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1. About

These are notes for an introduction to proof-based mathematics given
at Carnegie Mellon University in the summer of 2014. The course is
over but I aim to keep theses notes (together with the source files)
available from my website: http://math.cmu.edu/~svasey/.

These notes are in the public domain: use them in any way you see
fit. However, it would be great if you could:

(1) Credit me, if you redistribute those notes.
(2) Share back any changes you make.
(3) Let me know how you are using the notes.

I thank all the 21-127 students who reported typos and mistakes.

Date: June 30, 2014.
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2. Introduction: what is mathematics, what is a proof?

The material in the entire section will be covered in Lecture 1 (ten-
tative).

2.1. What is mathematics? The course is not meant to be about
the philosophy of mathematics, but it is important to realize that this
question is still far from being understood. There are people whose
only job is to investigate and discuss this topic. One should also un-
derstand that there cannot be one absolute all-encompassing answer:
Mathematics means different things to different people (even to dif-
ferent mathematicians). Here is a (non-exhaustive) sample of possible
answers:

• Mathematics is the language of Science.
• Mathematics is the study of patterns.
• Mathematics is the study of topics such as quantity (numbers),

structure, space, and change [Wikb].
• Mathematics is the study of what can precisely be argued to be

true or false.
• Mathematics is what mathematicians do.
• Mathematics is the subject in which we never know what we are

talking about, nor whether what we are saying is true [Rus03,
p. 5].
• Etc. See for example [Wika] for more.

Whatever mathematics is, most mathematicians would agree that it
involves explaining rather than just describing. The most highly-valued
form of explanation in mathematics is called a proof.

2.2. What is a proof? In mathematics, a proof is a very precise
argument explaining why a given statement is true. The argument
must be so convincing that its audience (anybody who reads/hears it,
including the writer of the proof) has no doubt about the truth of the
statement. Concretely, this means that:

(1) The statement that is being proven, as well as every step of the
proof, must be unambiguous : if there is ambiguity on what the
statement even says, how can one agree about its truth? In
particular, the proof should be understandable to its audience.

(2) The proof must be logically sound : not only must every step
be correct, but steps should also be justified so that no doubt
is left about their validity.

(3) A proof must rely on common ground shared by the entire audi-
ence: if the audience disagrees on the truth of every single fact,
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including whether 1 + 1 = 2 or 1 = 1, then there is no hope
of convincing it using pure reason. This common ground in-
cludes some (hopefully simple) statement whose truth is taken
as granted (the axioms), as well as the valid rules of logic that
can be used in a proof. This common knowledge should (ex-
plicitly or implicitly) be made clear in the proof itself.

Remark 2.1. Thus a proof also depends on its audience. For exam-
ple, a five year-old child needs to be explained why 2 + 3 = 5, while
most adults take this fact for granted. Similarly in mathematics, it is
permissible to omit explanations for facts that the reader thinks the
audience will have no difficulty believing. However, this often leads to
laziness on the part of the writer (“the proof is left as an exercise”,
“obviously, so and so is true”) which in turn leads to mistakes. Words
such as “obviously”, “clearly”, etc. are especially dangerous: if a state-
ment is really obvious, then one can omit the qualifier entirely (in the
“real world”, nobody ever says “clearly, 2 + 3 = 5”).

Remark 2.2. On the other hand, there is a danger of writing too
many details: this can hurt understanding by burying the most im-
portant points of a proof inside pages of easy arguments. A famous
extreme case1 is “Principia Mathematica” [RW25] which takes more
than 300 pages to prove that 1 + 1 = 2 (the statement is accompanied
by the comment “The above proposition is occasionally useful”). While
leaving no stone unturned, a proof must emphasize the hard steps.

We will not specify exactly what form a proof must take: doing
this would force us to impose too many unnatural restrictions, ending
up with a programming language-like syntax impossible for humans to
work with.

Mathematical proofs can usually be written in plain English, but
one must often make use of mathematical symbols to describe some-
thing precise that would be too long or too hard to describe in English.
Since human languages can be ambiguous, one must often make sure
that the argument remains completely clear (additional informal ex-
planations can be marked as such using words such as “intuitively”,
or “loosely speaking”). On the other hand, writing in plain English
improves readability and understandability, so it is advisable to make
use of it whenever appropriate. Remember: a mathematician writes
for humans, not computers.

1Of course, the aim of the authors in writing the book was never to prove to the
skeptics that 1 + 1 = 2, but rather to show that it could in principle be done.
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2.3. Good proofs, bad proofs. We now consider examples of proofs.
We begin with the following joke found on the web2:

Needless to say, this argument has several issues. For a start, the
conclusion is wrong. However, sometimes even “proofs” for wrong facts

2http://s254.photobucket.com/user/balthamossa2b/media/

1290457745312.jpg.html

http://s254.photobucket.com/user/balthamossa2b/media/1290457745312.jpg.html
http://s254.photobucket.com/user/balthamossa2b/media/1290457745312.jpg.html
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turn out to make instructive mathematical insight3. What will interest
us is that many of the points discussed above are not respected:

(1) Many steps are ambiguous and unclear: What exactly is done
when “removing corners”? There are several ways to do it (e.g.
one should specify the size of a corner): how should it be done?
What exactly is meant by “remove more corners”? Most im-
portantly (and this is where the argument goes wrong), what
does it mean to “repeat to infinity”?

(2) Steps are only briefly justified by a picture. Pictures are very
useful in mathematics as an additional explanatory device but
can often be misleading (for example4, it is possible to cut a ball
into a few pieces, move these pieces around, and reassemble
those pieces into two balls of the same volume as the earlier
one). In general, a picture can never by itself justify a step.
Here, the fact that the square with removed corners becomes a
circle as we “repeat to infinity” is only justified with a picture
of a circle.

(3) The hard step of the proof (the “repeat to infinity”) is not
emphasized at all and is written off as just some ordinary easy
inference.

After making all those observations, it is no surprise that the proof
turns out to be dead wrong. On the other hand, this proof also has
some positive aspects: it is fun and very easy to read (since written
in plain English, with additional pictures to illustrate) and has educa-
tional value!

We now look at a very different style of argument. We say a number
x is non-negative if x ≥ 0.

Theorem 2.3. For all non-negative real numbers a and b:

a2 + b2 ≤ (a+ b)2

“Proof” 1.

a2 + b2 ≤ (a+ b)2

a2 + b2 ≤ a2 + 2ab+ b2

0 ≤ 2ab

3Although this is beyond the scope of this course, this is also the case here: it
turns out what makes the argument fail is that one cannot always invert the order
of taking a limit and integrating.

4This is called the Banach-Tarski paradox, but is unfortunately beyond the scope
of this course.
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True because the product of two non-negative numbers is non-negative.
�

First observe that in this case the result and its proof are clearly
separated. The result is stated first (we will always call a true statement
that we intend to prove a theorem5), followed by its proof. This is a
good idea, as it helps the reader to see immediately what is being
proven (as is traditional in mathematical writings, the end of the proof
is marked by a box). In addition the argument consists of formal
manipulations of equations, so one could hope it will make for a clear,
unambiguous proof. There are however several issues: for one thing,
one would have liked to see a plain English explanation of what exactly
the argument is: as it turns out, each manipulation is correct, but how
are they justified? Importantly, the first step is not at all justified,
but is exactly what we want to prove! Thus a high level view of the
“proof” is that we first assume what we want to prove, obtain a true
conclusion, and therefore conclude the original assumption is correct.
We will see that this is not logically valid, as it constitutes circular
reasoning (for example, assume 0 = 1 is true, multiply both sides by
0, get 0 = 0, which is true. This does not justify 0 = 1).

However, in this particular case one can revert all steps and obtain
the correct conclusion. Thus a better proof is:

Proof 2. Since the product of non-negative numbers is non-negative,

0 ≤ 2ab

Adding a2 + b2 to both sides, one gets:

a2 + b2 ≤ a2 + 2ab+ b2

So factoring the right hand side:

a2 + b2 ≤ (a+ b)2

which is the desired inequality. �

It is of course more likely one would come up with an argument like
“Proof” 1 first (keeping in mind that the steps can be reversed), but
presented as such “Proof” 1 is incorrect and one must make sure to
either mention that (and justify why) the argument is reversible, or
write up a proof going in the right direction in the first place.

5Mathematicians usually make a distinction between theorems, lemmas and
propositions depending on the importance of the result, but we will not adopt
this approach
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There are two different processes at work here: One is the process
of solving the problem: coming up with all the ideas in the proof. The
other is the process of writing up the proof itself. It is important that
these two be separated: you are allowed to think about a problem in
any way you like, but a proof has to satisfy stringent requirements and
so must be written up with care.

Notice also that our proof takes several facts as a given. For one
thing, the reader is expected to know what real numbers are, what
sums and products are, and how they interact with the ordering (e.g.
the fact that a product of non-negative numbers is non-negative). We
state these facts precisely in the next section and prove a few useful
results about the real numbers. This will provide us with examples for
a more careful study of the basic logical reasoning involved in proofs
(Section 4).

3. Numbers and inequalities

Tentative lecturing plan: The axiom of the real numbers, the defi-
nition of subtraction and division, the basic facts that follow, and the
definition of the square should be covered in lecture 2. The definition
of the square root, absolute value, the triangle and AGM inequalities
should be covered in lecture 3.

3.1. The real numbers. You are probably already familiar with the
real numbers. They are a basic object of study in calculus. Examples of
real numbers include 0, 1,−1, 1

2
, π, e,

√
2; Operations on real numbers

include addition, multiplication, subtraction, division, square root, ex-
ponentiation, limits, etc.

It is unfortunately very tricky to correctly define what a real number
is. You may be used to thinking of a real number as an integer followed
by a dot and a (possibly infinite) sequence of digits. For example,
π = 3.14159265 . . .. This “definition” turns out to have several issues.
For one thing, such a sequence of digit is not unique (for example there
is the infamous fact that 1 = 0.999999999 . . .). More importantly, this
definition does not tell us much about what a real number “really is”:
it just gives us a way to represent one, but there are many other choices
(for example, one could use base 5 instead of base 10, or one could write
1/3 instead of 0.3333333 . . .) and it seems that an infinite sequence of
digits is not particularly convenient to work with.

In this course, we will not discuss what real numbers really are,
but will instead adopt an axiomatic approach: as discussed above, no
matter what they are, we all know they must satisfy some properties
(for example, x < x + 1 for any real number x). We will give a list of
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such properties, and start from them (and only from them) to derive
other nontrivial facts.

Axiom 3.1 (Axioms of real numbers). 6 The real numbers are objects
satisfying the following properties:

• (R0) Among the reals, there are two distinguished elements,
0 and 1, with 0 6= 1. 0 and 1 have some special properties
discussed below.
• (R1) Binary operations + and · are defined on the reals (they

take two reals as input and produce one real as output).
• (R2) Between any two reals x and y, one can ask whether x < y.
• Addition (+) satisfies the following properties: For all real num-

bers x, y, z:
– (A0) Associativity: (x+ y) + z = x+ (y + z).
– (A1) Commutativity: x+ y = y + x.
– (A2) Zero is the additive identity: x+ 0 = x.
– (A3) Existence of inverse: There is always a unique7 real

number w such that x+ w = 0.
• Multiplication (·) satisfies the following properties: For all real

numbers x, y, z:
– (M0) Associativity: (x · y) · z = x · (y · z).
– (M1) Commutativity: x · y = y · x.
– (M2) One is the multiplicative identity: x · 1 = x.
– (M3) Existence of inverse: If x 6= 0, there is a unique real

number w such that x · w = 1.
• Multiplication and addition interact as follows: For all real

numbers x, y, z:
– (D0) Distributive law: x · (y + z) = (x · y) + (x · z).

