
MATH 141A: COMPACTNESS AND GRAPH COLORINGS

SEBASTIEN VASEY

We explore some connections between logic and combinatorics. First, an elementary
principle: if we put n pigeons into k boxes and k < n, then one box will contain
more than one pigeon (in fact at least dnk e pigeons). There are infinite versions of
this that you will explore in the homework. Here, we consider Ramsey’s theorem:
a higher-dimensional generalization of the pigeonhole principle.

For a flavor of the statement, consider the following interesting fact: in a party
with six students, there is always a group of three that either all know or all do
not know each other (we assume knowledge is a symmetric irreflexive relation).
Ramsey’s theorem says that this is true more generally: for any size of group k,
there exists a (very big) n such that in any party with n students there will be
k students that either all know or all do not know each other (in the previous
example, n was 6 and k was 3).

First, some notation:

Definition 1. For a set X and m < ω, we write [X]m for the set of all subsets of
X of cardinality exactly m.

Definition 2. Given a function f : [X]m → Y , we call a subset X0 of X homoge-
neous for f if for any a, b ∈ [X0]m, f(a) = f(b).

Typically, we think of f as a coloring of the pairs (or more generally m-tuples) of
elements from X (where the coloring of a tuple does not depend on the order of
its elements). A homogeneous set is one where all possible m-tuples from that set
have the same color. In the example above, we were considering X to be the set
of students in a party, f({x, y}) = 1 if x and y know each other and f({x, y}) = 0
otherwise. Then a homogeneous set is a set of students that either all know or all
do not know each other.

Another way to think about this is that f colors the edges of a complete graph
with set of vertices X. Then a homogeneous set is a set of vertices all of whose
cross-edges have the same color.

One statement of the finite Ramsey theorem is1:

Theorem 3 (Finite Ramsey theorem). For any k < ω, there exists n < ω such
that for any function f : [n]2 → 2, there is a homogeneous set X ⊆ n of cardinality
k.

1A more general statement allows coloring larger sets (i.e. “hyperedges”) with more colors: for

any m < ω, any c < ω, and any k < ω, there exists n < ω such that for any function f : [n]m → c
there is a homogeneous set X ⊆ n of cardinality k. For simplicity, we will focus on two colors and

two dimensions.
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Said less formally, for any k < ω, there exists a big-enough n < ω such that any
edge coloring of the complete graph on n vertices contains a complete graph on k
vertices whose edges all have the same color.

Interestingly, the infinite version of Ramsey’s theorem is both easier to state and
easier to prove: in a party with infinitely-many students, there is an infinite group
of students all of whose either know or do not know each other. Said more formally:

Theorem 4 (Infinite Ramsey theorem). For any infinite set I and any f : [I]2 → 2,
there exists an infinite homogeneous set for f .

Proof. While not really necessary, we give a proof using ultrafilters to show how
they can make the combinatorics smoother. Fix U a nonprincipal ultrafilter on I.
For each x ∈ I and each c < 2, consider Nx,c = {y ∈ I − {x} | f({x, y}) = c},
the set of neighbors of x whose corresponding edge is given color c by f . Note
that Nx,0, Nx,1, {x} form a partition of I, so exactly one set must be in U , and
that set cannot be {x}, as U is not principal. Let cx < 2 be the unique number
such that Nx,cx ∈ U . In words, cx is the color of most outgoing edges of x. Now
{x ∈ I | cx = 0}, {x ∈ I | cx = 1} form a partition of ω, hence there is again a
unique c < 2 such that A = {x ∈ I | cx = c} ∈ U . In words, c is the color that
most outgoing edges of most vertices have. We build a sequence (xn)n<ω of distinct
elements of A by induction such that f({xn, xm}) = c for all m < n. This will be
enough, as then {xn : n < ω} is homogeneous for f .

Since U is a filter, A is not empty, so pick x0 ∈ A. Now given xn, let An =
A ∩

⋂
m≤nNxm,c. Note that An ∈ U , since U is closed under finite intersections.

Since U is not principal, we can pick xn+1 ∈ An − {xm | m ≤ n}. By definition of
An, f({xm, xn+1}) = c for all m < n+ 1, as desired. �

As a quick application, we obtain a short proof of the Bolzano-Weierstrass theorem:

Corollary 5. Any bounded sequence of real numbers has a convergent subse-
quence.

Proof. Let (an)n<ω be a bounded sequence of real numbers. We define a function
f : [ω]2 → 2 by (when n < m) f({n,m}) = 1 if an < am and f({n,m}) = 0
otherwise. By the infinite Ramsey theorem, there is an infinite homogeneous set X
for f . If the color on unordered pairs from X is 1, then for n < m in X, an < am.
If the color is 0 then for n < m in X, an ≥ am. Either way, (an)n∈X is a monotone
sequence and it is bounded by assumption, hence converges. �

Now we show that the infinite Ramsey theorem together with the compactness
theorem directly implies the finite Ramsey theorem. In fact, a strengthened version
of Ramsey’s theorem (which is harder to prove directly) also follows.

