CONCEPTS OF MATHEMATICS, SUMMER 12014 ASSIGNMENT 5

Due Friday, June 6 at the beginning of class. Make sure to include your name, Andrew ID, and the list of your collaborators (if any) with your assignment. You may discuss problems with others, but you may not keep a written record of your discussions. Please refer to the syllabus for details.

Problem 1 (20 points): Dividing

Assume n, m, and k are integers. Prove or disprove:
(1) If k divides n then (k divides m if and only if k divides $n+m$).
(2) If k divides $n+m$, then either k divides n or k divides m.
(3) If k divides n, then k divides $n \cdot m$.
(4) If k divides $n \cdot m$, then either k divides n or k divides m.
(5) If m and n are coprime, then m and $m-n$ are coprime.

Problem 2 (20 points): The well-ordering property
Recall that a is a minimal element of $X \subseteq \mathbb{R}$ if $a \in X$ and for any $b \in X$, $a \leq b$. Show that any non-empty subset of \mathbb{N} has a minimal element. Hint: Prove by strong induction on n that any subset of \mathbb{N} which contains n has a minimal element.

Problem 3 (20 points): The poor man's prime factorization
Show that for every nonzero integer n there exists a unique natural number m and a unique odd integer k such that $n=2^{m} k$. Don't forget to prove uniqueness! (For the problems in this assignment, you may use that if x is a real number, m and k are natural numbers, then $x^{m+k}=x^{m} \cdot x^{k}$, and if $m \leq k$ and $\left.x \neq 0, x^{k-m}=\frac{x^{k}}{x^{m}}\right)$

Problem 4 (20 points): Coding ordered pairs with sets
(1) For objects a and b, define (a, b) to be the set $\{\{a\},\{a, b\}\}$. Show that for any objects a, b, c, d, if $(a, b)=(c, d)$, then $a=c$ and $b=d$.
(2) Prove or disprove:
(a) For all sets $A, B, C, D:(A \times B) \cup(C \times D)=(A \cup C) \times(B \cup D)$.
(b) For all sets $A, B, C, D:(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.

[^0]Problem 5 (20 Points): On equivalence Relations
(1) Give an example of a set A and a relation on A which is reflexive, symmetric, but not transitive.
(2) Show that the relation E on the set \mathbb{R} defined by $x E y$ if and only if $x-y$ is rational is an equivalence relation. Is this still true if we replace "rational" by "irrational"?
(3) Given an equivalence relation E on a set A and $a \in A$, the equivalence class $[a]_{E}$ of a is defined to be the set $\{b \in A \mid b E a\}$. Write A / E for the set of equivalence classes of E (in symbols, $A / E=\{x \in \mathcal{P}(A) \mid$ $x=[a]_{E}$ for some $\left.a \in A\right\}$). Show that for any a and b in A :
(a) $a \in[a]_{E}$.
(b) If $a E b$, then $[a]_{E}=[b]_{E}$, and if $\neg(a E b)$, then $[a]_{E} \cap[b]_{E}=\emptyset$.
(c) A is the union of all sets of the form $[c]_{E}$ for $c \in A$.
(4) Given an equivalence relation E on a set A, show that there exists a set B and a function $f: A \rightarrow B$ such that for all $a, b \in A, a E b$ if and only if $f(a)=f(b)$. Hint: take $B=A / E$.

Extra credit (20 points): The Fibonacci sequence

For n a natural number, define the nth Fibonacci number a_{n} inductively by:

- $a_{0}=0$.
- $a_{1}=1$.
- $a_{n}=a_{n-1}+a_{n-2}$ if $n \geq 2$.
(1) Compute explicitly $a_{0}, a_{1}, a_{2}, \ldots, a_{8}$.
(2) Show that $a_{n}=\frac{\phi^{n}-\psi^{n}}{\sqrt{5}}$, where $\phi=\frac{1+\sqrt{5}}{2}$ and $\psi=\frac{1-\sqrt{5}}{2}$. Hint: First show that $\phi^{2}=\phi+1$ and $\psi^{2}=\psi+1$.

[^0]: Date: June 4, 2014.

