by dom(s), and F0 = 〈im(s)〉 is the
subfield of F generated by im(s). Then s extends to an isomorphism f : E0

∼= F0.

Note that this shows in particular that if two fields are 0-equivalent then they have
the same characteristic. For algebraically closed fields, we have the following very
strong result:

Lemma 3.4. Any local isomorphism between two uncountable algebraically closed
fields is an ∞-isomorphism.

Proof. Assume E and F are uncountable algebraically closed fields. We prove by
induction on α that any local isomorphism from E to F is a local isomorphism.
For α = 0, this is the definition of a 0-isomorphism, and for α limit this is also
immediate. Assume now that α = β+1, and we know that every local isomorphism
from F1 to F2 is a β-isomorphism.

Let s be a local isomorphism from E to F . Let E0 be the subfield of E generated
by dom(s). By (for example) the downward Löwenheim-Skolem theorem, E0 is
countable. Let F0 be the subfield generated by im(s). Exercise 3.3 implies that s
extends to an isomorphism f : E0

∼= F0. We prove the forth condition (as usual,
the proof of the back condition will be completely similar). Let a ∈ E. There are
three cases:

• If a ∈ E0, then t = s ∪ {a, f(a)} is a local isomorphism, and so by the
induction hypothesis a β-isomorphism.
• a is transcendental over E0. Then since F0 is countable, acl(F0) is also

countable (Exercise 1.10). By assumption, F is uncountable, so there must
exist b ∈ F\ acl(F0). Such a b must by definition be transcendental. By
Fact 1.13, f extends to an isomorphism g : F (a) ∼= F (b). This shows
in particular that t = s ∪ {a, b} preserves quantifier-free formula. By the
induction hypothesis, t is a β-isomorphism so we are done.
• a is algebraic over E0 but not in E0. Then there exists a polynomial
τ(x, a1, . . . , an) with coefficients a1, . . . , an in E0 such that τ(a, a1, . . . , an) =
0. If τ(x, a1, . . . , an) has a root c in E0, we can divide τ by (x− c) and get
a polynomial of lower degree which still has a as a root. So assume that τ
has minimal degree and has no root in E0. Since F is algebraically closed,
the polynomial τ(x, s(a1), . . . , s(an)) has a root b in F . By Fact 1.13, f
extends to an isomorphism g : F (a) ∼= F (b). As before, this shows that
s ∪ {(a, b)} is the desired β-isomorphism extending s.

�

Without the hypothesis of uncountability, we can still conclude:

Theorem 3.5. Any local isomorphism between two algebraically closed fields is
elementary.
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Proof. Assume E0 and F0 are algebraically closed fields and assume that s is a
local isomorphism from E0 to F0. By Lemma 2.2, E0 and F0 are infinite. By an
assignment problem, this means that E0 and F0 have uncountable proper elemen-
tary extensions E and F respectively (these will still be algebraically closed fields
by elementarity). In particular, s will also be a local isomorphism from E to F .
Thus s will be an ∞-isomorphism from E to F by Lemma 3.4. By Fräıssé’s the-
orem, s will be an elementary local isomorphism from E to F . Since E0 and F0

are elementary substructures of E and F respectively, s is also an elementary local
isomorphism from E0 to F0. �

We deduce:

Corollary 3.6. For p a prime or zero, ACFp is complete.

Proof. Fix p a prime or zero. Let E and F be two models of ACFp. By assump-
tion, E and F have the same characteristic. Therefore their prime subfields are
isomorphic, so the empty map is a local isomorphism from E to F . By Theorem
3.5, the empty map is an elementary local isomorphism from E to F , so they must
be elementarily equivalent. �

Corollary 3.7. Assume φ is a sentence in the language of σf . The following are
equivalent:

(1) C |= φ.
(2) ACF0 |= φ.
(3) ACFp |= φ for all sufficiently large primes p.
(4) ACFp |= φ for infinitely-many primes p.

Proof. By the fundamental theorem of algebra, the complex numbers are alge-
braically closed, hence a model of ACF0. Thus the equivalence between C |= φ
and ACF0 |= φ follows from the fact that ACF0 is complete. The rest follows from
Theorem 2.5 applied to A = ACF. �

The equivalence between the first two conditions in Corollary 3.7 is sometimes called
the Lefschetz principle: if a statement (that can be formulated as a sentence in the
language of σf ) can be proven for the complex numbers, it automatically holds for
any other algebraically closed field of characteristic zero. This is quite powerful, as
it allows one to use techniques from complex analysis or topology to prove certain
results of algebraic geometry over any algebraically closed field of characteristic
zero.