• The ordering (<) satisfies the following properties: For all real
numbers x, y, z:

– (O0) Trichotomy: exactly one of the following is true: 0 <
x, x = 0, or x < 0.

– (O1) Closure under addition: If 0 < x and 0 < y, then
0 < x+ y.

– (O2) Closure under multiplication: If 0 < x and 0 < y,
then 0 < x · y.

– (O3) If x < y, then x+ z < y + z.

6In this course, an “Axiom” is a basic principle that we assume as a given. A
“Fact” is a result which follows from the axioms but will not be proved: you can
take it as a given.

7In fact, uniqueness follows from the other properties (exercise).
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• (C0) The completeness axiom (will not be discussed in this
course): If F is a non-empty collection of real numbers and
there is a real number x such that for all y in F , y < x, then
one can choose x with the additional property that for any
x′ < x there is y in F with x′ < y.

This is a very long list and you are not expected to learn all the
properties by heart, nor remember their names. The completeness
axiom is especially tricky and you will not be required to know anything
about it. It turns out that those axioms characterize the reals: in a very
precise sense only the real numbers satisfy those axioms. In fact, all
true results about the reals can be proven using only these properties.

Before discussing the properties further, we introduce some notation:

Notation 3.2. When brackets are not present, multiplication should
be done first, i.e. for x, y real numbers, x · y + x means (x · y) + x, and
not x · (y+ x). We often write xy instead of x · y. By associativity, the
order of summation does not matter, so we write x+y+z for (x+y)+z
(which is the same thing as x+ (y + z)). Similarly for multiplication8.

We write y > x to mean x < y. We write x ≤ y to mean that x < y
or x = y. x ≥ y means y ≤ x. We say x is positive if 0 < x, negative
if x < 0, non-negative if 0 ≤ x. When we want to emphasize that x is
not zero, we may say “strictly positive” or “strictly negative”.

Notice that it is necessary to explicitly define relations such as >
since all our axioms talk about is<. We can similarly define subtraction
and division:

Definition 3.3. For x a real number, we define the negative of x to be
the unique real number w such that x + w = 0 (this is guaranteed to
exist by the axiom of existence of additive inverse). We write −x for
the negative of x. Similarly, define the reciprocal of a nonzero x to be
the unique w such that xw = 1. We write x−1 for the reciprocal of x.

For real numbers x, y, we define x− y to mean x+ (−y). Similarly,
for y nonzero, we define x/y (also written x

y
) to mean x · y−1.

Definition 3.4. The number 2 is defined to be 1 + 1. Similarly, 3 =
1 + 1 + 1, 4 = 1 + 1 + 1 + 1, etc. The natural numbers are 0, 1, 2, 3, . . .
(a more precise definition will be given later in the course).

The integers consist of the natural numbers and their negative. The
rational numbers consist of all numbers of the form n/m where n,m
are integers and m is not zero.

8Associativity is used so often that we will never mention we are using it. Note
that not all operations are associative. For example, subtraction is not: (0−1)−1 =
−2 is different from 0− (1− 1) = 0
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Remark 3.5. Even though it has been thousands of years since the
number 0 was introduced, some people are still debating whether the
“right” definition of the natural numbers should contain zero. De-
pending on the kind of mathematics one is doing, it may or may not be
convenient to have it included, and your experience with other courses
may vary. From a foundational point of view, there are several good
arguments for zero to be a natural number. The computer scientist
Edsger Dijkstra has also given several other simple reasons [Dij]. Thus
in this course, we will assume that 0 is a natural number.

You may take the following facts for granted. We will prove them
once we have the tools to state a more formal definition of the natural
numbers.

Fact 3.6.

(1) For all integers m and n, m+ n and m · n are integers.
(2) For all natural numbers m and n, m+ n and m · n are natural

numbers.

From the axioms and the definitions of subtraction and division, we
can go on to prove many more elementary properties. The arguments
are usually quite boring (you will be asked to do a few of them in your
homework). We list here all the elementary facts we will need (you can
use them freely).

Fact 3.7 (Properties of addition and multiplication). For all real num-
bers x, y, z, w:

• (F0): x · 0 = 0.
• (F1): −(xy) = (−x)y.
• (F2): −x = (−1)x.
• (F3): (−x)(−y) = xy.
• (F4): If xy = 0, then x = 0 or y = 0 (or both).
• (F5): (x+ y)(z + w) = xz + xw + yz + yw.

Fact 3.8 (Properties of the ordering). For all real numbers x, y, z, w:

• (F6): Totality: Exactly one of x < y, x = y, y < x always
holds. Exactly one of x ≤ y or y < x always holds.
• (F7): Reflexivity: x ≤ x.
• (F8): Antisymmetry: If x ≤ y and y ≤ x, then x = y.
• (F9): Transitivity: If x ≤ y and y ≤ z, then x ≤ z. Similarly if
≤ is replaced by <.
• Interaction with addition and multiplication:

– (F10): 0 < 1.
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– (F11): If x ≤ y and z ≤ w, then x + z ≤ y + w. Similarly
if ≤ is replaced by <.

– (F12): If x ≤ y, then −y ≤ −x. Similarly if ≤ is replaced
by <.

– (F13): If x ≤ y and 0 ≤ z, then xz ≤ yz.
– (F14): If 0 ≤ x and 0 ≤ y, then 0 ≤ xy. Similarly if ≤ is

replaced by <.
– (F15): 0 ≤ x · x, and if 0 < x then 0 < x · x.
– (F16): If 0 < x, then 0 < x−1.
– (F17): If 0 < x < y, then 0 < y−1 < x−1.

Remark 3.9. Given real numbers x, y, z, if x ≤ y and z is arbitrary,
then we cannot conclude that xz ≤ yz: the hypothesis that 0 ≤ z is
needed. To see this, we give a counterexample: Take x = 1, y = 2, and
z = −1. Then x < y (exercise) but zy < zx (by (F12) and (F2)).

We will use Fact 3.1 and Fact 3.7 without explicitly mentioning them
each time.

3.2. Squares, roots, and absolute value.

Notation 3.10. For x a real number, we write x2 for x · x.

Theorem 3.11. For all real numbers x and y:

• (x+ y)2 = x2 + 2xy + y2.
• (x− y)2 = x2 − 2xy + y2.
• (x+ y)(x− y) = x2 − y2.

Proof. We use property (F5) of Fact 3.7 and do the algebraic manipu-
lations you should all be familiar with. For example:

(x+ y)2 = (x+ y) · (x+ y)

= x2 + xy + yx+ y2

= x2 + xy + xy + y2

= x2 + 1 · xy + 1 · xy + y2

= x2 + (1 + 1)xy + y2

= x2 + 2xy + y2

The other proofs are similar. �

Remark 3.12. We will often call the process of going from a sum (as
in x2 +2xy+y2) to a product (as in (x+y)2) factoring. We refer to the
inverse operation (going from the product to the sum) as expanding.
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Definition 3.13. A real number x is said to be a square root of a real
number y if x is non-negative and x2 = y.

By property (F15) from Fact 3.7, x2 is always non-negative, so only
non-negative real numbers have a real square root. Moreover, the square
root is unique:

Theorem 3.14 (Uniqueness of the square root). Given x, y non-negative
real numbers, assume x2 = y2. Then x = y.

Proof. Subtracting y2 from both sides, we have that x2 − y2 = 0. Fac-
toring, (x − y)(x + y) = 0. Thus (by (F4)) either x − y = 0 (and so
x = y) or x+ y = 0 (and so x = −y). In the first case, we are done. In
the second case, since 0 ≤ x, we must have 0 ≤ −y, so taking the nega-
tion on both sides and reversing the inequality (see (F12)), y ≤ 0, and
so by antisymmetry (F8), y = 0. Therefore x = −y = (−1)y = 0 = y,
as desired. �

Remark 3.15. This is an example of what is called a proof by cases :
We show that one of two cases must happen, and show that from each
one we can prove the result, so the result must be true.

We will not discuss the proof here (it uses the completeness axiom),
but square roots exist:

Fact 3.16. Every non-negative real number has a square root.

Notation 3.17. For x a non-negative real number, we write
√
x for

the unique square root of x.

Example 3.18. We have that
√

4 = 2,
√

1 = 1,
√

0 = 0. We will see
later that

√
2 is a real number that is not rational.

Warning. Assume that x, y are real numbers and x2 = y. Do we
have x =

√
y? No, because we do not know that x is non-negative.

Indeed, it turns out that −√y is also a possible solution, which will be
different from

√
y if y > 0. Using uniqueness of the square root, it is

not hard to see that these are the only possible solutions.

How do square roots play with the ordering? It turns out taking a
square root preserves the ordering.

Theorem 3.19. For x, y real numbers, if 0 ≤ x ≤ y, then x2 ≤ xy ≤ y2

and
√
x ≤ √y.

Proof. Multiplying the first inequality by x (remembering that x is non-
negative), we obtain x2 ≤ xy. Similarly, multiplying the first inequality
by y, we obtain xy ≤ y2. Thus we obtain x2 ≤ xy ≤ y2.
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To see
√
x ≤ √y, we assume it is not true. Then we must have x 6= y

and
√
y <
√
x. By definition of the square root,

√
y,
√
x are both non-

negative, thus we can apply the fact we just proved (x standing for√
y, y standing for

√
x) to get that (

√
y)2 ≤ (

√
x)2, so y ≤ x. Because

y 6= x, y < x, a contradiction to the assumption. �

Remark 3.20. This is an example of a proof by contradiction: The
result we want can be either true or false. We assume it is false and
derive something ridiculously wrong, so the result must have been true
in the first place.

Finally, we observe that taking square root and squares preserve
products:

Theorem 3.21. For all real numbers x and y:

• (xy)2 = x2y2.
• If x and y are non-negative,

√
xy =

√
x
√
y.

Proof. Exercise. �

Definition 3.22. The absolute value |x| of a real number x is defined
by:

|x| =

{
x if x ≥ 0

−x if x < 0

Theorem 3.23 (Elementary properties of the absolute value). For all
real numbers x and y:

(1) x2 = |x|2.
(2) |x| =

√
x2.

(3) x ≤ |x|.
(4) |xy| = |x||y|.

Proof. Exercise. �

3.3. Inequalities. Sometimes, it is very hard to know what a given
quantity is exactly equal to, but it is possible to estimate it, namely give
a lower (or upper) bound for it. This is what we will now investigate.
We start with perhaps the most important inequality involving the real
numbers, which allows us to estimate the absolute value of a sum in
terms of the sum of the absolute values.

