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Recall the famous “last theorem” of Fermat: for any natural number k ≥ 3,
the equation xk + yk = zk does not have any solution in the natural numbers (by
contrast, when k = 2 there are many solutions – for example 32 + 42 = 52). Fermat
wrote in the margin of his notebook that he knew a proof but that the margin was
too small... It was only more than 350 years later, in 1994, that Andrew Wiles
found a very long and complex proof that Fermat couldn’t possibly have known.

The goal of these notes is to prove that Fermat’s last theorem is not true if we
do arithmetic modulo a prime. This is a simple application of Ramsey theory:

Theorem 1 (Schur). For any natural number k, there exists a natural number
n such that for any prime number p bigger than n, there exists natural numbers
x, y, z so that xk + yk = zk modulo p.

For example, if k = 4, then modulo p = 7, we have 14 + 14 = 24. In general,
for any fixed exponent k, as long as the prime p is “high-enough” (bigger than a
fixed threshold n, depending on k), then we can find natural numbers x, y, z so that
xk + yk = zk modulo p.

In order to prove the theorem, we first recall Ramsey’s theorem:

Theorem 2 (Ramsey’s theorem, graph version). For any natural number k, there
exists a natural number n such that any graph with at least n vertices contains a
k-clique or a k-independent set.

Instead of thinking in terms of k-cliques or k-independent sets, that is in terms
of edges being or not being present, we can think instead of coloring the edges
of complete graph on n vertices either blue or red. Ramsey’s theorem then tells
us we can find a monochromatic k-clique. This statement has the advantage of
generalizing to a higher number of colors.

Theorem 3 (Ramsey’s theorem, colorful version). For any natural number k, and
any number c of colors, there exists a natural number n such that for any coloring
of the edges of a complete graph on at least n vertices with c colors, there is a
monochromatic k-clique.

Proof. We proceed by induction on the number c of colors. When c = 2, this is just
the usual Ramsey theorem. Assume now that c ≥ 2 and the result is true for c. Let
rc(k) denote the least natural number n satisfying the conclusion of the theorem.
We claim that rc+1(k) ≤ n := r2(rc(k)). Indeed, let f : E(Kn)→ {1, . . . , c+ 1} be
a coloring. Define an auxiliary coloring g : E(Kn) → {1, 2} as follows: g(e) = 1 if
f(e) = 1, and g(e) = 2 otherwise. That is g only distinguishes the color 1 from the
other c colors. By definition of n, there is a monochromatic clique K ⊆ V (Kn) of
size rc(k). If the color of K is 1, then we are done already: any k-element subset
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of K gives the desired monochromatic clique for f . If the color of K is 2, then we
know that f restricted to the edges of K takes value in {2, 3, . . . , c + 1}, which is
only c colors. Since K has size rc(k), we can then find a monochromatic k-clique
in K. �

The next application is interesting of its own, and will be the key result used in
the proof of Theorem 1.

Theorem 4 (Schur’s theorem). For any number c of colors there exists a natural
number n such that for any coloring of the numbers 1, 2, . . . , n with c colors, we
can find natural numbers x, y, z ≤ n of the same color so that x+ y = z.

For example, let us say c = 2 and we color the numbers 1, 2, 3, 4 as follows: 1 is
blue, 2 is red (otherwise we can take x = y = 1, z = 2), 3 is blue, 4 is blue. Then
we can take x = 1, y = 3, z = 4. This suggest (but is not a proof) that perhaps
taking n = 4 would work in case c = 2. It may be fun for you to try to figure out
whether n = 4 works in general or how big n has to be.

Proof of Theorem 4. Let n be as given by Ramsey’s theorem for k = 3 and c
colors. Let f : {1, . . . , n} → {1, . . . , c} be a coloring. Define a coloring g :
E(Kn) → {1, . . . , c} by g({a, b}) = f(|b − a|) (we think of the vertices of Kn

as being 1, 2, . . . , n). By the assumption on n, we can find a g-monochromatic tri-
angle with vertices a < b < c. Let x := b− a, y := c− b and z := c− a. Then it is
clear that x+ y = z and by definition of g, x, y, z all have the same f -color. �

Proof of Theorem 1. We fix k, and let n be as given by Schur’s theorem for k colors.
Let p be a prime bigger than n. We will use the following facts from algebra:

(1) The numbers {1, . . . , p − 1} form a group under multiplication modulo p.
This means in particular that for every natural number a < p, there is
b < p so that ab = 1 modulo p. We call b an inverse of a modulo p. You
have already proven this fact in assignment 3.5c: you showed that p divides
ap− a, which is just a(ap−1− 1). Since by assumption p does not divide a,
it must divide ap−1 − 1, and hence ap−1 = 1 modulo p. Thus one can take
b = ap−2.

(2) This group is cyclic: there is a natural number g < p (called a generator)
such that {1, 2, . . . , p− 1} = {g1, g2, . . . , gp−1}. In particular every b < p is
a power of g (of course modulo p). This is a little bit harder to prove, and
require some algebra (at the level of Math-122). For each a ∈ {1, 2, . . . , p−
1}, the order of a is the least natural number d such that ad = 1. It is
a basic fact of group theory that the order of an element must divide the
size of the group, here p − 1. Now for a fixed d dividing p − 1, how many
elements of order exactly d are there? Well take any a < p of order d.
We have that any element of order d must be among a1, a2, . . . , ad−1, since
these are distinct solutions to the polynomial xd − 1 = 0, and this has at
most d roots (here we are working in the field {0, 1, . . . , p−1} with addition
and multiplication modulo p, but the fact that a polynomial of degree d
has at most d roots is true for any field). Suppose now that ai has order
d. Then i and d must be coprime (if not, i = `u, d = `u′ for some common

factor ` ≥ 2, and we then have that (ai)u
′

= 1, hence ai has order at most
u′). Thus there are at most φ(d)-many elements of order d (φ(d) counts
how many numbers below d are coprime to d).



SCHUR’S THEOREM AND FERMAT’S LAST THEOREM MODULO A PRIME 3

Let us count the size of {1, . . . , p − 1} in two ways. On the one hand,
it is equal to p − 1. On the other hand we can partition it according to
the order of its elements: if Od is the set of elements of order d, then
p − 1 =

∑
d|p−1 |Od|. We have just argued that |Od| ≤ φ(d) for all d,

but you showed in assignment 3 that
∑

d|p−1 φ(d) = p − 1. It follows that

|Od| = φ(d): for each possible order d, there must be exactly φ(d)-many
elements of order d. In particular, there is an element of order p− 1, which
will be the desired generator.

With these facts stated, we fix a generator g for {1, . . . , p−1}. Dividing exponents
by k, we get that any a < p can be written as a = gki+j , where i = ia, j = ja < k
depend on a. Color each a ∈ {1, 2, . . . , p−1} according to the value of ja. By Schur’s
theorem, we can find a, b, c distinct in {1, 2, . . . , p− 1} such that j := ja = jb = jc
and a+ b = c. Expanding the definitions, gkia+j + gkib+j = gkic+j . Multiplying by
the inverse of gj modulo p, we get that gkia +gkib = gkic . Thus we can let x := gia ,
y := gib , and z := gic to get the desired solution to xk + yk = zk (modulo p). �


