THE ERDÖS-KO-RADO THEOREM

SEBASTIEN VASEY

We present one more application of the probabilistic method.
Definition. Let X be a set. A family \mathcal{F} of subsets of X is intersecting if $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{F}$.

If X has n elements, how big can an intersecting family be? Suppose in particular that we require the members of \mathcal{F} to all have size k. One simple construction is to fix $a \in X$ and let \mathcal{F} be the set of all k-elements subsets of X that contain a. Then \mathcal{F} is clearly intersecting, and has size $\binom{n-1}{k-1}$. The next result shows that we cannot do better:

Theorem (Erdős-Ko-Rado). Let X be an n-element set and let k be a natural number such that $2 k \leq n$. If \mathcal{F} is an intersecting family of k-element subsets of X, then:

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Proof. Clearly, it does not matter what the elements of X actually are, so assume without loss of generality that $X=\{0,1, \ldots, n-1\}$. Let \mathcal{F} be an intersecting family of k-element subsets of X. For a fixed $i \in X$, let $A_{i}:=\{i, i+1, \ldots, i+k-1\}$ (where addition is done modulo n). This is about the simplest type of subset of X that one can think of. How many subsets of this form can there be in an intersecting family? At most k : since $2 k \leq n, A_{i} \cap A_{i+k}=\emptyset$ for each $i \in X$. So assume that $A_{i} \in \mathcal{F}$, and let $k_{1}<k$ be maximal such that $A_{i-k_{1}}$ is in \mathcal{F}, and similarly let $k_{2}<k$ be maximal such that $A_{i+k_{2}}$ is in \mathcal{F}. We then have that $k_{2}-k_{1}<k$, and $A_{j} \in \mathcal{F}$ implies that $j \in\left\{i-k_{1}, i-k_{1}+1, \ldots, i+k_{2}\right\}$.

Next, observe that any k-element subset of X can be obtained by applying a permutation of X to some A_{i}. Thus suppose we take a random permutation π of X and also independently choose a random $i \in X$. What is the probability p that the set $\pi\left(A_{i}\right):=\left\{\pi(a) \mid a \in A_{i}\right\}$ is in \mathcal{F} ? We can estimate it in two different ways. On the one hand, we have just seen that for a fixed π, there are at most k out of n possible values of i so that $\pi\left(A_{i}\right) \in \mathcal{F}$. Thus $p \leq \frac{k}{n}$. On the other hand it is also possible to compute p directly: it is just the number of sets in \mathcal{F} divided by the total number of k-element subsets: $p=\frac{|\mathcal{F}|}{\binom{n}{k}}$.

Putting these two estimates together, we get that $\frac{|\mathcal{F}|}{\binom{n}{k}} \leq \frac{k}{n}$, so $|\mathcal{F}| \leq \frac{k}{n}\binom{n}{k}=$ $\binom{n-1}{k-1}$, as desired.