Theorem 3.24 (The triangle inequality). For all real numbers x, y,
|x+ y| ≤ |x|+ |y|.
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Proof. First observe that 2xy ≤ 2|x||y| (to see this, first use Theorem
3.23.(3) to obtain 2xy ≤ |2xy|, and then use Theorem 3.23.(4) to see
|2xy| = 2|x||y|). Adding x2 + y2 to both sides and using that x2 = |x|2
and y2 = |y|2, one obtains x2+2xy+y2 ≤ |x|2+2|x||y|+|y|2. Factoring,
(x + y)2 ≤ (|x| + |y|)2. Since (x + y)2 = |x + y|2, we can take the
square roots on both sides of the inequality and obtain the result from
Theorem 3.19. �

Remark 3.25. It is often valuable to try to understand when an in-
equality is strict (meaning that ≤ can be replaced by <) and when
it is not. In case of the triangle inequality, we can give examples for
both cases: If x = y = 1, equality holds, while if x = 1 and y = −1,
the inequality is strict. Can you come up with a condition on x and y
characterizing when the inequality is strict?

For more practice, we prove the following important inequality:

Theorem 3.26 (The arithmetic mean, geometric mean (AGM) in-
equality). For all non-negative real numbers x, y,

√
xy ≤ x+y

2
.

Proof. Note first that since x and y are non-negative, xy is non-negative
(by (F14)), so it makes sense to talk about

√
xy.

We start the proof by observing that 0 ≤ (x−y)2 (because squares are
always non-negative (F15)). Expanding and adding 2xy on both sides,
we obtain 2xy ≤ x2+y2. Adding 2xy again and factoring the right hand
side, we get 4xy ≤ (x + y)2. By Theorem 3.19,

√
4xy ≤

√
(x+ y)2.

Using Theorem 3.21, we can expand the left hand side to 2
√
xy. Using

Theorem 3.23,
√

(x+ y)2 = |x + y| = x + y (since both x and y are
non-negative and a sum of non-negative numbers is non-negative by
(F11)). Thus we obtain 2

√
xy ≤ x + y, so (using (F16) to see that

1
2

is positive and (F13) to multiply both sides by 1
2
)
√
xy ≤ x+y

2
, as

desired. �

Remark 3.27. In the AGM inequality, equality holds precisely when
x = y: First, it is not difficult to check that equality holds if x = y.
Now if x 6= y, then 0 < (x− y)2, and one can repeat the proof with ≤
replaced by <, so the inequality ends up being strict.

4. Basic logic

Lecture 4 will cover the basic logical operators, Lecture 5 will cover
quantifiers (tentative)

We now start our study of the elementary logic inherent in all math-
ematical reasonings (including the reasonings done in the past section).
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Believe it or not, we have already been doing quite a bit of logic
in the past section: For example, we used words such as “for all”,
“for any”, “exists”, “assume”, “if”, “then”, “and”, “or”, “therefore”,
“thus”, etc (some are synonyms). In mathematics, those words have
a very precise meaning, sometimes different from their colloquial use
in English. Since proofs must be unambiguous, it is important that
everybody agrees on what those words exactly mean. This will allow
us to discuss questions that are very foreign to everyday English. For
example, we will see what exactly should be proven to show that the
statement “For any non-negative real number x, if x 6= 2, then either
0 = 1 or x 6= 3” is false.

We start with the basic concept of a proposition. A proposition is
an unambiguous mathematical statement that is either true or false9.
Examples include:

• Every real number has a real square root.
• For all real numbers x and y, |x+ y| ≤ |x|+ |y|.
• Every even natural number strictly larger than 2 is the sum of

two primes.
• 2 + 3 = 5.
• 2 + 2 = 7.

The first and last propositions are false (why?), but nevertheless
they have a clear mathematical meaning. The third example10 (do not
worry if you do not remember what an even number or a prime is) is
also a proposition, but interestingly, mathematicians do not know (as
of May 2014) whether it is true or false. Most believe it is true, but
nobody knows a proof. Such propositions are called conjectures. We
will see that we can reason with propositions, even if we do not know
whether they are true or false.

On the other hand, the following are not propositions:

• Mathematics is boring.
• 42.

The first one has no precise mathematical meaning, while the second
one has no truth value (it is not saying something which is either true
or false).

9You may object (and you would be right) that this is not a good definition,
since we have left undefined what words like “mathematical statement”, “true”,
and “false” mean. Making all of this completely precise would force us to intro-
duce programming language-like formalisms that, while essential to a deeper un-
derstanding of mathematical reasonning, are dry and not too relevant in everyday
mathematical practice. We will not go down that road here.

10Which goes by the name of Goldbach’s conjecture.
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4.1. Logical operators. We can combine propositions using logical
operators such as and or or. For example, “2 + 3 = 5 or 2 + 2 = 7” is
a proposition. Is it true or false? It is true: in mathematics, the “or”
(also called the disjunction) of two propositions is true when at least
one of them is true (so “or” is inclusive: “2 + 3 = 5 or 3 + 2 = 5”
is true). Notice that this does not always match English usage. For
example when in a restaurant you are told that your side can be either
French fries or cole slaw, this means you cannot choose both (unless
you pay extra). On the other hand, if while on a beach you are told
that you should protect yourself from the sun using a cap or a T-shirt,
this means it is also fine if you use both.

Closer to English usage, the “and” (also called the conjunction) of
two propositions is true when both propositions are true. Thus “2+3 =
5 and 2 + 2 = 7” is false, but “2 + 3 = 5 and 3 + 2 = 5” is true.

When considering compound propositions with many ands and ors,
using English becomes annoying, so we introduce a formal “algebra”
of propositions. We specify that the simplest propositions will be T
(which simply abbreviates true and is always true) and F (which is
always false).

For p and q propositions, we introduce symbols to stand for “or” and
“and”: we will write p ∨ q for p or q, and p ∧ q for p and q. We define
these operators using a truth table. A truth table specifies exactly how
an operator behaves by simply listing all possible truth values for p and
q. Here is the truth table of ∨ and ∧:

p q p ∨ q p ∧ q
F F F F
F T T F
T F T F
T T T T

For example, the first line tells us that if both p and q are false, then
p ∨ q and p ∧ q are also false. Using truth tables, we can reason about
propositions without worrying about the ambiguities of the English
language. Let’s now introduce more operators!

A seemingly simple operator is the negation: The negation of a
proposition p, written ¬p and read “not p”, is false if the proposi-
tion is true, and true if it is false. Using a truth table, this translates
to:

p ¬p
F T
T F
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Since the “and” of two propositions is also a proposition, we are
allowed to take its negation. To avoid ambiguities, we use brackets to
say which operation is to be done first. ¬(p ∧ q) takes the negation of
p∧ q, while (¬p)∧ q first takes the negation of p, and then “and”s this
with q. By convention, negations are taken first, so ¬p∧ q will say the
same thing as (¬p) ∧ q.

Is there a simple way of expressing the negation of p ∧ q? Let’s see
what this would say in plain English: if I know that it is false that
both p and q hold, what do I know about p and q? Well, at least one
of them must be false. Said symbolically, ¬p ∨ ¬q. Since it is tricky
to conduct those reasonnings in plain English, you should not consider
the previous sentences as a proof, only as an indication of what you
are looking for. To make our argument precise, let’s use a truth table:

p q ¬p ¬q p ∧ q ¬(p ∧ q) ¬p ∨ ¬q
F F T T F T T
F T T F F T T
T F F T F T T
T T F F T F F

We see that indeed ¬(p∧ q) and ¬p∨¬q behave in exactly the same
way. We say that they are logically equivalent (or just equivalent) and
write ¬(p ∧ q) ≡ ¬p ∨ ¬q. This result has a name:

Theorem 4.1 (De Morgan’s laws for logical operators). For all propo-
sitions p and q:

• ¬(p ∧ q) ≡ ¬p ∨ ¬q.
• ¬(p ∨ q) ≡ ¬p ∧ ¬q.

Proof. The first result has just been proven, and the proof of the second
is similarly done using a truth table (exercise). �

We now introduce an important and often misunderstood operator:
implication.

Definition 4.2. For propositions p and q, the operator p → q (read
“p implies q”, or “if p, then q”) is defined by the following truth table:

p q p→ q
F F T
F T T
T F F
T T T

Notice that if p is false, then p→ q is true regardless of q (using our
notation, F → q ≡ T ). For example, both (0 = 1) → (1 = 1) and
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(0 = 1)→ (1 6= 1) are true propositions. This may be best understood
by an example: Consider the statement “If it is raining, then the road
is wet”. The only way this statement could be false, is if there had been
a day when it was raining, yet the road wasn’t wet. The statement does
not tell us anything about days when it is not raining: in that case,
the road may or may not be wet (maybe the road is near the sea and
waves can reach it, or maybe it’s just some road in the desert where it
never rains).

Concretely, this means that to prove that a statement of the form
p → q is true, it suffices to assume p is true (since if p is false, the
statement holds regardless of q), and show that q must also be true.

We can express p→ q using the operators previously defined:

Theorem 4.3. For all propositions p and q, p→ q ≡ ¬p ∨ q.

Proof. Exercise. �

Note that even if p→ q is true, this does not necessarily mean that
q → p holds. Using the previous example, even if we know that the
road gets wet whenever it is raining, we cannot conclude that it is
raining from the fact the road is wet (maybe somebody just poured
some water on it). This is a very common source of errors. Another
operator expresses this case:

Definition 4.4. For propositions p and q, the operator p ↔ q (read
“p if and only if q”, or “p and q are logically equivalent”) is defined by
the following truth table:

p q p↔ q
F F T
F T F
T F F
T T T

Theorem 4.5. p↔ q ≡ (p→ q) ∧ (q → p).

Proof. Exercise. �

4.2. Quantifiers. A proposition such as “For any real number x, 0 ≤
x2” can be seen as a simple “propositional function”, 0 ≤ x2, together
with a universal quantifier “For any real number” telling us that this
holds regardless of the exact value of x. Notice that this is more com-
plicated than simply saying something like “0 ≤ 12 and 0 ≤ 22”. We
now enlarge our “algebra of propositions” with such quantifiers.

First, we introduce the notion of a propositional function. A proposi-
tional function is a statement with variables that become a proposition
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once the variables are assigned values. For example, 0 ≤ x2 is not a
proposition since it has no meaning if we do not specify x, but it be-
come a proposition once x is specified. We could of course have more
than one variable, as in x =

√
y. The truth value of the propositional

function could depend on the value of the variables. For example,
x =
√
y is true if x = y = 0, but false if x = −1 and y = 0. Note that

it is implicit that the variables always take their values in a particular
domain of discourse (here the real numbers). It is always a good idea
to state this domain of discourse explicitly.

Given a propositional function p(x) with variable x, we would like
to turn it into a proposition. We have already seen one way to do it:
plug in a particular value for x. Another way is to qualify it with a
quantifier. We will consider two of them here: “for all” and “there
exists”.

Definition 4.6. Assume p(x) is a propositional function with variable
x.

We define the proposition ∀x p(x) (said “For all x, p(x)”, or “For
any x, p(x)”) to be true precisely if p(x) is true for any value of the
variable x in the domain of discourse.

We define the proposition ∃x p(x) (said “There exists x such that
p(x)”, or “There is x such that p(x)”) to be true precisely if p(x) is
true for at least one value of x in the domain of discourse.

Example 4.7.

• Formalizing the example above, we get ∀x 0 ≤ x2, where the
domain of discourse is the real numbers.
• We can formalize the statement “For any non-negative real

number x, if x 6= 2, then either 0 = 1 or x 6= 3” by ∀x (x 6= 2→ (0 = 1 ∨ x 6= 3)),
where the domain of discourse is the non-negative real numbers.
Alternatively, we could set the domain of discourse to be all the
real numbers, and formalize the statement by:

∀x (x ≥ 0→ (x 6= 2→ (0 = 1 ∨ x 6= 3)))

• We can formalize the statement “Every real number has a real
square root” by ∀x∃y (y2 = x∧y ≥ 0). The domain of discourse
is again the real numbers.
• The statement of the triangle inequality can be written as ∀x∀y |x+
y| ≤ |x|+ |y|.
• The statement p that every even natural number strictly larger

than 2 is the sum of two primes can be said in many differ-
ent ways. Let Prime(x) stand for the statement “x is a prime



20 SEBASTIEN VASEY

number, and Even(x) stand for the statement “x is an even
number”. Then p can be written:

∀x ((Even(x) ∧ x > 2)→ (∃y∃z Prime(y) ∧ Prime(z) ∧ x = y + z))

Where the domain of discourse is the natural numbers.

Several remarks are in order. First, formalizing statements in this
way can make them hard to read, so it is best to use this kind of
notation sparingly and prefer plain English when there is no ambiguity.
On the other hand, once formalized, we will see it is easy to reason
about the statement itself (e.g. to take its negation, or to see what
exactly one will have to do to prove the statement). Translating from
English could be a bit tricky, since there are many synonyms to express
the same thing. For example, “Assume x is a real number, then 0 ≤
x2”, “Let x be a real number, then 0 ≤ x2”, “For any real number x,
0 ≤ x2” are all saying the same thing.

Notice also that the truth of a proposition could depend on the
domain of discourse. For example,
∀x∃y y2 = x is false if the domain of discourse is the real numbers

(why?) but it is true if the domain of discourse is the non-negative real
numbers.

We now turn to the interplay between quantifiers and negations:
Assume p(x) is a propositional function with variable x. Is there a
simple way to write ¬∀x p(x)? Unfortunately, we cannot use truth
tables to figure it out anymore, but we can still think about what the
question means in plain English: what does it mean for example to say
that not all sheep are black. Well, there must exist a counter-example:
a sheep that is not black. Thus ¬∀x p(x) is logically equivalent (i.e.
(¬∀x p(x))↔ (∃x ¬p(x)) is always true) to ∃x ¬p(x). Similarly, if it is
false that there exists a black sheep, this means no sheep is black, or in
other words, all sheep are non-black. In symbols, ¬∃x p(x) ≡ ∀x ¬p(x).
We will unfortunately not be able to prove these laws, since to avoid
spending too much time on boring formalisms, we have avoided defining
words such as “propositions” too precisely. We will see them as basic
laws of reasoning that should be taken as granted. We state them again
for reference:

Axiom 4.8 (De Morgan’s laws for quantifiers). For any propositional
function p(x):

• ¬∀x p(x) ≡ ∃x ¬p(x).
• ¬∃x p(x) ≡ ∀x ¬p(x).
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To see the analogy with De Morgan’s laws for logical operators, you
should think of ∀x as a possibly infinite “and” over all the elements of
the domain of discourse, and ∃x as a similar possibly infinite “or”.

Concretely, this shows us that to disprove a statement of the form
“For all x, p(x)”, it is enough to find one x such that ¬p(x) (a counterex-
ample). Recall that we had already used this reasoning unconsciously
before.

Example 4.9. The negation of the proposition “Every real number
has a square root” is:

¬∀x∃y y2 = x ≡ ∃x¬∃y (y2 = x ∧ y ≥ 0)

≡ ∃x∀y ¬(y2 = x ∧ y ≥ 0)

This tells us that to prove that “Every real number has a square
root” is false, it is enough to prove that there exists a real number x
such that for every real number y, y is not the square root of x, or
in other words, there exists a real number that is not the square of
any other (non-negative) real number (This is true, since one can take
x = −1).

We close with an important warning: the order of quantifiers mat-
ters : For p(x, y) a propositional function, the statements ∀x∃y p(x, y)
and ∃y∀x p(x, y) are not logically equivalent. Let’s think about an
everyday example: assume p(h, k) is the statement “k is a key that
unlocks the door of house h”. The statement “∀h∃k p(h, k)” says that
for any fixed house, there is a key that opens its door. This sounds
reasonable. On the other hand, the statement “∃k∀h p(h, k)” says that
there is a key that opens every house. In the first statement, each door
might be opened by a different key, but the second statement tells us
that the same key opens every door.

Example 4.10. Here is a more mathematical example: The statement
“For every real number x, there is a real number y such that x < y”
is true (why? If x is a real, then y = x + 1 does the job), but the
statement “There exists a real number y such that for every real number
x, x < y is false (why? Given any real number y, x = y + 1 is such
that ¬(x < y)).

We will see that it is always true that (∃y∀x p(x, y))→ (∀x∃y p(x, y)).
You may want to convince yourself of this fact before moving on.
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5. Elementary proof techniques

Lecture 6 started here
Now that we have some understanding of mathematical statements,

let’s look at some of the most useful techniques to prove them.
Assume you are given a proposition p which you would like to prove

is true (note that if instead you want to prove that it is false, then it
is the same as proving that ¬p is true, and we have seen some tools in
the previous section to make ¬p into a simpler equivalent proposition
(“pushing the negation inside”)). You should realize that there is no
algorithm or clear method that always works. However, there are some
logical steps that are useful to know about and show up over and over
again when proving certain types of statements. This is what this
section focusses on.

5.1. Direct proof. This is the simplest method and the one that you
should try first. You are given p a proposition you would like to prove.
Let’s look at what form your proposition could have. First it could be
that p is so simple you can determine its truth value right away, e.g.
maybe it is T (or maybe you can see by truth table that it is logically
equivalent to T ), or maybe it is 0 6= 1 (which is true simply because it
is an axiom), etc.

Most often however, your proposition is too complicated to just be
an axiom, but instead will be a compound proposition, i.e. it will con-
tain simpler propositions that are put together using and, or, implies,
quantifiers, etc. We would like to reduce the problem of proving p to
the problem of proving these simpler propositions. It turns out that
for each logical operator, there is a clear direct method of doing so.
Below, q and r are propositions.

• If p is q ∧ r, then it is enough to prove both q and r.
• If p is q ∨ r, then it is enough to prove one of q or r.
• If p is q → r, then it is enough to prove r assuming q, i.e. you

can take q for granted in your proof of r. q is often called the
hypothesis, and r the conclusion of the statement p.
• If p is q ↔ r, then it is enough (since they are equivalent by

Theorem 4.5) to prove both q → r and r → q. The statement
r → q is called the converse of q → r.

We can similarly give similar guidelines for quantifiers. Below, q(x)
is a propositional function.

• If p is ∃x q(x), then it is enough to exhibit some element a in
the domain of discourse such that q(a) can be proven to be true.
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• If p is ∀x q(x), then it is enough to fix an arbitrary element a of
your domain of discourse, and prove that q(a) is true. This step
is often expressed by a sentence such as “Let a be an arbitrary
real number” (if the domain of discourse is the real numbers).

At an abstract level, proving a statement boils down to managing a
list of known facts and axioms, and using them wisely to obtain the
result. The facts we know can also be written as propositions, so let’s
see how we can use them. Assuming we already know that proposition
p is true, we can similarly unpack p to make it more transparent. Below,
q and r are propositions.

• If p is q ∧ r, then we know both q and r.
• If p is q ∨ r, then we know that at least one of q or r is true.
• If p is q → r, then whenever we also know that q holds, we

know that r holds.
• If p is q ↔ r, then we know both that q → r and r → q.

Let’s finally look at what happens if p has quantifiers. Below, q(x)
is a propositional function.

• If p is ∀x q(x), then for an arbitrary element a in the domain
of discourse, q(a) will be true.
• If p is ∃x q(x), then we know that we can pick (or fix ) an

element a in the domain of discourse such that q(a) is true.

You might think the above is just repeating redundant information
about the meaning of propositions. Yet it turns out that those steps
are used over and over again in almost any proofs, so it is useful to
keep them in mind.

Remark 5.1 (From something false, anything follows). The rules for
dealing with known facts of the form q → r tells us something impor-
tant about logical reasoning: Assume that q is a false proposition. From
the definition of an implication, we know that q → r, holds, regardless
of r. Thus if we make a single “tiny” mistake in a mathematical proof
and manage to show that q is true, we will be able to derive any non-
sense we like11. This is why mathematicians put so much emphasis on
correct proofs.

Let’s try to use those principles on some example.

Theorem 5.2. For all propositional functions p(x, y), (∃y∀x p(x, y))→
(∀x∃y p(x, y)) is always true.

11The mathematician Bertrand Russel was once challenged by one of his student
to prove from 0 = 1 that he was the pope. Here is his proof: adding 1 to both sides
of the equation, we get 1 = 1 + 1. The pope and I, form 2 persons, but since 2 = 1,
we actually are only one person, therefore I am the pope.
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Proof. We want to prove a statement of the form q → r, where q is
∃y∀x p(x, y), and r is ∀x∃y p(x, y). Thus we assume q as a given, and
want to prove r. r is of the form ∀x s(x), where s(x) is ∃y p(x, y),
thus we let a be an arbitrary element of the domain of discourse, and
we want to show that s(a) holds. This is an existential statement, so
it is enough to exhibit a single b such that p(a, b). For this, we use q:
we know there exists a single y such that something depending on y
holds. We fix such a y and take12 b := y. q tells us that for an arbitrary
x, p(x, y), and so in particular if we take x = a, p(a, b) holds. This is
exactly what we wanted to show. �

For more practice, we continue playing with numbers.

Definition 5.3 (Even and odd integers). An integer n is even if it can
be written as n = 2m for m an integer (or, in other words, if there
exists an integer m such that n = 2m). n is odd if it can be written as
n = 2m+ 1 for m an integer.

Example 5.4. 0 is even, since 0 = 2 · 0. 2 is even, since 2 = 2 · 1. 1
is odd, since 1 = 2 · 0 + 1. We will see that a number is even exactly
when it is not odd.

Theorem 5.5 (Sum of odds and evens). Assume n and m are integers.

(1) n is even if and only if −n is even. n is odd if and only if −n is
odd.

(2) If n and m are even, then n+m is even.
(3) If n and m are odd, then n+m is even.
(4) If n is odd and m is even, then n+m is odd.
(5) If n is even, then nm is even.
(6) If n and m are odd, then nm is odd.

Proof.

(1) Assume first that n is even. Then n = 2k for k an integer.
Thus −n = −2k = (−1)2k = 2(−1)k = 2(−k). Since k is an
integer, −k is also an integer (by definition of the integers), so
−n is even. For the converse, assume that −n is even. Then by
the first part −(−n) = n is even, as desired. The proof of the
second statement is similar (exercise).

(2) Assume that n and m are even. By definition, this means that
n = 2k for k an integer, and m = 2k′ for k′ a possibly different

12We use b := y instead of b = y to emphasize that b is defined to be y (so b = y
is not a consequence of any previous fact). Mathematically, b := y and b = y mean
the same thing.
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integer. Thus we have that n+m = 2k+ 2k′ = 2(k+k′). Since
the sum of two integer is an integer (Fact 3.6), n+m is even.

