CONCEPTS OF MATHEMATICS, SUMMER 1 2014 ADDITIONAL EXERCISES FOR WEEK 3

- (1) Assume $f : A \to B$ is a function. Assume A', A'' are subsets of A and B', B'' are subsets of B. Prove or disprove:
 - (a) If $A' \subseteq A''$, then $f[A'] \subseteq f[A'']$.
 - (b) If $B' \subseteq B''$, then $f^{-1}[B'] \subseteq f^{-1}[B'']$.
 - (c) $f[A' \cup A''] = f[A'] \cup f[A''].$
 - (d) $f[A' \cap A''] = f[A'] \cap f[A''].$
 - (e) $f^{-1}[B' \cup B''] = f^{-1}[B'] \cup f^{-1}[B''].$
 - (f) $f^{-1}[B' \cap B''] = f^{-1}[B'] \cap f^{-1}[B''].$
- (2) If $f : A \to B$ is a bijection and $C \subseteq B$, then $f[f^{-1}[C]] = C$. Is this still true if we do not assume that f is a bijection?
- (3) A is infinite if and only if it is equipotent to one of its proper subset.
- (4) There is a surjection from A to B if and only if there is an injection from B to A.
- (5) A function $f : \mathbb{R} \to \mathbb{R}$ is called *increasing* if for any x < y, f(x) < f(y). It is called *decreasing* if for any x < y, f(x) > f(y). It is called monotone if it is either increasing or decreasing. Show that monotone functions are injective.
- (6) For sets A and B, we write A ≤ B if there is an injection from A to B, and A ≈ B if A is equipotent to B. We write A ≺ B if A ≤ B and A ≈ B. Show that:
 - (a) For natural numbers n and m, $[n] \leq [m]$ if and only if $n \leq m$, $[n] \approx [m]$ if and only if n = m, and $[n] \prec [m]$ if and only if n < m.
 - (b) If $A \subseteq B$, then $A \preceq B$.
 - (c) If $A \approx A'$ and $B \approx B'$, then $A \preceq B$ if and only if $A' \preceq B'$.
 - (d) If $A \approx B$, then $A \preceq B$ and $B \preceq A$.
 - (e) If $A \leq B$ and $B \leq C$, then $A \leq C$.
 - (f) $A \prec \mathcal{P}(A)$.
- (7) Give an explicit formula for the bijection from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$ obtained by listing the pairs whose sum is 0, then the pairs whose sum is 1, and so on. For pairs of the same sum, we list

Date: June 1, 2014.

the pairs by decreasing order of first component, i.e. first we list (n, 0), then (n - 1, 1), etc.

(8) (Very hard: this is known as the Cantor-Schröder-Bernstein theorem) Assume there is an injection from A to B and an injection from B to A. Show that there is a bijection from A to B. Using the terminology of the previous problem, if $A \leq B$ and $B \leq A$, then $A \approx B$.

Conclude that if $A \leq B \leq C$ and $A \approx C$, then $A \approx B$.

(9) A real number x is called *algebraic* if it is the root of a nonzero polynomial with rational coefficients, i.e. it satisfies an equation of the form $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n = 0$, where $a_0 \neq 0$ and a_i is a rational number for all $i \leq n$. For example, $\frac{5}{42}$ is algebraic, as it is the root of the polynomial $x - \frac{5}{42}$, and $\sqrt{2}$ is algebraic, as it is a root of the polynomial $x^2 - 2 = 0$.

Prove that the set of algebraic numbers is countable. Conclude that there must exist a real number which is not algebraic. Such a number is called *transcendental*.

(10) A *partition* of a set X is a non-empty family S of non-empty subsets of X such that:

(a) If $A, B \in S$, then either A = B, or $A \cap B = \emptyset$. (b) $\bigcup_{A \in S} A = X$.

Prove that given an equivalence relation E on X, the set S of equivalence classes of E is a partition of X. Conversely, show that for any partition S of X, there is a *unique* equivalence relation E whose set of equivalence classes is S.

- (11) Prove that any natural number ≥ 2 can be written as a sum of prime numbers. Is this decomposition unique?
- (12) Show that if A and B are disjoint finite sets, then $|A \cup B| = |A| + |B|$.
- (13) Recall that the Fibonacci numbers are defined inductively by $a_0 = 0, a_1 = 1, a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$. Show that every natural number $n \ge 1$ can be written uniquely as a sum of distinct non-consecutive Fibonacci numbers (omitting a_0 from the decomposition).

 $\mathbf{2}$