MATH 141A: SKOLEM'S PARADOX

Recall Löwenheim's theorem (Theorem 2.5 in Poizat): any relation has a countable elementary restriction. Let's apply this to the membership relation in sets.

More precisely, let V be the class of all sets, and consider the binary relation R on V defined by xRy if and only if $x \in y$. By Löwenheim's theorem (it does not matter that V is not a set: the proof goes through), (V, R) has a countable elementary restriction $(V_0, (R \cap V_0 \times V_0))$. You can think of V_0 as a small model of set theory: it satisfies every single property you can think of about sets, but (as opposed to V which is not even a set) it is countable! How is that possible? Isn't "there exists uncountable sets" a property of sets? Let's backtrack a bit.

First note for example that many sets you know are in V_0 : for example, the empty set is the unique set x satisfying the formula $\forall y \neg r(y, x)$. Therefore it must be in V_0 , as V_0 is an elementary restriction of V. Similarly, any set that can be defined explicitly using a formula will be in V_0 . For example, ω is the unique set x so that $\emptyset \in x, y \in x$ implies $y \cup \{y\} \in x$, and for any other set x' satisfying these properties, $x \subseteq x'$. This can be readily translated into a formula. Similarly, \mathbb{R} , the set of real numbers, can be defined by a (pretty long) formula: starting with ω , construct the integers (for example as pairs (ω, ℓ) with $\ell = 1, 2$ – note that pairs can be coded as sets: (x, y) can be defined to be $\{\{x\}, \{x, y\}\}$), then the rationals e.g. as equivalence classes of pairs of integers, and finally the reals e.g. as Dedekind cuts of rationals or equivalence classes of Cauchy sequences of rationals.

We have just argued that $\mathbb{R} \in V_0$ and we know¹ that \mathbb{R} is uncountable. Note that $\mathbb{R} \cap V_0$ must be countable, as V_0 is countable. Thus V_0 has only countably-many reals. This may seem a little bit strange but now comes the real "paradox": There is a (again very long) sentence that expresses " \mathbb{R} is uncountable": just say that there is no surjection from ω onto \mathbb{R} . Since $V \models$ " \mathbb{R} is uncountable" and V_0 is an elementary restriction, it must satisfy this too: $V_0 \models$ " \mathbb{R} is uncountable". How can V_0 think there are uncountably-many reals if it has only countably-many?

The resolution is that V_0 is "wrong" about countability: while indeed there is a surjection s from ω onto $\mathbb{R} \cap V_0$, and $s \in V$, we will not have that $s \in V_0$. This does not contradict elementarity, as $\mathbb{R} \cap V_0$ is not a member of V_0 and it turns out that it is impossible to define s using only parameters from V_0 .

¹One could replace \mathbb{R} by $\mathcal{P}(\omega)$ or any other definable uncountable set.