CONCEPTS OF MATHEMATICS, SUMMER 1 2014 ASSIGNMENT 8

Due Friday, June 20 at the beginning of class. Make sure to include your name, Andrew ID, and the list of your collaborators (if any) with your assignment. You may discuss problems with others, but you may not keep a written record of your discussions. Please refer to the syllabus for details.

PROBLEM 1 (20 POINTS)

Prove Theorem 10.11 in the lecture notes: For any integers m, n, and k:

- (1) gcd(n,m) = gcd(m,n).
- (2) $gcd(n,m) = gcd(\pm n,\pm m)$ (i.e. equality holds regardless of the choice of sign).
- (3) gcd(n,m) = gcd(n,m+kn).
- (4) gcd(n,m) = 1 if and only if n and m are coprime.
- (5) gcd(n,m) = 0 if and only if n = m = 0.
- (6) If n divides m, gcd(n,m) = |n|. In particular, gcd(n,0) = |n|.
- (7) If n = ka, m = kb, and a and b are coprime, then gcd(n,m) = |k|. Warning: you cannot use that the gcd can be computed from the prime factorization, as it is a consequence of that problem.

PROBLEM 2 (20 POINTS)

Prove Theorem 10.15 in the lecture notes: For integers m, n, and k, the following are equivalent (i.e. (A) holds if and only if (B) holds):

- (A) gcd(n,m) divides k.
- (B) There exists integers a and b such that k = am + bn.

PROBLEM 3 (20 POINTS)

Assume p is a prime number.

- (1) Show that p divides $\binom{p}{k}$ for all natural numbers k with $1 \le k \le p-1$.
- (2) Show that for any natural number n, p divides $n^p n$. Hint: induction.

PROBLEM 4 (20 POINTS)

Use the Euclidean algorithm to find gcd(123, 321), as well as two integers a and b such that 123a + 321b = gcd(123, 321). Show all your work.

Problem 5 (20 points)

Assume n is a natural number. Show that there exists a natural number m such that none of $m, m+1, \ldots, m+n$ are prime. *Hint: Find* m such that m is a multiple of 2, m+1 is a multiple of 3, m+2 a multiple of 4, etc.

Date: June 17, 2014.

ASSIGNMENT 8

EXTRA CREDIT (20 POINTS): PERFECT NUMBERS

We start with a couple of definitions and fun facts. A natural number n is called *perfect* if it is equal to the sum of its proper (i.e. not equal to n) natural number divisors. For example, 6 is perfect: the natural number divisors of 6 are 1, 2, and 3, and 6 = 1 + 2 + 3. 28 = 1 + 2 + 4 + 7 + 14 is also perfect (it is unknown whether there are infinitely many perfect numbers, or whether there are any odd perfect numbers at all). A *Mersenne prime* is a prime of the form $2^n - 1$ for n a natural number. For example, $7 = 2^3 - 1$ is a Mersenne prime (It is also unknown whether there are infinitely many Mersenne primes. The largest known Mersenne prime is $2^{57885161} - 1$, found by a distributed effort over the internet).

Show that if $2^n - 1$ is a Mersenne prime, then $2^{n-1}(2^n - 1)$ is perfect.