CONCEPTS OF MATHEMATICS, SUMMER 1 2014 ASSIGNMENT 4

Due Tuesday, June 3 at the beginning of class. Make sure to include your name, Andrew ID, and the list of your collaborators (if any) with your assignment. You may discuss problems with others, but you may not keep a written record of your discussions. Please refer to the syllabus for details.

PROBLEM 1 (20 POINTS)

- (1) Write the following sets using set-builder notation. This means your answer should be of the form $\{x \in A \mid p(x)\}$ for A a set and p a propositional function (that need not be written in symbols). For example, the set of non-negative real numbers is $\{x \in \mathbb{R} \mid x \text{ is non-negative}\}$ or alternatively $\{x \in \mathbb{R} \mid x \ge 0\}$.
 - (a) The set of nonzero real numbers.
 - (b) The set of irrational numbers.
 - (c) The set of real numbers that are the square root of a natural number.
 - (d) The set of subsets of reals that do not contain 0 but contain 1.
- (2) (a) Compute $\mathcal{P}(\{4, 9, 13\})$.
 - (b) Explain why $\emptyset \neq \mathcal{P}(\emptyset)$.
 - (c) Compute $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
 - (d) Assume A and B are sets. Show that $A \subseteq B$ if and only if $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

PROBLEM 2 (20 POINTS)

For sets A and B, we define the difference $A \setminus B$ (read "A minus B", or "A without B") to be the set $\{x \in A \mid x \notin B\}$. The symmetric difference $A \Delta B$ is the set $(A \setminus B) \cup (B \setminus A)$. Given a fixed set U (often called the universe), the complement A^c of a set $A \subseteq U$ is defined to be $U \setminus A$.

- (1) Prove De Morgan's laws for sets: for a universe set U, and $A, B \subseteq U$,
- $(A \cap B)^c = A^c \cup B^c$, and $(A \cup B)^c = A^c \cap B^c$.
- (2) Show that $A\Delta B = (A \cup B) \setminus (A \cap B)$.

For a and b real numbers, we write (a, b) for the set $\{x \in \mathbb{R} \mid a < x < b\}$ and [a, b] for $\{x \in \mathbb{R} \mid a \le x \le b\}$. We similarly define (a, b] and [a, b). Note that if a > b, then $[a, b] = \emptyset$, and if $a \ge b$, then $(a, b) = \emptyset$.

(3) Compute the intersection of all sets of the form (0, b), for b a positive real number.

Date: May 30, 2014.

ASSIGNMENT 4

(4) Compute the union of all sets of the form [a, 1], for a a positive real number.

PROBLEM 3 (20 POINTS)

Prove that for all natural numbers m and n, m + n is a natural number. (This is part of Fact 3.6. One can do a similar proof for multiplication, and with some work replace "natural numbers" by "integers").

Hint: Fix m and use induction on n.

PROBLEM 4 (20 POINTS)

- (1) For each of the set of real numbers below, say whether it is inductive and prove your claim:
 - (a) Z.
 - (b) $\mathbb{R}\setminus\mathbb{Q}$.
 - (c) $(\mathbb{R}\setminus\mathbb{Q})\cup\mathbb{N}$.
 - (d) $\mathbb{R}\setminus\{\frac{1}{2}\}.$
- (2) Using the definition of the natural numbers as the intersection of all inductive sets, show that if x is a real number such that 0 < x < 1, then $x \notin \mathbb{N}$. *Hint:* Consider the set $\{y \in \mathbb{R} \mid y > x\} \cup \{0\}$.

PROBLEM 5 (20 POINTS)

- (1) Fix a real number $r \neq 1$. Show that for any natural number n, $\sum_{i=0}^{n} r^{i} = \frac{1-r^{n+1}}{1-r}$.
- (2) Explain why we assumed $r \neq 1$ in (1), and give a simple formula to compute the sum in case r = 1.

You can assume the following basic fact: for real numbers a, b, c, d with b and d nonzero, $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$.

EXTRA CREDIT: RUSSEL'S PARADOX (20 POINTS)

Show that there is not set of all sets, i.e. there is no set A such that $B \in A$ exactly if B is a set. *Hint:* Suppose that such an A exists and derive a contradiction as follows: consider the family S of sets in A that are *not* members of themselves and ask whether S is a member of itself¹.

 $\mathbf{2}$

¹Closer to the real world, think about why there cannot be a book listing all non-self-referential books.