4. Quantifier elimination for ACFp

Recall:

Definition 4.1. A set A of sentences has quantifier elimination if for every positive
natural number n and every formula ψ(x1, . . . , xn), there exists a quantifier-free
formula φ(x1, . . . , xn) such that A |= (∀x1 . . . ∀xn)(ψ ↔ φ).



MATH 141A: INTRODUCTION TO THE MODEL THEORY OF FIELDS 9

We have seen for example that the theory of non-empty dense chains without end-
points has quantifier elimination. We could have deduced this directly from the
following powerful semantic characterization of quantifier elimination (Theorem
5.3 in Poizat).

Theorem 4.2 (Semantic characterization of quantifier elimination). A set of sen-
tences A has quantifier elimination if and only if any local isomorphism between
two models of A is elementary.

Proof. IfA has quantifier elimination, then (since local isomorphism preserve quantifier-
free formulas by definition), any local isomorphism between two models of A is
elementary. Now let us check the converse. Assume that any local isomorphism
between two models of A is elementary. Let n be a positive natural number, and let
ψ(x1, . . . , xn) be a formula. Let x̄ = (x1, . . . , xn), and let us abbreviate ∀x1 . . . ∀xn
by ∀x̄.

Consider the set Γ of quantifier-free sentences φ(x̄) such that A |= (∀x̄)(ψ(x̄) →
φ(x̄)). Add new constant symbols c1, . . . , cn and let c̄ = (c1, . . . , cn). For a formula
φ(x̄), we write φ(c̄) for the formula φ where x̄ has been substituted by c̄ everywhere.
Similarly, let Γ(c̄) denote the set of formulas φ(c̄), where φ(x̄) is in Γ. We will prove:

Claim: A ∪ Γ(c̄) |= ψ(c̄).

Assuming this claim, we have by completeness that there exists a finite Γ0 ⊆ Γ
such that A ∪ Γ0(c̄) |= ψ(c̄). Write Γ0 = {φ1, . . . , φm}. Then by definition A |=
(∀x̄)(ψ ↔ (φ1∧ . . .∧φm)), so φ = φ1∧ . . .∧φm is the desired quantifier-free formula.

Proof of Claim: Suppose not. Then there is a model M of A∪Γ(c̄)∪{¬ψ(c̄)}. Let:

Γ′ = {φ(x̄) | φ is quantifier-free,M |= φ(c̄M )}

By assumption, Γ ⊆ Γ′ and M |= Γ′(c̄). We have that A ∪ Γ′(c̄) ∪ {ψ(c̄)} is
consistent. Otherwise, there exists a finite Γ′0 ⊆ Γ such that A ∪ Γ′0(c̄) ∪ {ψ(c̄)} is
inconsistent, so writing Γ′0 = {φ1, . . . , φm}, we have that:

A |= (∀x̄)

 ∧
1≤i≤m

φi → ¬ψ(x̄)


The contrapositive is:

A |= (∀x̄)

ψ(x̄)→
∨

1≤i≤m

¬φi


But then

∨
1≤i≤m ¬φi ∈ Γ by definition of Γ, and so for some i, M |= ¬φi(c̄). This

implies that ¬φi ∈ Γ′. But we already had that φi ∈ Γ′0 ⊆ Γ′, so M |= φ(c̄),
contradiction.

Thus we have established that A ∪ Γ′(c̄) ∪ {ψ(c̄)} is consistent. Let N be a model
of this set of sentences. Then M and N are both models of A ∪ Γ′(c̄), and Γ′ is
a complete set of quantifier-free sentences, so the function sending the elements
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of c̄M to the corresponding elements of c̄N is a local isomorphism from M to N .
However it is not elementary because M |= ψ(c̄) but N |= ¬ψ(c̄). This contradiction
concludes the proof of the claim. †Claim

�

Corollary 4.3. ACF has quantifier elimination.

Proof. By Theorem 3.5, we can apply Theorem 4.2 with A = ACF. �

Geometrically, quantifier elimination for ACF means that if F is an algebraically
closed field and V ⊆ Fn is a set defined by a polynomial equation (a variety), then
its projection to Fm (whose definition will have a “∃”) will actually also be given
by a polynomial equation (i.e. will also be a variety). Another consequence is:

Corollary 4.4. If E and F are algebraically closed and E is a subfield of F , then
E is an elementary substructure of F .

Proof. Immediate from quantifier elimination and the definition of an elementary
substructure (note that subfields are substructures, and quantifier-free formulas are
preserved across substructures). �

5. Some applications

One quick application of quantifier elimination is:

Theorem 5.1. Assume F0 is a field, ā is a tuple from F0, and φ(x̄, ȳ) is a quantifier-
free formula. If there exists a field F1 such that F0 ⊆ F1 and F1 |= (∃x̄)(φ(x̄, ā),
then for all algebraically closed extensions F of F0, F |= (∃x̄)(φ(x̄, ā).

Proof. Let F be an algebraically closed extension of F0. Pick a quantifier-free
formula φ′(ȳ) equivalent to (∃x̄)(φ(x̄, ȳ) over ACF. Take an algebraically closed
extension F2 of F1. Then F2 |= (∃x̄)(φ(x̄, ā), so F2 |= φ′(ā), hence since φ′ is
quantifier-free, F0 |= φ′(ā) and F |= φ′(ā), so F |= (∃x̄)(φ(x̄, ā)). �

This can be used to prove Hilbert’s weak Nullstellensatz theorem. Indeed, a
quantifier-free formula φ as above can be thought as a system of finitely-many
equations and inequations, and Hilbert’s basis theorem says that any ideal in a
ring of polynomials with coefficients in a field is finitely-generated.

We can also deduce more properties of the algebraic closure:

Definition 5.2. For any structureM , any formula φ(x, y1, . . . , yn), and any a1, . . . , an
in the universe ofM , let φ(M,a1, . . . , an) denote the set {a ∈M |M |= φ(a, a1, . . . , an)}.

Lemma 5.3. Assume F is an algebraically closed field, φ(x, y1, . . . , yn) is a for-
mula and a1, . . . , an ∈ F . Then φ(F, a1, . . . , an) is either finite or cofinite (i.e. its
complement is finite).

Proof. By quantifier elimination, we can assume without loss of generality that φ
is quantifier-free. Writing φ in disjunctive normal form, we see that φ is equivalent
to

∨
i≤n

∧
j≤m ψi,j , where ψi,j is either an inequality or an equality. If we can

prove the result for each ψi,j we would be done (because finite and cofinite sets



MATH 141A: INTRODUCTION TO THE MODEL THEORY OF FIELDS 11

are closed under finite intersections and unions). Now if ψi,j is an equality, then it
says that two polynomials are equal, i.e. that their difference has a root. Since a
polynomial has only finitely-many roots, this has only finitely-many solutions (or
if the polynomials are trivial cofinitely-many). An inequality is the complement of
such a set, so the result follows. �

Lemma 5.4. Assume F is an algebraically closed field, X is a subset of F , and
a ∈ F . Then a ∈ aclF (X) if and only if there exists a formula ψ(x, y1, . . . , yn) and
a1, . . . , an ∈ X such that ψ(x, a1, . . . , an) has only finitely-many solutions in F , and
F |= ψ(a, a1, . . . , an).

Proof. If a ∈ aclF (X), then there is a polynomial τ(x, a1, . . . , an) witnessing it, and
the formula τ(x, a1, . . . , an) = 0 has only finitely-many solutions in F . Conversely,
assume that there exists a formula φ(x, y1, . . . , yn) and a1, . . . , an ∈ X such that
φ(F, a1, . . . , an) is finite and F |= φ(a, a1, . . . , an).

By quantifier elimination, we can assume without loss of generality that φ is
quantifier-free. Writing φ in disjunctive normal form, we see that φ is equivalent to∨
i

∧
j φi,j , where φi,j is either an inequality or an equality. We know that for some

i, for all j, F |= φi,j(a, a1, . . . , an). Since the set of solutions of an inequality must
be cofinite (or empty), there exists at least one j such that ψi,j is an equality. Thus
ψi,j is τ(x, y1, . . . , yn) = ρ(x, y1, . . . , yn), so (τ − ρ)(x, a1, . . . , an) gives the desired
polynomial that a is a root of. �

Before proving the next theorem, it will be convenient to introduce the following
abbreviations:

Definition 5.5. Let ρ(z, x1, . . . , xn) be a formula. For k a positive natural number,
we write (∃≥kz)(ρ) for the formula:

(∃z1 . . . ∃zk)

 ∧
1≤i<j≤k

zi 6= zj ∧
∧

1≤i≤k

ρ(zi, x1, . . . , xn)


Also let (∃≥0z)(ρ) stand for (∀z)(z = z). For k a natural number, write (∃>kz)(ρ)
for (∃≥k+1z)(ρ), (∃≤kz)(ρ) for ¬(∃>kz)(ρ), and (∃<kz)(ρ) for ¬(∃≥kz)(ρ). Finally,
write (∃=kz)(ρ) for (∃≥kz)(ρ) ∧ (∃≤kz)(ρ).

Theorem 5.6. Assume F is an algebraically closed field, X,Y are subsets of F ,
and a, b ∈ F . Then:

(1) (Monotonicity) X ⊆ acl(X).
(2) (Finite character) If a ∈ acl(X), then there exists a finite X0 ⊆ X such

that a ∈ acl(X0).
(3) (Transitivity) If X ⊆ acl(Y ), then acl(X) ⊆ acl(Y ).
(4) (Exchange) If a ∈ acl(X ∪ {b})\ acl(X), then b ∈ acl(X ∪ {a}).

Proof. For monotonicity, observe that if c ∈ X then c is a root of x−c, so c ∈ acl(X).
Finite character is trivial. For transitivity, assume X ⊆ acl(Y ), and let c ∈ acl(X).
By finite character, c ∈ acl(X0) for some finite X0 ⊆ X. Set X0 = {a1, . . . , an}.
By Lemma 5.4, there is a formula ψ(x, a1, . . . , an) with finitely-many solutions (say
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k many) which is satisfied by c. Since X0 ⊆ acl(Y ), by finite character there also
is a finite subset Y0 ⊆ Y such that X0 ⊆ acl(Y0). Set Y0 = {b1, . . . , bm}. For each
i ≤ n, there exists (Lemma 5.4) a formula φi(x, b1, . . . , bm) with only finitely-many
solutions which is satisfied by ai.

Now consider the formula φ(x, b1, . . . , bm) given by:

(∃y1 . . . ∃yn)

 ∧
1≤i≤n

φi(yi, b1, . . . , bm) ∧ (∃=kz)(ψ(z, y1, . . . , yn)) ∧ ψ(x, y1, . . . , yn)


It is easy to see that φ(x, b1, . . . , bm) has only finitely-many solutions (the quantifier-
free part has finitely-many solutions for each possible choice of y1, . . . , yn, and there
are only finitely-many such choices by definition of the φi’s), and is satisfied by c.
Thus by Lemma 5.4, b ∈ acl(Y0) ⊆ acl(Y ), as desired.

Finally, for exchange, assume a ∈ acl(X ∪{b})\ acl(X). Assume for simplicity that
X = ∅ (in the general case, carry the parameters through the proof). There exists
a formula φ(x, y) such that F |= φ(a, b) and φ(x, b) has n solutions, for n < ω.
Replacing φ(x, y) by φ(x, y) ∧ (∃=nz)(φ(z, y) if necessary, we can assume without
loss of generality that:

(∀x∀y)(φ(x, y)→ ∃=nzφ(z, y))

We claim that φ(a, y) has finitely-many solutions, which will imply the result. Sup-
pose not. Then φ(a, y) has cofinitely-many solutions, so ¬φ(a, y) has only finitely-
many solutions, say k-many. Now the set (∃≤ky)(¬φ(F, y)) cannot be finite, as it
contains a, and a /∈ acl(∅). Thus we can pick distinct a1, . . . , an+1 that are solutions
of (∃≤ky)(¬φ(x, y)). We then have by assumption that for each i ≤ n+ 1, φ(ai, F )
is cofinite, hence

⋂
1≤i≤n+1 φ(ai, F ) is not empty. For any b′ inside this set, we have

that (∃>nx)(φ(x, b′)), contradicting the choice of φ. �

Corollary 5.7. If F is an algebraically closed field and X ⊆ F , then aclF (X) is
the smallest algebraically closed subfield of F containing X.

Proof. Immediate from the transitivity property of acl. For example, to see that
if a ∈ acl(X) then a−1 ∈ acl(X), use that a−1 is a root of the polynomial xa − 1.
This is a polynomial with coefficient from acl(X), so a ∈ acl(acl(X)). However by
transitivity acl(acl(X)) ⊆ acl(X), as desired. �

Corollary 5.8. If E and F are algebraically closed fields, E0 is a subfield of E, F0

is a subfield of F , and f : E0
∼= F0 is an isomorphism, there exists an isomorphism

g : aclE(E0) ∼= aclF (F0) extending f .

Proof. Exercise – use Fact 1.13 repeatedly. �

Corollary 3.7 sometimes allows us to treat fields of characteristic zero as if they
were finite:
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Definition 5.9. Let F be a field and n be a positive natural number. A polynomial
mapping f from Fn → Fn is a function f : Fn → Fn for which there exists polyno-
mials τ1, τ2, . . . , τn in n variables such that f(a1, . . . , an) = (τ1(a1, . . . , an), . . . , τn(a1, . . . , an)).

Theorem 5.10 (Ax-Grothendieck theorem). Assume F is an algebraically closed
field, n is a positive natural number, and f : Fn → Fn is a polynomial map. If f
is injective, then f is surjective.

Proof. Let τ1, . . . , τn be the polynomials defining f . Let φ(x1, . . . , xn, y1, . . . , yn)
be the sentence

∧
1≤i≤n

yi = τi(x1, . . . , xn)

Let φinj be the sentence:

(∀x1 . . . ∀xn∀x′1 . . . ∀x′n∀y1 . . . ∀yn)((φ(x1, . . . , xn, y1, . . . , yn)∧φ(x′1, . . . , x
′
n, y1, . . . , yn))→

∧
1≤i≤n

xi = x′i)

and let φsurj be the sentence:

(∀y1 . . . ∀yn∃x1 . . . ∃xn)(φ(x1, . . . , xn, y1, . . . , yn)

Then a field F ′ will satisfy φinj if and only if the function defined by τ1, . . . , τn is
injective, and similarly for φsurj. Let ψ be the sentence φinj → φsurj. We will prove
that ACF |= ψ. By Corollary 3.7, it suffices to prove that ACFp |= ψ for every prime
p. Fix a prime p. Let K ′ be an algebraically closed field of characteristic p, and let

K = aclK
′
(∅). By Corollary 5.7, K is an algebraically closed field. Since ACFp is

complete, it suffices to see that K |= ψ. So assume that K |= φinj. We have to see
that the polynomial map defined by φ is surjective. So fix b̄ = (b1, . . . , bn) ∈ Kn.
We have to find ā = (a1, . . . , an) such that K |= φ(ā, b̄). We know that each
bi is algebraic over the empty set. Of course, the field generated by ∅ is just an
isomorphic copy of Fp which is finite so iterating Fact 1.12, there exists K0 a subfield
of K that is finite and contains b̄. Now the restriction g of the map defined by φ
to Kn

0 has codomain Kn
0 (because φ is a polynomial map and K0 is a subfield of

K), and g is injective. Since Kn
0 is finite, g is also surjective. Therefore we can find

ā ∈ Kn
0 such that g(ā) = b̄, as desired. �

6. Categoricity in fields and beyond

It is helpful to restate Theorem 5.6 in more general terms:

Definition 6.1. A pregeometry (often also called a matroid) on a set W is a
function cl : P(W )→ P(W ) satisfying the following properties. For any set X,Y ⊆
W and any a, b ∈W :

(1) (Monotonicity) X ⊆ cl(X).
(2) (Finite character) If a ∈ cl(X), then there exists a finite X0 ⊆ X such that

a ∈ cl(X0).
(3) (Transitivity) If X ⊆ cl(Y ), then cl(X) ⊆ cl(Y ).
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(4) (Exchange) If a ∈ cl(X ∪ {b})\ cl(X), then b ∈ cl(X ∪ {a}).

In these terms, Theorem 5.6 established that for any algebraically closed field F ,
acl was a pregeometry on F . Even more, we showed that anytime we have a σ-
structure M , where any definable set with parameters (that is a set of the form
φ(M,a1, . . . , an) for φ a formula and a1, . . . , an) is either finite or cofinite, then we

can define a closure operator clM (A) by looking at the set of elements of M that
are the solutions of a formula with only finitely-many solutions. Such a structure
M is called minimal. Lemma 5.3 established that algebraically closed fields are
minimal, but there are other such structures. For example, sets with no structure
are minimal. Vector spaces (say over Q, with a unary function symbol for multi-

plication by each rational) are also minimal (in this case, clM (A) is the linear span
of the set A – it is a good exercise to check the axioms of pregeometries directly).