Theorem 6 (Strengthened finite Ramsey theorem). For any k < ω there exists
n < ω such that for any function f : [n]2 → 2, there is a homogeneous set X ⊆ n
of cardinality at least k with min(X) ≤ |X|.

Proof. Suppose not. Then there exists k < ω such that for all n < ω, there exists
f : [n]2 → 2 such that any set X ⊆ n of cardinality at least k with min(X) ≤ |X| is
not homogeneous for f . Work in the signature σ = {c0, c1, f} ∪ {di : i < ω}, where
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c0 and c1 are constant symbols, each di is a constant symbol, and f is a binary
function symbol. Consider the set A of axioms with the following sentences:

(1) c0 6= c1.
(2) di 6= dj , (for all i 6= j in ω).
(3) (∀x)(f(x) = c0 ∨ f(x) = c1).
(4) (∀x)(f(x, x) = c0) (the value of f at a repeated coordinate is irrelevant).
(5) (∀x∀y)(f(x, y) = f(y, x)).
(6) For each fixed finite X ⊆ ω, with |X| ≥ k and min(X) ≤ |X|, add the

sentence: ∨
i,i′,j,j′∈X,i 6=j,i′ 6=j′

f(di, dj) 6= f(di′ , dj′)

(that is, the set {dm | m ∈ X} is not homogeneous for f).

By our assumption on k, every finite subset of A is consistent. Therefore by the
compactness theorem also A is consistent. Let M |= A. Let D := {dMi | i < ω}.
By the infinite Ramsey theorem, there is an infinite homogeneous set X ⊆ D for
fM � D. Let m < ω be minimal such that dMm ∈ X. Since X is infinite, we can
pick a finite X0 ⊆ X with |X0| ≥ m + k. Then for any i 6= j, i′ 6= j′ all in X0,
fM (dMi , d

M
j ) = fM (dMi′ , d

M
j′ ), a contradiction to the last part of the definition of

A. �

Remark 7. By a result known as the Paris-Harrington theorem, the strong finite
Ramsey theorem is not a consequence of PA (to formalize it, one would need to
first code finite sets of natural numbers as single natural numbers). Intuitively, this
is because the function sending k < ω to the least n < ω satisfying the conclusion
of the strong Ramsey theorem grows so fast that PA cannot prove it is bounded (on
the other hand, the regular finite Ramsey theorem is a consequence of PA – for a
fixed k, one can bound the least n < ω satisfying its conclusion by an “elementary”

function, namely 22
k

). Thus the strong finite Ramsey theorem is an example of a
natural statement witnessing that PA is incomplete!

Instead of coloring edges of a complete graph, we may want to color vertices of
a (possibly incomplete) graph and ask that no edge links vertices with the same
color:

Definition 8. If G = (V,E) is a graph and k is a natural number, a k-coloring
of G is a function f : V → k such that for any (x, y) ∈ E, f(x) 6= f(y). We say
that G is k-colorable if there is a k-coloring of G. The coloring number of G is the
minimal k such that G is k-colorable.

The study of coloring number of finite graphs is an active part of combinatorics.
What about infinite graphs? Using the compactness theorem again, one can show
that it is enough to consider all the finite subgraphs (a subgraph of a graph (V,E)
is a graph (V0, E0) such that V0 ⊆ V and E0 ⊆ E)! You will prove this in your
homework.

Exercise 9 (De Bruijn–Erdős theorem). For a natural number k, a graph is k-
colorable if and only if all of its finite subgraphs are k-colorable.
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As a sample application, consider the Hadwiger-Nelson problem: define a graph
G = (V,E), where V = R2 and xEy if only if the Euclidean distance between x
and y is exactly one. The coloring number of the plane is defined to be the coloring
number of G.

What is the coloring number of the plane? While G is continuum-sized, and hence
may seem very complicated, by the De Bruijn-Erdős theorem, it is enough to figure
out the coloring number of any finite subgraph of G: any finite arrangement of
points in the plane, where there is an edge between two points if they are at distance
exactly one.

Until recently, all that was known was that the coloring number of the plane is at
most 7 (the plane can be covered by regular hexagons of diameters slightly less than
one, colored in a certain way), and at least 4 (there is a 10 vertices example called
the Moser spindle which cannot be 3-colored). Recently (last semester), Aubrey de
Grey, a biologist at MIT, used a clever construction (and the help of a computer!)
to find a subgraph of G with 1581 vertices which cannot be 4-colored. Thus the
coloring number of the plane is at least 5. It remains open whether the coloring
number of the plane is 5, 6, or 7... The wikipedia article2 on this problem has more
information, including some nice pictures.

2https://en.wikipedia.org/wiki/Hadwiger-Nelson_problem

https://en.wikipedia.org/wiki/Hadwiger-Nelson_problem