(3) Assume that n and m are odd. By definition, this means that
n = 2k + 1 for k an integer, and m = 2k′ + 1 for k′ an integer.
Thus we have that n+m = 2k + 1 + 2k′ + 1 = 2k + 2k′ + 2 =
2(k + k′ + 1). Since the sum of two integer is an integer (Fact
3.6), n+m is even.

(4) Assume that n is odd and m is even. By definition, this means
that n = 2k+ 1 for k an integer, and m = 2k′ for k′ an integer.
Thus we have n+m = 2k+ 1 + 2k′ = 2(k+k′) + 1. Since k+k′

is an integer, n+m is odd.
(5) Exercise.
(6) Exercise.

�

As a particular case, we obtain that for any even integer n, n2, n+2,
and n− 2 are even, and n+ 1 and n− 1 are odd.

5.2. Proof by contradiction. We sometimes get “stuck” trying to
apply the direct methods above. For example, assume we want to
prove p which is of the form ∀x q(x). Proving something holds for every
element in the domain of discourse can be challenging, so sometimes it
might be easier to derive a contradiction (i.e. a false proposition) from
the negation of p. Formally, if we could show that ¬p → F is true,
then looking at the truth table of the implication operator, this must
mean that ¬p is false, and hence that p is true. In symbol:

Theorem 5.6 (The principle of reasoning by contradiction). For any
proposition p, (¬p→ F )→ p is always true.

Proof. Exercise: use a truth table. �

The power of the method of proof by contradiction is that when we
want to prove p, we can assume ¬p holds for free. Let us look at an
example:

Theorem 5.7. For any even integer n, n is not odd.

Proof. By definition n = 2m for some integer m. We would like to
show that n is not odd, i.e. it is false that there exists an integer k so
that n = 2k + 1, or equivalently, for any integer k, n 6= 2k + 1. It is
not so clear how to proceed, so we assume for a contradiction that the
opposite is true, namely there exists an integer k so that n = 2k + 1.

Then 2m = 2k + 1, so 2(m− k) = 1, so m− k = 1
2
. Now recall that

0 < 1
2
< 1 (why?), so 1

2
cannot be an integer, but m − k = m + (−k)
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is an integer by Fact 3.6. Thus we obtain the proposition “m− k is an
integer and m−k is not an integer” which is a contradiction. Therefore
it must be that n is not odd. �

Using a technique called induction, we will later prove:

Fact 5.8. Any integer is either even or odd (but not both by the
previous theorem).

Here, lecture 6 ended and lecture 7 started.
From this, we can prove:

Theorem 5.9. For any integer n, n is even if and only if n2 is even.

Proof. If n is even, then by Theorem 5.5 n2 is even.
For the converse, assume n2 is even, and suppose for a contradiction

that n is not even. By the previous fact, it must be odd. But then n2

is odd by Theorem 5.5. Since n cannot be both even and odd, this is
a contradiction. �

Recall that a real number is rational if it can be written in the form
n/m for n and m integers, m nonzero. A number which is not rational
is called irrational. For the next example, we will also need (and this
will also be proven later using induction):

Fact 5.10. Given a rational number r, there exists integers n and m
with r = n/m, m nonzero, and at least one of n or m is odd.

Theorem 5.11.
√

2 is irrational.

Proof. We have to prove that there does not exist integers n,m with m
nonzero and

√
2 = n/m. It is unclear how to proceed, so we assume for

a contradiction that this is false, i.e.
√

2 is rational. Use the previous
fact to pick an integer n and a nonzero integer m such that at least
one of them is odd and

√
2 = n

m
. Taking squares on both sides, 2 =(

n
m

)2
= n2

m2 . Multiplying both sides by m2, 2m2 = n2. This shows that
n2 must be even, but then by Theorem 5.9, n is even. Thus n = 2k
for some integer k, and so 2m2 = n2 = 4k2. Hence m2 = 2k2 must be
even, and hence m must be even. Since at least one of n or m must be
odd, this is a contradiction. �

5.3. Proof by cases. Assume again that we want to prove the propo-
sition p. We have already seen examples where we are stuck, but we
would know what to do assuming some proposition q, and we would
also know what to do assuming some proposition r. Assume further
that we know that at least one of these always holds, i.e. q ∨ r ≡ T .
Then we are done proving p. In symbols:
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Theorem 5.12 (The principle of reasoning by cases). For all proposi-
tions p, q, r:

((q ∨ r) ∧ (q → p) ∧ (r → p))→ p is always true.

Proof. Exercise: use a truth table. �

Very often, r will just be ¬q, and then q ∨ r is always true (why?).
Let’s look at an example. For this, we need to define the operation
xy for x a positive real number and y an arbitrary real number. This
turns out to be very tricky, so we will just take the existence of this
operation as a given:

Fact 5.13. There is an operation xy for x a strictly positive real number
and y a real number satisfying the following properties. For any strictly
positive x, and real numbers y and z:

(1) x0 = 1
(2) x1 = x.
(3) xy+z = xy · xz.
(4) (xy)z = xy·z.

It turns out there are many such maps, and that to characterize the
usual exponentiation, one needs to add the condition that for a fixed
x the map y 7→ xy is continuous. There is no need for you to worry
about this detail here.

Theorem 5.14. There exists irrational numbers x and y such that xy

is rational.

Proof. We split our proof into two cases. Recall that
√

2 is irrational
(Theorem 5.11).

Case 1:
√

2
√
2

is rational. Then we can take x = y =
√

2 which are
irrational by the observation above.

Case 2:
√

2
√
2

is irrational. Then let x :=
√

2
√
2

and y :=
√

2. x is
irrational by assumption, y is irrational by the above, and

xy =

(√
2
√
2
)√2

=
√

2
√
2·
√
2

=
√

2
2

=
√

2
1+1

=
√

2 ·
√

2 = 2

which is rational.
Since for any proposition p, p ∨ ¬p is always true (exercise), we see

that either case 1 or case 2 happens, so we are done. �

The downside of such a proof is that it is nonconstructive: It gives
us no information as to which case is true. We know one of them must
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be, but we do not know which one. It is a hard theorem of Kuzmin

(beyond the scope of this course) that
√

2
√
2

is actually irrational.

6. Introduction to sets

Previously, we “defined” the natural numbers to be 0, 1, 2, 3, . . .
What do these three dots actually mean? The intended meaning is
that we keep adding 1 “forever”, generating more and more natural
numbers. This is of course a lousy explanation, but even if we accept
it, how can we make this intended meaning precise? An alien ignorant
of terrestrial mathematics might believe this means 0, 1, 2, 3, 2, 1, 0,
. . . How can we precisely tell such an alien what we mean?

At this point, the concept of a set becomes useful. The situation
is somewhat analogous to the real numbers: you are probably already
familiar with sets: examples include the empty set, the set of real
numbers, the set of natural numbers, the set {0, 1, 4}, the set {a, b},
etc; Operations on sets include union, intersection, complementation,
etc.

Similarly to the case of the real numbers, it is very tricky to define
what a set is. Some textbooks define a set as a collection of objects.
This is not very satisfying: isn’t “collection” another word for “set”?
Isn’t this “definition” analogous to saying that a real number is a quan-
tity denoting a magnitude?

Another issue is that the intuitive meaning of the term “collection”
is not quite what is intended. For example, you will prove in your
homework that there cannot be a set containing all sets.

In these notes, we will adopt an axiomatic approach: we assume that
there are objects we call sets, and give a list of some of their properties.

Axiom 6.1 (First axioms of sets). Sets are objects satisfying the fol-
lowing properties:

• (∈): Given an object a and a set A, we can ask whether a is in
A (written a ∈ A). If a ∈ A, we say that a is an element, or a
member of the set A.
• (E): Extensionality: A set is determined by its elements: for

all sets A and B, if for any a ∈ A we have a ∈ B, and for any
b ∈ B we have b ∈ A, then A = B.
• (S): Specification: Given a set A, and p(x) a propositional

function with variable x taking values in A, we can form the set
B of elements of A satisfying p (written B := {a ∈ A | p(a)}.
This is sometimes called the set-builder notation.). An object
a will be in B exactly when it is in A and it satisfies p(a).



21-127 LECTURE NOTES 29

• (P ): Pairing: For any two (not necessarily distinct) objects a
and b, we can form the set A := {a, b}. An object x will be in
A exactly when x = a or x = b.

We will introduce more axioms later, but some remarks are in order:

• We are effectively cheating, because we are not saying what an
“object” is. You can just take it to mean “anything we will
use sets with”. For example, numbers are objects, but sets are
also objects, so one can define a set containing other sets. We
sometimes call such a set a collection of sets or a family of sets.
• Extensionality tells us in particular that sets are unordered : the

sets {1, 2} and {2, 1} are the same. Later, we will define the
notion of an ordered pair, and the ordered pair (1, 2) will be
different from the ordered pair (2, 1).
• The pairing axiom tells us in particular that for any object a,

we can form the set {a, a} which by the extensionality axiom
is the same as the set {a} containing the single element a. We
will see later how to form sets with more than two elements.
• In the axiom of specification, it is important that we start with

a given set A, and then “refine” it to obtain a new set B. It
is not possible to start with a propositional function p(x) and
form the set of all a such that p(a). If it were possible, we could
take p(x) to be ”x is a set”, and form the set of all sets. You will
see in your homework that it already follows from the axioms
above such a set cannot exist.

From the axioms above, we can already form a special set that plays
an important role:

Theorem 6.2 (Existence of the empty set). There is a unique set that
contains no elements. We write ∅ for this set.

Proof. By the axiom of pairing, we can form the set A := {1, 2}. By
the axiom of specification, we can form B := {a ∈ A | F} (recall that
F denotes the proposition that is always false). By definition, B does
not contain any element. B is unique with this property, since sets are
determined by their elements. �

Remark 6.3. In mathematics, it often happens that we have to prove
existence of a unique object satisfying some properties (like in the pre-
vious result). The proof of such a result usually has two parts: we
prove the object exists, usually by constructing it, and then we prove
it is unique by showing that any two objects with the required property
must be the same.
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We now define the important notion of being a subset:

Definition 6.4. A set A is a subset of a set B (written A ⊆ B) if for
all a ∈ A, a ∈ B. We say A is a proper subset of B (written A ⊂ B) if
A ⊆ B but A 6= B. We write A ⊇ B to mean B ⊆ A, and A ⊃ B for
B ⊂ A.

Remark 6.5. Some people write A ⊂ B for A ⊆ B, while using A ( B
to emphasize that the inclusion is proper.

For example, ∅ ⊆ A for all sets A, and {1} ⊂ {1, 2}.
Directly from the axiom of extensionality, we obtain:

Theorem 6.6. Two sets A and B are equal if and only if A ⊆ B and
B ⊆ A.

Proof. If A = B, they have in particular the same elements, and so
A ⊆ B and B ⊆ A follow. If A ⊆ B and B ⊆ A, then the definition of
the axiom of extensionality tells us that A = B. �

This tells us that in virtually all cases, to prove that two sets are
equal, we must show that each is a subset of the other.

Just like for numbers and propositions, we would like to define some
operation on sets. Here is one of the most important:

Definition 6.7. Given two sets A and B, the intersection of A and B
(written A ∩B) is the set {a ∈ B | a ∈ A and a ∈ B}.

More generally, let F be a nonempty family of sets. Pick some set
B ∈ F . The intersection of the family F (written

⋂
A∈F A) is the set

{a ∈ B | a ∈ A for all A ∈ F}

Thus the intersection of two sets is simply the set of all objects con-
tained in both sets, and more generally, the intersection of a (possibly
infinite) family of sets is the set of objects contained in all sets of the
family. You should convince yourself that the definition of the inter-
section of a family F does not depend on the choice of B ∈ F .

Example 6.8. For any sets A and B:

•
⋂

C∈{A,B}C = A ∩B.
• A ∩ A = A.
• A ∩ ∅ = ∅.
• {1, 2} ∩ {2, 3} = {2}.
• If for each n ∈ N, An is a set, and F is a set of the form
{A0, A1, ...}, then

⋂
A∈F A is sometimes written as A0∩A1∩ ...,

or
⋂∞

n=0An, and is the set of elements that are in An for all
n ∈ N.
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Here, lecture 7 ended and lecture 8 started.
Another natural construction would be to replace the “for all A ∈ F”

above by “there exists A ∈ F”. Such a construction is called the union
of a family of sets. For example, A ∪ B would be the sets of objects
that are either in A or in B. However, it never appears in the axioms
stated so far that this should be a set. Thus we make it a new axiom:

Axiom 6.9 (Union axiom). (U): For any two sets A and B, we can
form a set C such that c ∈ C exactly if c ∈ A or c ∈ B. C is called the
union of A and B and we write C = A ∪ B. More generally, for any
family F of sets, we can form a set C such that c ∈ C exactly if there
exists A ∈ F such that c ∈ A. We call C the union of the family F
and write C =

⋃
A∈F A.

Example 6.10. If F = {{0}, {0, 1}, {0, 1, 2}, ...} (it turns out that,
assuming more axioms, it is a set), then

⋃
A∈F A = {0} ∪ {0, 1} ∪

{0, 1, 2} ∪ ... = N. Even though we will only be able to make this
precise and prove it once we have a definition of the natural numbers,
you should be able to convince yourself that this is true: given any
element in the union, it has to be in some {0, 1, 2, ..., n}, for n a natural
number, and some must be a natural number ≤ n. This shows the left
hand side is contained in the right hand side. Now given a natural
number n, n is in {0, 1, 2, ..., n} which is part of F , hence it is in the
union. This shows the right hand side is contained in the left hand
side.

Theorem 6.11. Let F be a non-empty family of sets. Let B ∈ F .

• B ⊆
⋃

A∈F A.
•
⋂

A∈F A ⊆ B.

Proof. For the first statement, take b ∈ B arbitrary. We show that
b ∈

⋃
A∈F A. By definition of the union, we have to see there exists

A ∈ F such that b ∈ A. We take A = B, and since we assumed B ∈ F ,
we are done.

For the second statement, let b ∈
⋂

A∈F A be arbitrary. By definition
of the intersection, b is in all A ∈ F , so in particular, b ∈ B, as
needed. �

For more practice in showing inclusions, we prove a distributive law
for sets:

Theorem 6.12. For any sets A,B,C, A∩(B∪C) = (A∩B)∪(A∩C).

Proof. By Theorem 6.6, it is enough to show double inclusion: the left
hand side is contained in the right hand side, and the right hand side
is contained in the left hand side.
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We first show the left hand side is contained in the right hand side.
Let x ∈ A ∩ (B ∪ C) be arbitrary. Then x is in A, and x is in B ∪ C.
We consider two cases: either x ∈ B, or x ∈ C. If x is in B, then x is
in A and B, so in A ∩B, so in (A ∩B) ∪ (A ∩ C). If x is in C, then x
is in A and C, so in A ∩ C, so in (A ∩B) ∪ (A ∩ C).

We now show the right hand side is contained in the left hand side.
Let x ∈ (A ∩ B) ∪ (A ∩ C) be arbitrary. Then x is either in A ∩ B
or in A ∩ C. We consider two cases depending on which happens. If
x is in A ∩ B, then x is in A and in B, so x is in A and in B ∪ C, so
x ∈ A∩ (B ∪C). If x is in A∩C, then x is in A and in C, so in A and
in B ∪ C, so in A ∩ (B ∪ C).

We have shown that the left hand side and the right hand side are
subsets of each other, so they must be equal. �

Using the union axiom, we can form sets with more than two objects.
Suppose a, b, c are objects. By pairing, we can form the sets {a, b}
and {b, c}. We can then take the union of the sets to obtain the set
{a, b, c}. We can of course iterate this process to build sets with more
elements. Even then, it is not clear how to build sets with infinitely
many elements, so we add another axiom:

Axiom 6.13. (R): The real numbers form a set. We call this set R.

Finally, we also have to define another operation on sets:

Axiom 6.14 (The power set axiom). (P): For any set A, there exists
a set B whose elements are exactly the subsets of A: x ∈ B if and only
if x ⊆ A. We write B = P(A) and call B the power set of A.

Example 6.15. P({1, 2}) = {∅, {1}, {2}, {1, 2}}.
We now have that P(R), P(P(R)), ... are all sets, and we can

also take their union or use the axiom of separation to restrict them to
what we want. This basically shows that any collection (in the informal
sense) of objects we are likely to care about will be a set, so we adopt
the following principle:

Fact 6.16. Any collection of real numbers, sets of real numbers, sets of
sets of real numbers, etc. is a set. Also, any finite collection of objects
is a set.

In short, unless you really exaggerate, any collection you are likely
to build will be a set. Thus we will be careless and won’t justify every
time exactly why an object we build is a set.

We are now ready to precisely define the set of natural numbers.
We intend to build a set X whose elements are 0, 1, 2, 3, 4, . . . In
particular, we would like that:
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(1) 0 ∈ X.
(2) For all x ∈ R, if x ∈ X, then x+ 1 ∈ X.

Call such a set an inductive set. There are many such sets that are
not the natural numbers (for instance, R itself is such a set). In a sense
however, we want the properties above and no more, i.e. we want the
natural numbers to be the smallest set satisfying those properties. In
set-theoretic language, we will take the intersection of all sets satisfying
those properties.

Definition 6.17. The set N of natural numbers is defined to be the
intersection of all inductive sets (see above). In symbols13

N :=
⋂
A∈F

A

Where

F := {A ∈ P(R) | A is an inductive set}

Note first that F above is non-empty (R is an inductive set). More-
over, N is also an inductive set (i.e. it has the properties above). From
the definition of the natural numbers and Theorem 6.11, we have that:

Theorem 6.18. If S is an inductive set, then N ⊆ S.

As an exercise in understanding the definition, let’s prove an easy
property of N:

Theorem 6.19. If x is a negative real number, then x /∈ N.

Proof. The set R≥0 = {y ∈ R | y ≥ 0} is an inductive set that does
not contain x. As N is contained in any inductive set, N ⊆ R≥0, and
so x /∈ N. �

We can also redefine the integers and rational numbers more pre-
cisely:

Definition 6.20.

• The set Z of integers is defined by:

Z := N ∪ {x ∈ R | x = −n for some n ∈ N}

13This is yet another example where using symbols makes things harder to un-
derstand. In your own writeup, it is perfectly fine if you choose to describe a set
in words (e.g. if you say that the set of natural numbers is the intersection of all
inductive sets), but you should make sure you are aware of the precise meaning of
those words.
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• The set Q of rationals is defined by:

Q := {x ∈ R | x = n/m for some n,m ∈ Z with m 6= 0}

These definitions in our belt, we are now ready to prove statements
about the natural numbers.

7. Induction

We previously got stuck trying to prove that any natural number
was either even or odd. What went wrong and what should a proof of
this look like? For a start, we know that 0 is even, and we know that
if n is even, then n+ 1 is odd, and if n is odd, then n+ 1 is even. Thus
1 is odd, 2 is even, 3 is odd, and so on. This “and so on” is usually
a good indication that one has to use the principle of mathematical
induction:

Theorem 7.1 (The principle of mathematical induction). Assume p(x)
is a propositional function, where the variable x takes values in the
natural numbers. Assume we know that:

(1) p(0) is true.
(2) For any natural number n, if p(n) is true, then p(n+ 1) is true.

Then p(n) is true for all natural numbers n.

Proof. Let S be the set of natural numbers where p holds. In symbols:

S := {n ∈ N | p(n)}
From the assumptions on p, we know that S is an inductive set, so

by Theorem 6.18, N ⊆ S. By definition, S ⊆ N, and so S = N. Thus
for any natural number n, n ∈ S, so p(n) is true. �

The principle of mathematical induction tells us that to prove a
statement holds of all natural numbers it is enough to prove it holds
for 0 (sometimes called the base case), and that it holds for n + 1
whenever it holds for n (sometimes called the inductive step). When
proving p(n) implies p(n + 1), p(n) is called the inductive hypothesis.
The intuitive justification for this principle is the following: assume we
know that p(0) holds and p(n + 1) holds whenever p(n) holds. Then
taking n = 0, p(0 + 1) = p(1) holds. Taking n = 1, p(2) holds. Taking
n = 2, p(3) holds, and so on. One image to have in mind is that of
climbing a ladder: to climb an entire ladder, it is enough to start on
the first step (p(0)), and from step n, move up to step n+ 1.

We are finally ready to prove Fact 5.8.

Theorem 7.2. Any natural number is either even or odd.
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Proof. We use the principle of mathematical induction on the proposi-
tional function p(x) saying “x is either even or odd”.
Base case. p(0) holds, since 0 = 2 · 0, so is even.
Inductive step. We want to show that for any natural number n, p(n)
implies p(n + 1). Recall from the section on direct proofs that to do
this we have to take an arbitrary natural number n, and show assuming
p(n) is true that p(n+ 1) is true. So take an arbitrary natural number
n, and assume p(n) is true, i.e. n is either even or odd. If n is even,
then n+ 1 is odd, so p(n+ 1) holds. If n is odd, then n+ 1 is even, so
p(n+ 1) holds. Thus in both cases, p(n+ 1) holds.

Therefore by the principle of mathematical induction p(n) holds for
any natural number n, i.e. any natural number is either even or odd.

�

Since it is easy to make mistakes while using the principle of math-
ematical induction, I strongly recommend you to format your proof
according to the basic template above, namely:

(1) Say that you are going to use the principle of mathematical in-
duction (or just induction) and explicitly state the propositional
function p(x) you are going to use it with.

(2) Make a subsection for the base case, and give its proof.
(3) Make a subsection for the inductive step, and give its proof.
(4) Conclude by quoting the principle of mathematical induction.

Here, lecture 8 ended and lecture 9 started.

Theorem 7.3. Any integer is either even or odd.

Proof. Let x be an integer. Then x is either a natural number (in which
case we use the previous theorem), or x = −n for some natural number
n. Pick such an n. By the previous theorem, n is either even or odd.
If it is even, then −n will be even, and if it is odd, then −n will be odd
(Theorem 5.5). Therefore x is either even or odd. �

The principle of mathematical induction similarly applies if we start
somewhere else than 0. For example, if we prove only that p(1) and
p(n) implies p(n + 1) for n ≥ 1, then we get that p(n) holds for all
natural numbers n ≥ 1. More generally:

Theorem 7.4 (The generalized principle of mathematical induction).
Assume m is an integer. Assume p(x) is a propositional function, where
the variable x takes values in the integers ≥ m. Assume we know that:

(1) p(m) is true.
(2) For any integer n ≥ m, if p(n) is true, then p(n+ 1) is true.

Then p(n) is true for any integer n ≥ m.
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Proof. Consider the propositional function q(x) (where x is a natural
number) which says that p(x + m) is true. Then q(0) is the same as
p(m) which is true by assumption, and for any natural number n, if
q(n) holds, then p(n + m) holds, so p(n + m + 1) holds, so q(n + 1)
holds. By the principle of mathematical induction, q(n) holds for all
natural numbers n, and hence p(n + m) holds for all natural numbers
n, so in other words, p(n) holds for all natural numbers n ≥ m. �

We now turn to inductive definitions. We would like to make sense
of objects such as the sum 0 + 1 + 2 + . . . + n, where n is a natural
number, or the product x · x · . . . · x (n times). Again, we want to get
rid of the ambiguities raised by the three dots. For this, we introduce
new notation:

Definition 7.5. For n a natural number and x a real number, we
inductively define xn as follows:

• x0 = 1.
• xn+1 = xn · x.

Remark 7.6. We have defined 00 = 1. It turns out to be a very useful
convention, but there are some issues with giving a definite value to
00. For example, the functions 0x and x0 have limits 0 and 1 respec-
tively as x approaches 0 from the right (this is why 00 is typically an
undeterminate form in calculus textbooks). This shows that one must
in general be careful when dealing with exponentiation, limits, and the
number zero. In this course, we shall be safe, as we will not deal with
limits.

Fully justifying why this style of definition is permissible would take
us too far, but you can think of it as a consequence of the principle
of mathematical induction: we know that xn is defined for n = 0, and
we know that if xn, then xn+1 is defined. Therefore xn is defined for
all natural numbers n. The definition is not circular, since we are only
relying on the definition at stage n to define stage n+ 1 (i.e. we always
rely on past stages, never on current or future stages).

Note that x2 = x1 · x = x0 · x · x = x · x, so this agrees with our
previous definition of the square of a number.

Let’s look at how we would do the same thing for sums:

Definition 7.7 (Σ notation). Assume f(i) is some expression14 de-
pending on i, and n is a natural number. We define

∑n
i=1 f(i) as

follows:

•
∑n

i=1 f(i) = 0 if n = 0.

14We will later introduce the concept of a function and make this precise.
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•
∑n+1

i=1 f(i) = f(n+ 1) +
∑n

i=0 f(i).

We can similarly define
∑n

i=k f(i) for k a natural number. If k > n,
we adopt the convention that this is zero.

Remark 7.8. It is sometimes simply more convenient to write three
dots instead of introducing new notation. We may in the future do so,
but you should keep in mind that this is only a convenience, and that
this could be made precise using induction. Sometimes, we may also
need to be absolutely clear and avoid using the three dots. In your own
writing, you should use your own judgment as to which is best: a more
readable notation, or a more precise one?

Example 7.9.

•
∑n

i=1 1 = 1 + 1 + 1 + . . .+ 1 = n (the ones repeat n times).
•
∑n

i=1 i = 1 + 2 + 3 + . . .+ n.

Is there a simple formula giving us the value of
∑n

i=1 i? It turns out
there is:

Theorem 7.10. For any natural number n:

n∑
i=1

i =
n(n+ 1)

2

Proof. We use the principle of mathematical induction on the proposi-

tional function p(x) saying “
∑x

i=1 i = x(x+1)
2

”.

Base case. If p(0) just says that
∑0

i=1 i = 0. This is true since the left
hand side is zero by definition.
Inductive step. Let n be an arbitrary natural number, and assume

p(n) holds, i.e.
∑n

i=1 i = n(n+1)
2

. We want to see that the same for-

mula holds with n replaced by n+ 1, namely
∑n+1

i=1 i = (n+1)(n+2)
2

. We
compute:

n+1∑
i=1

i = n+1+
n∑

i=1

i = n+1+
n(n+ 1)

2
=

2(n+ 1) + n(n+ 1)

2
=

(n+ 2)(n+ 1)

2

Where the first equality uses the definition of Σ notation, the second
uses the inductive assumption p(n), and the last two hold by some ele-
mentary algebra (that could easily be justified from the facts we know
about the real numbers). This completes the proof of the inductive
step.

By the principle of mathematical induction, p(n) holds for any nat-
ural number n, as desired. �
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7.1. Strong induction. In the inductive step of a proof by induction
we have to prove p(n + 1) holds assuming p(n). Wouldn’t it be nice
if we could assume that p(k) for k ≤ n also holds? Since we think
of proving something by induction as climbing a ladder, and we have
already climbed all steps ≤ n before reaching step n + 1, this sounds
reasonable. This is what the principle of strong induction tells us:

Theorem 7.11 (The principle of strong induction). Assume p(x) is a
propositional function, where the variable x takes values in the natural
numbers. Assume we know that:

(1) p(0) is true.
(2) For any natural number n ≥ 1, if p(m) is true for any natural

number m < n, then p(n) is true.

Then p(n) is true for all natural numbers n.

Proof. We use the principle of mathematical induction on the proposi-
tion q(x) which says “p(m) is true for any natural number m ≤ x”.
Base case. q(0) just says that p(x) is true for any natural number
m ≤ 0, but since the only such natural number is zero, it is enough to
see that p(0) is true, and it is by assumption.
Inductive step. Let n be an arbitrary natural number, and assume
q(n) holds. We show q(n + 1), i.e. p(m) holds for all m ≤ n + 1. The
induction hypothesis q(n) already tells us that p(m) holds for every
m ≤ n, so it is enough to see that p(n+ 1) holds. But this is the case
by assumption (2). Therefore q(n+ 1) is true.

By the principle of mathematical induction, q(n) is true for all nat-
ural numbers n. In particular, p(n) is true for all natural numbers
n. �

Remark 7.12. We can combine the two conditions of the principle of
strong induction into only one: For any natural number n, if p(m) is
true for all m < n, then p(n) is true. This is the same as (2) if n ≥ 1,
and if n = 0, then the statement “p(m) is true for any natural number
m < 0” is always vacuously true, i.e. it holds simply because there is
no natural number below 0.

As an application of the principle of strong induction, we prove that
every natural number is a product of primes.

Definition 7.13. An integer m divides an integer n (written m|n) if
there exists an integer k such that n = mk.

Here are some easy properties of dividing:

Theorem 7.14. For all integers n,m, k:
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(1) n is even if and only if 2 divides n.
(2) If n = m · k, then both m and k divide n.
(3) For m nonzero, m divides n if and only if n/m is an integer.
(4) m divides 0.
(5) 1 divides n.
(6) 0 divides n if and only if n = 0.
(7) m divides n if and only if ±m divides ±n.
(8) If m divides n and n is nonzero, then |m| ≤ |n|.
(9) If k divides m and m divides n, then k divides n.

Proof.

(1) By definition.
(2) By definition.
(3) If m divides n, there exists an integer r such that n = mr, so

since m is nonzero, r = n/m, so n/m is an integer. Conversely,
if n/m is an integer r, then mr = n, so m divides n.

(4) 0 = 0 ·m.
(5) n = 1 · n.
(6) If 0 divides n, then n = r ·0 = 0 for some integer r. Conversely,

by (4) any integer divides 0, and so in particular 0 divides 0.
(7) If m divides n, then n = mr for some integer r. Thus −n =

m(−r), so m divides −n, and also n = (−m)(−r), so −m
divides n. This shows one can change the signs of m and n
arbitrarily without changing divisibility, and the result follows.
This also proves the converse.

(8) Assume m divides n and n is nonzero. By (7), we can replace
n and m by their absolute value, so assume that n and m are
already natural numbers. Fix an integer r such that n = mr.
Since n is nonzero, both r and m are nonzero. Since n and m
are natural numbers, r is a natural number, so must be positive.
Thus we have 1 ≤ r = n/m, so multiplying by m, m ≤ n, as
needed.

(9) Assume k divides m and m divides n. Fix integers m′ and n′

such that m = km′ and n = mn′. Then n = k(n′m′), so k
divides n.

�

Here, lecture 9 ended and lecture 10 started

Definition 7.15. A natural number p is prime if p ≥ 2 and if any
natural number that divides p is either 1 or p. A natural number ≥ 2
which is not prime is called composite.
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Example 7.16. You should convince yourself that 2 and 3 are prime,
but 4 is not prime, as 4 = 2 · 2, so 2 divides 4. The next primes are
5, 7, 11, 13, . . .. We will see that there are infinitely many primes.

Theorem 7.17. A natural number n ≥ 2 is composite if and only
if there exists natural numbers m and k with 1 < k ≤ m < n and
n = m · k.

Proof. If there exists m and k with 1 < k ≤ m < n and n = mk, then
they witness that n is composite. Conversely, if n is composite, there
exists a natural number m that is not 1 or p and divides n. Since n is
nonzero and both n and m are natural numbers, Theorem 7.14.(8) tells
us that m ≤ n. By assumption, m 6= 1, m 6= n, so 1 < m < n. Since
m divides n, k := n/m is a natural number and it is easy to check that
1 < k < n. Exchanging the role of m and k if necessary, we can assume
without loss of generality that k ≤ m. �

Theorem 7.18. Let n ≥ 2 be a natural number. Then n is a product
of primes, i.e. there exists a natural number r, and primes p0, . . . , pr
such that n = p0p1 · · · pr.

Proof. We use the principle of strong induction on the proposition p(x)
which says that x is a product of primes. We start our induction at
x = 2 and prove p(x) holds for every natural number x ≥ 2.
Base case. p(2) holds since 2 is prime.
Inductive step. Let n be an arbitrary natural number, n > 2. Assume
p(m) holds for every m < n. If n is prime, we are done. If n is not
prime, we use the previous theorem to see that there exists natural
numbers k and m with 1 < k ≤ m < n so that n = m · k. By the
induction hypothesis, p(m) and p(k) hold, so m = p0 · · · pl and k =
pl+1 · · · pr for primes p0, . . . , pl, . . . , pr. Therefore n = m · k = p0 · · · pr
is also a product of primes.

By the principle of strong induction, every natural number n ≥ 2 is
a product of prime. �

Remark 7.19. In this sense, the primes are the building blocks of the
natural numbers. We will see later that this decomposition into primes
is unique (up to the ordering of the primes).

Example 7.20. 4 = 2 ·2 (so the same prime may appear several times
in the decomposition). 10 = 2 · 5, 150 = 2 · 3 · 5 · 5.

To continue, we need the concept of a minimal element

Definition 7.21. Assume a ∈ R and X ⊆ R. a is a minimal element
(or minimum) of X if a ∈ X and for any b ∈ X, a ≤ b.
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Example 7.22.

• The set Z has no minimal elements: if a ∈ Z, b := a − 1 is
strictly smaller.
• The set R>0 of positive real numbers has no minimal elements:

If a ∈ R>0, then a/2 is strictly smaller.
• The set R≥0 has minimal element 0.

Remark 7.23. If X ⊆ R has a minimal element a, then it is unique:
if a′ ∈ X is a minimal element, then a ≤ a′ and a′ ≤ a by definition of
a minimal element, and so a = a′.

As another application of strong induction, you will prove in your
homework:

Theorem 7.24 (The well-ordering principle). Any non-empty subset
of N has a minimal element.