Pregeometries are a setup where an abstract theory of independence (generaliz-
ing linear independence in vector spaces and algebraic independence in fields) is
possible.

Lemma 6.2 (Basic properties of pregeometries). Let (W, cl) be a pregeometry, let
X,Y ⊆W .

(1) If X ⊆ Y , then cl(X) ⊆ cl(Y ).
(2) (Idempotence) cl(cl(X)) = cl(X).
(3) | cl(X)| = |X|+ supX0⊆X,|X0|<ℵ0 | cl(X0)|.

Proof.

(1) Combine monotonicity and transitivity.
(2) Let Y = cl(X). By monotonicity, Y ⊆ cl(Y ). Now Y = cl(X) ⊆ cl(X), so

by transitivity, cl(Y ) ⊆ cl(X) = Y . Thus Y = cl(Y ).
(3) Exercise.

�

In any pregeometry, one can define a notion of basis:

Definition 6.3. Let (W, cl) be a pregeometry. A set I ⊆W is called independent if
for all i ∈ I, i /∈ cl(I\{i}). A basis is a maximal independent set (i.e. an independent
set with no proper independent extension).

Using transfinite induction, it is easy to see that any independent set extends to
a basis. In particular (starting with the empty independent set), any pregeometry
has a basis. Moreover:

Lemma 6.4. Assume that (W, cl) is a pregeometry. If I is an independent set and
a ∈ W , then I ∪ {a} is independent if and only if a /∈ cl(I). In particular, if I is a
basis then cl(I) = W .

Proof. If a ∈ cl(I), then a ∈ cl((I ∪ {a}) − {a}), so I ∪ {a} is not independent.
Conversely, assume that a /∈ cl(I). Let J = I ∪ {a}. Pick j ∈ J . If j = a, then by
definition a /∈ cl(J\{j}) = cl(I). Suppose now that j 6= a, i.e. j ∈ I, and suppose
that j ∈ cl(J − {j}). By the assumption that I is independent, j /∈ cl(I − {j}) =
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cl((J − {j})− {a}). Setting X = I − {j}, we have that j ∈ cl(X ∪ {a})\ cl(X), so
by exchange a ∈ cl(X ∪ {j}) = cl(I), a contradiction. �

More interesting, just like in vector spaces, any two bases have the same cardinality:

Theorem 6.5. In a pregeometry, any two bases have the same cardinality.

To prove this, we need a variation on the exchange property:

Lemma 6.6. Assume (W, cl) is a pregeometry and A and B are bases. For any
a ∈ A, there exists b ∈ B such that (A− {a}) ∪ {b} is a basis.

Proof. We know thatW = cl(A) = cl(B). Also, a /∈ cl(A−{a}), so cl(A−{a}) 6= W .
By transitivity, B 6⊆ cl(A − {a}), so there exists b ∈ B such that b /∈ cl(A − {a}).
Let I = (A − {a}) ∪ {b}. By Lemma 6.4, I is independent. It remains to see that
W = cl(I). Write A0 = A− {a}.
We know that b ∈ cl(A) = cl(A0 ∪ {a}) = W , but b /∈ cl(A0). By exchange,
a ∈ cl(A0∪{b}) = cl(I). By transitivity, this means that W = cl(A0∪{a}) ⊆ cl(I),
so cl(I) = W . �

We now start out by proving Theorem 6.5 for finite bases.

Lemma 6.7. Assume (W, cl) is a pregeometry and A and B are bases. If A is finite
and |A| ≤ |B|, then |A| = |B|.

Proof. Set n = |A|. Write A = {ai : i < n}. We build (bi)i<n elements of B such
that for all i ≤ n, the set:

Ci = {aj : i ≤ j < n} ∪ {bj : j < i}

is a basis.

The construction is by induction on i. Fix i < n and assume we are given (bj)j<i
and we know that Ci is a basis (when i = 0, C0 = A so it is a basis by assumption).
Apply Lemma 6.6 to Ci, B, and ai to obtain bi ∈ B such that Ci+1 = (Ci−{ai})∪
{bi} is a basis.

When we are done, the set Cn = {bi : i < n} is a basis that is a subset of B. Since
B is itself a basis, we must have that Cn = B, so |B| ≤ n = |A|, as desired. �

Proof of Theorem 6.5. Assume (W, cl) is a pregeometry and fix bases A and B.
Without loss of generality, |A| ≤ |B|. If A is finite, we are done so assume that
A, and hence B, are infinite. Assume also for a contradiction that |A| < |B|.
Since cl(A) = W = cl(B), we have in particular that (finite character) for each
b ∈ B, there exists a finite Ab ⊆ A such that b ∈ cl(Ab). There are only |A|-many
finite subsets of A (since A is infinite), so by the (infinite) pigeonhole principle,
there exists an infinite B′ ⊆ B and a finite A0 ⊆ A such that Ab = A0 for all
b ∈ B′. In particular, B′ ⊆ cl(A0). Now let W0 = cl(A0), and consider the
pregeometry induced by cl on W0. In this pregeometry, A0 is a finite basis, but
B′ is an infinite independent set, which can be extended to an infinite basis. This
contradicts Lemma 6.7. �
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Theorem 6.5 allows us to make the following definition:

Definition 6.8. The dimension of a pregeometry is the cardinality of its bases.

The relationship between dimension and cardinality is given by:

Lemma 6.9. If (W, cl) is a pregeometry where W is uncountable and the closure
of any finite set is countable, then (W, cl) has dimension |W |.

Proof. Exercise. �

For algebraically closed fields, the dimension of the pregeometry induced by alge-
braic closure is called the transcendence degree. It uniquely determines the field:

Theorem 6.10. Any two algebraically closed fields with the same characteristic
and the same transcendence degree are isomorphic.

Proof. Let F and K be algebraically closed fields of transcendence degree λ. Let
B and C be bases for F and K respectively. They both have dimension λ, so there
is a bijection f : B → C. We know that F and K have the same characteristic,
so there exists an isomorphism g : F0

∼= K0 between their prime subfields. By
Corollary 5.8, g extends to an isomorphism g0 : acl(F0) ∼= acl(K0). Now take b ∈ B
(note that acl(F0) = acl(∅), so does not contain B). By Fact 1.13, g0 extends to
g1 : acl(F0)(b) ∼= acl(K0)(f(b)). We can then extend g1 again to the algebraic
closure of each field. Continuing in this way (into the transfinite, taking unions at
limits), we can build an isomorphism gλ : acl(B) ∼= acl(C). But acl(B) = F and
acl(C) = K, so we are done. �

Corollary 6.11. Let λ be an uncountable cardinal and let F and K be two alge-
braically closed fields of cardinality λ with the same characteristic. Then F ∼= K.
In other words, for any p prime or zero ACFp is categorical in every uncountable
cardinal.

Proof. We know that (F, acl) and (K, acl) are pregeometries. Moreover, the al-
gebraic closure of a countable set is countable by Exercise 1.10. By Lemma 6.9
it follows that F and K have transcendence degree λ. By the previous theorem,
F ∼= K. �

Corollary 6.12. Any algebraically closed field of characteristic zero and cardinality
2ℵ0 is isomorphic to C.

We emphasize that many of those results could have been derived just using field
theory. Here, we tried to minimize the reliance on field theory and instead use gen-
eral logical methods. Such methods can be applied to other objects. For example,
there is a well-developed theory of differential fields, where we also add an operator
∂ to the field, assumed to have some of the properties of the derivative (we think of
the objects of the field as differentiable functions). The properties of differentially
closed fields (roughly, differential fields where any differential equation that can
possibly have a solution has a solution) are then key. See Poizat’s book for more
on differential fields.

Pushing the logical methods further, one can also prove the following deep “con-
verse” to categoricity of ACF0 in uncountable cardinals:
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Theorem 6.13 (Morley’s categoricity theorem). If a countable theory is categorical
in some uncountable cardinal, then it is categorical in all uncountable cardinals.

Part of one proof of Morley’s theorem uses minimal formulas to prove categoricity in
a way similar to what has been done in these notes. Still, a lot of the model-theoretic
ideas of the proof have not been touched on here. The philosophical content of the
theorem is that if a theory is categorical in some uncountable cardinal, then it must
be for a “reason”, namely the existence of a notion of independence, and hence
of a notion of dimension, and this reason is strong-enough to imply categoricity
everywhere as well. Exploring the ideas, ramifications, and generalizations of the
proof of Morley’s categoricity theorem is an important goal of modern model theory.
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