CONCEPTS OF MATHEMATICS, SUMMER 12014 ASSIGNMENT 6

Due Friday, June 13 at the beginning of class. Make sure to include your name, Andrew ID, and the list of your collaborators (if any) with your assignment. You may discuss problems with others, but you may not keep a written record of your discussions. Please refer to the syllabus for details.

Problem 1 (20 POINTS)
Assume $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions.
(1) Assume f and g are injective. Show that $g \circ f$ is injective.
(2) Assume f and g are surjective. Show that $g \circ f$ is surjective.
(3) Assume $g \circ f$ is a bijection. Is f injective? Is g injective?
(4) Assume $g \circ f$ is a bijection. Is f surjective? Is g surjective?

Problem 2 (20 Points)
(1) Assume $f: A \rightarrow B$ is a bijection. Prove that f^{-1} is a bijection.
(2) Assume $f: A \rightarrow B$ is an injection. Show that for any set $C \subseteq A, C$ is equipotent to its image $f[C]$.
(3) Assume U is a set. Show that the relation E on $\mathcal{P}(U)$ defined by $A E B$ if and only if A is equipotent to B is an equivalence relation.
(4) Show that if A is a set and n and m are natural numbers such that A is equipotent to both $[n]$ and $[m]$, then $n=m$. Do not use the definition of $|A|$.

Problem 3 (20 Points)

Show that:
(1) If n is a natural number and $A \subseteq[n]$. Then A is finite and $|A| \leq n$ with equality if and only if $A=[n]$. Hint: use induction on n.
(2) For natural numbers n and m, if $f:[n] \rightarrow[m]$ is an injection, then $n \leq m$. Hint: use (1).
(3) If $f: A \rightarrow B$ is an injection and B is finite, then A is finite. Conclude that if $A \subseteq B$ and B is finite, then A is finite, and if $A \subseteq B$ and A is infinite, then B is infinite. Hint: use (1).
(4) If A and B are countable, then $A \times B$ is countable.

Date: June 6, 2014.

Problem 4 (20 points): Size of the power set

(1) Fix a natural number n. Formally, a binary n-tuple s is a function from $[n]$ to $\{0,1\}$. You can see s as a list $s(1), s(2), \ldots, s(n)$ of n zeroes or ones. Show that there is a bijection from $\mathcal{P}([n])$ to the set of binary n-tuples (that is, one can "code" subsets of $[n]$ using n-tuples of zeroes and ones). Hint: let the ith element of the tuple be 1 if i is in the set and 0 otherwise. Use this result to explain informally why $|\mathcal{P}([n])|=2^{n}$.
(2) For the rest of this problem, assume A is a set. Show that there is an injection $f: A \rightarrow \mathcal{P}(A)$.
(3) Write ${ }^{A}\{0,1\}$ for the set of functions from A to $\{0,1\}$. Generalize (1) by showing that there is a bijection from $\mathcal{P}(A)$ to ${ }^{A}\{0,1\}$.
(4) Write ${ }^{A} A$ for the set of functions from A to A and assume A has at least two elements. Show that there is an injection from $\mathcal{P}(A)$ to ${ }^{A} A$. Is this still true if A has one element? What about no elements?

Problem 5 (20 points)
(1) For each of the following four conditions, give an example of a function from \mathbb{N} to \mathbb{N} which satisfies it: bijective and not the identity, injective and not surjective, surjective and not injective, not surjective and not injective.
(2) We say s is a bit string if it is a binary n-tuple for some natural number n. Show that the set of all bit strings is countable.
(3) Show that the set $\{x \in \mathbb{R} \mid x=a+b \sqrt{42}$ for some $a, b \in \mathbb{Q}\}$ is countable.
(4) Show that the set of irrational numbers is uncountable.

Extra credit (20 points): Cantor's theorem and UNCOMPUTABILITY

(1) Prove Cantor's theorem: given a set A, there is no surjection from A to $\mathcal{P}(A)$ (so in this sense, the cardinality of $\mathcal{P}(A)$ is strictly larger than that of A). Hint: Assume for a contradiction there is such a surjection $F: A \rightarrow \mathcal{P}(A)$, and consider the set $\{a \in A \mid a \notin F(a)\}$.
(2) At the bottom, computers deal with bit strings: finite strings of 0s and 1 s (i.e. binary n-tuple for some n). We think of a computer program simply as a bit string and assume that each computer program P computes a function f_{P} that takes as input a bit string and outputs another bit string. For example, one can write a (very rudimentary) calculator program P for which f_{P} would take as input a bit string coding two natural number n and m and output a bit string coding $n+m$. Show that there is a function from the set of bit strings to the set of bit strings that no computer program can compute. Hint: How many programs are there? How many functions are there?

