CONCEPTS OF MATHEMATICS, SUMMER 12014 ADDITIONAL EXERCISES FOR WEEK 3

(1) Assume $f: A \rightarrow B$ is a function. Assume $A^{\prime}, A^{\prime \prime}$ are subsets of A and $B^{\prime}, B^{\prime \prime}$ are subsets of B. Prove or disprove:
(a) If $A^{\prime} \subseteq A^{\prime \prime}$, then $f\left[A^{\prime}\right] \subseteq f\left[A^{\prime \prime}\right]$.
(b) If $B^{\prime} \subseteq B^{\prime \prime}$, then $f^{-1}\left[B^{\prime}\right] \subseteq f^{-1}\left[B^{\prime \prime}\right]$.
(c) $f\left[A^{\prime} \cup A^{\prime \prime}\right]=f\left[A^{\prime}\right] \cup f\left[A^{\prime \prime}\right]$.
(d) $f\left[A^{\prime} \cap A^{\prime \prime}\right]=f\left[A^{\prime}\right] \cap f\left[A^{\prime \prime}\right]$.
(e) $f^{-1}\left[B^{\prime} \cup B^{\prime \prime}\right]=f^{-1}\left[B^{\prime}\right] \cup f^{-1}\left[B^{\prime \prime}\right]$.
(f) $f^{-1}\left[B^{\prime} \cap B^{\prime \prime}\right]=f^{-1}\left[B^{\prime}\right] \cap f^{-1}\left[B^{\prime \prime}\right]$.
(2) If $f: A \rightarrow B$ is a bijection and $C \subseteq B$, then $f\left[f^{-1}[C]\right]=C$. Is this still true if we do not assume that f is a bijection?
(3) A is infinite if and only if it is equipotent to one of its proper subset.
(4) There is a surjection from A to B if and only if there is an injection from B to A.
(5) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called increasing if for any $x<y$, $f(x)<f(y)$. It is called decreasing if for any $x<y, f(x)>$ $f(y)$. It is called monotone if it is either increasing or decreasing. Show that monotone functions are injective.
(6) For sets A and B, we write $A \preceq B$ if there is an injection from A to B, and $A \approx B$ if A is equipotent to B. We write $A \prec B$ if $A \preceq B$ and $A \not \approx B$.

Show that:
(a) For natural numbers n and $m,[n] \preceq[m]$ if and only if $n \leq m,[n] \approx[m]$ if and only if $n=m$, and $[n] \prec[m]$ if and only if $n<m$.
(b) If $A \subseteq B$, then $A \preceq B$.
(c) If $A \approx A^{\prime}$ and $B \approx B^{\prime}$, then $A \preceq B$ if and only if $A^{\prime} \preceq B^{\prime}$.
(d) If $A \approx B$, then $A \preceq B$ and $B \preceq A$.
(e) If $A \preceq B$ and $B \preceq C$, then $A \preceq C$.
(f) $A \prec \mathcal{P}(A)$.
(7) Give an explicit formula for the bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$ obtained by listing the pairs whose sum is 0 , then the pairs whose sum is 1 , and so on. For pairs of the same sum, we list

[^0]the pairs by decreasing order of first component, i.e. first we list $(n, 0)$, then $(n-1,1)$, etc.
(8) (Very hard: this is known as the Cantor-Schröder-Bernstein theorem) Assume there is an injection from A to B and an injection from B to A. Show that there is a bijection from A to B. Using the terminology of the previous problem, if $A \preceq B$ and $B \preceq A$, then $A \approx B$.

Conclude that if $A \preceq B \preceq C$ and $A \approx C$, then $A \approx B$.
(9) A real number x is called algebraic if it is the root of a nonzero polynomial with rational coefficients, i.e. it satisfies an equation of the form $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=0$, where $a_{0} \neq 0$ and a_{i} is a rational number for all $i \leq n$. For example, $\frac{5}{42}$ is algebraic, as it is the root of the polynomial $x-\frac{5}{42}$, and $\sqrt{2}$ is algebraic, as it is a root of the polynomial $x^{2}-2=0$.

Prove that the set of algebraic numbers is countable. Conclude that there must exist a real number which is not algebraic. Such a number is called transcendental.
(10) A partition of a set X is a non-empty family S of non-empty subsets of X such that:
(a) If $A, B \in S$, then either $A=B$, or $A \cap B=\emptyset$.
(b) $\bigcup_{A \in S} A=X$.

Prove that given an equivalence relation E on X, the set S of equivalence classes of E is a partition of X. Conversely, show that for any partition S of X, there is a unique equivalence relation E whose set of equivalence classes is S.
(11) Prove that any natural number ≥ 2 can be written as a sum of prime numbers. Is this decomposition unique?
(12) Show that if A and B are disjoint finite sets, then $|A \cup B|=$ $|A|+|B|$.
(13) Recall that the Fibonacci numbers are defined inductively by $a_{0}=0, a_{1}=1, a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$. Show that every natural number $n \geq 1$ can be written uniquely as a sum of distinct non-consecutive Fibonacci numbers (omitting a_{0} from the decomposition).

[^0]: Date: June 1, 2014.