We will use it to prove Fact 5.10. In fact, we will prove more:

Definition 7.25. Two integers n and m are called coprime if no prime
divides both n and m.

Example 7.26.

• If n and m are even, then they are not coprime, as the prime 2
divides both of them.
• If p and q are distinct primes, then p and q are coprime.
• 8 and 15 are coprime (you can check it by trying all the primes

below 8), even though they are not prime (2 divides 8, 3 divides
15).
• 6 and 15 are not coprime, as 3 divides both of them.

Fact 5.10 follows from:

Theorem 7.27. Given a rational number r, there exists coprime inte-
gers n and m with m nonzero such that r = n/m.

Proof. It is enough to prove it for non-negative rational numbers (if r <
0, use the result on −r and use that the dividing relation is insensible
to change of signs). Let r be a non-negative rational number. By the
well-ordering principle, find natural numbers m and n with m nonzero
such that r = n/m and n + m is minimal (formally, we consider the
set of natural numbers x for which there exists natural numbers n and
m such that x = n + m and r = n/m, use the well ordering principle
to pick a minimal element x of this set, and then pick n and m with
x = n + m). We claim that n and m are coprime. Assume for a
contradiction they are not. Then there exists a prime p that divides n
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and m. Let n′ := n/p, m′ := m/p. Since p ≥ 2, n′ < n, m′ < m, so
n′+m′ < n+m and r = n/m = n′/m′. This contradicts the minimality
of n+m.

�

8. Set theory

Now that we have some basic understanding of proofs, it is worth
spending some time studying sets further. One of our first goals is
to define the notion of a function: In a calculus course, a function
is usually defined as a rule associating each object in its domain to
another. This is a somewhat imprecise definition, and we will do much
better in this chapter. Once functions have been properly defined, we
will be able to use them to put sets in one-to-one correspondence, and
make sense of the size of a set. This will work even for infinite sets,
and will lead us to see that there are different “sizes” of infinity!

8.1. Functions and relations.

8.1.1. Ordered pairs. We start by defining the notion of an ordered pair.
Recall that sets are unordered: for two objects a and b, {a, b} = {b, a}.
We now define a notion of pairing such that the order matters:

Definition 8.1. For objects a and b, the ordered pair (a, b) is an object
such that for any two other objects c and d, (a, b) = (c, d) if and only
if a = c and b = d.

Remark 8.2. It is rather unfortunate that in calculus and analysis, the
notation (a, b) for real numbers a and b also denotes the open interval
with endpoints a and b. It is usually clear from context which of the
two is meant though.

Surprisingly, it turns out sets can be used to code ordered pairs: you
will see in your homework that for objects a and b, the set {{a}, {a, b}}
is a good way to code the pair (a, b). Using this definition and iterating
the power set axiom as many times as necessary, it is not too hard to
see the following:

Fact 8.3. Assume A and B are sets. Then there exists a set C whose
elements are exactly the ordered pairs (a, b) with a ∈ A and b ∈ B. We
call C the cartesian product of A and B, and write C = A×B.

Example 8.4.

• R × R (sometimes also written R2) is the set of all pairs of
real numbers. We can see a pair of real numbers as giving the
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coordinates of a point in the plane, so we sometimes just call
R2 the plane.
• For any set A, ∅ × A = A× ∅ = ∅.
• {1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}.
• As the example above shows, in general, A × B 6= B × A, as

(1, 3) ∈ {1, 2} × {3, 4} but (1, 3) /∈ {3, 4} × {1, 2}. This case
shows that we can even have (A×B) ∩ (B × A) = ∅.

Here, lecture 10 ended and lecture 11 started.

8.1.2. Relations. There are many ways to compare two real numbers
x and y: we can ask whether x ≤ y, whether x = y2, whether x 6= y,
whether x or y is an integer, etc. More generally, a relation on R is
simply a way to compare x and y. Now that we have the notion of
ordered pairs, we can make this precise:

Definition 8.5. Let A and B be sets. A relation R on A × B is a
subset of A×B. If B = A, we say R is a relation on A.

Notation 8.6. For R a relation on A×B, and x ∈ A, y ∈ B, we think
of x and y as being related if (x, y) ∈ R, and write xRy (read “x is
related to y”) for (x, y) ∈ R.

Example 8.7.

(1) The set R := {(x, y) ∈ R× R | x ≤ y} is a relation and xRy if
and only if x ≤ y. We can even see ≤ as being R itself.

(2) The set G := {(x, y) ∈ R× R | y = x2} is a relation. This is a
special one, since every x ∈ R has exactly one y related to it.
We will end up calling such relations functions.

8.1.3. Equivalence relations. Here are some structural properties rela-
tions can have:

Definition 8.8. A relation R on a set A is called:

(1) Reflexive if for any x in A, xRx.
(2) Symmetric if for any x and y in A, xRy implies yRx.
(3) Transitive if for any x, y, and z in A, xRy and yRz imply xRz.

Example 8.9. Take A = R. The relation ≤ is reflexive and transitive
but is not symmetric (as 0 ≤ 1 but 1 6≤ 0). The relation < is transitive
but not reflexive and not symmetric. The relation xRy if and only if
y = x2 is not reflexive (2 6= 22), not transitive (16 = 42, 4 = 22, but
16 6= 22), and not symmetric (4 = 22 but 2 6= 42). The equality relation
is reflexive, symmetric, and transitive.

In a sense, relations that satisfy the three properties above look like
the equality relation. We give such relations a name:
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Definition 8.10. A relation R on a set A which is reflexive, symmetric,
and transitive is called an equivalence relation on A.

Equivalence relations appear in many different parts of mathematics
and computer science. They are a witness to the power one gets by
generalizing many different cases into one.

Example 8.11.

(1) As already observed, for any set A, equality on A (i.e. {(x, x) ∈
A× A | x ∈ A}) is an equivalence relation on A.

(2) Take A to be the set of integers, and let n be an integer. Say
xEy if and only if n divides x−y. This is an equivalence relation.
When xEy, we write x ≡ y mod n, and say x is congruent to y
modulo n. For n = 0, we obtain regular equality: x ≡ y mod 0
if and only if x = y, and for n = 1 (or n = −1), we obtain that
everything is equivalent: For any integer x and y, x ≡ y mod 1.
For n = 2, we get that x ≡ 0 mod 2 if and only if x is even,
and x ≡ 1 mod 2 if and only if x is odd.

(3) For A = P(N), say xEy if and only if x and y have the same
finite number of elements (this will be defined precisely later),
or x and y are both infinite. This is an equivalence relation.

(4) Take A to be the set of CMU students, and say xEy if and only
if x and y have the same first name. This is an equivalence
relation.

8.1.4. Functions.

Definition 8.12. A relation f on a set A × B (together with A and
B) is called a function if for every x ∈ A, there is a unique y ∈ B such
that (x, y) ∈ f . In this case, we write y = f(x). We call A the domain
and B the codomain of f , and write f : A→ B (said “f is a function
from A to B”) to say that f is a function with domain A and codomain
B.

Remark 8.13. In calculus, it is customary to define functions by
saying something like “Let f : A → B be the function defined by
f(x) = E(x)”, where E is some expression defining the function. This
is fine, but there are many other ways to define functions. For example,
one can write it as an explicit set, or one can just use words to describe
what it does.

Remark 8.14. The domain and codomain are part of the function,
so for example the functions f : R → R defined by f(x) = x2 and
g : R→ {x ∈ R | x ≥ 0} defined by g(x) = x2 are different as they do
not have the same codomain.
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Example 8.15.

• The relation {(x, y) ∈ R × R | y = x2} defines a function from
R to R.
• The relation {(x, y) ∈ R×R | x ≤ y} does not define a function,

as for a given x, there are many y such that x ≤ y (for example
x or x+ 1)
• The relation {(x, y) ∈ R × R | x = y2} does not define a

function, since for a negative x, there is no y such that x = y2,
and for positive x, there are two different y such that y2 = x
(namely

√
x and −

√
x) If one restricts x and y to lie in the

set R≥0 of non-negative real numbers, one obtains the function
f : R≥0 → R≥0 given by f(x) =

√
x.

• Another example of a function is the map15 f : R → R given
by

f(x) =

{
1 if x is rational

0 if x is irrational

• Functions don’t have to have sets of numbers as domain or
codomain. For example one can define a function f mapping
the set S of days of the week to itself, by f(x) = the day after x
(so for example f(Sunday) = Monday). Another example: take
A = {a, b, c}, B = {c, d} and define f : A → B by f(a) =
c, f(b) = f(c) = d.
• A weird consequence of the definition: For any set B, there is

a unique function f : ∅ → B, the “empty” function, which is
just the empty set! Also, if f : A → ∅, then we must have
A = ∅ (if A were non-empty, there would be nowhere to send
the elements of A to!).
• Given a set A, the function f : A → A defined by f(x) = x is

called the identity function.
• We can see a propositional function p(x) with domain of dis-

course A as a function from A to {F, T} that to each member
a of A associates the truth value of the proposition p(a).

8.1.5. Some operations on functions.

Definition 8.16 (Image and inverse image). Let A and B be sets and
f : A→ B be a function.

(1) For C ⊆ A, The image of C under f , written f [C] is the set
{b ∈ B | there exists c ∈ C such that f(c) = b}. The range of
f is f [A].

15“map” and “function” are synonymous.
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(2) For C ⊆ B, the inverse image of C under f , written f−1[C] is
the set {a ∈ A | f(a) ∈ C}.

Example 8.17. The range of the function f : R→ R given by f(x) =
x2 is all the non-negative real numbers. The range of the function
g : R→ R which is 1 if the input is rational and 0 otherwise is {0, 1}.
The inverse image of {1/2} under this function is the empty set, and
the inverse image of {0} under this function is the set of irrational
numbers. For x a non-negative number, the inverse image of {x} under
f is {−

√
x,
√
x}.

Here, lecture 11 stopped and lecture 12 started.

Definition 8.18 (Composition of functions). Let A, B, C be sets and
f : A → B, g : B → C be functions. The composition of f and g
(written g ◦ f) is the function h : A→ C defined by h(a) = g(f(a)).

Example 8.19.

(1) The composition of the functions f : R → R and g : R → R
defined by f(x) = x2 and g(x) = x+1 is (g ◦f)(x) = g(f(x)) =
g(x2) = x2 + 1. In contrast, (f ◦ g)(x) = f(x+ 1) = (x+ 1)2, so
even if domains and codomains are all the same, f ◦ g 6= g ◦ f .

(2) The composition of any function f : A→ B with the identity g
on B (recall that the identity is the function that sends every
element to itself) is just (g ◦ f)(x) = f(x), so g ◦ f = f .

8.2. Cardinalities. We have seen that given a function f : A→ B, it
was possible that some elements in B were not the image of any element
in A, or that distinct elements in A mapped to the same element in B.
When this does not happen, the function is easier to understand, and
we give these conditions names:

Definition 8.20 (Injection, surjection, bijection). Assume A and B
are sets and f : A→ B is a function.

• f is a surjection (we also say f is surjective) if for every b ∈ B,
there exists a ∈ A such that f(a) = b.
• f is an injection (we also say f is injective) if for every a and
a′ in A, f(a) = f(a′) implies a = a′.
• f is a bijection (we also say f is bijective) if it is both an injec-

tion and a surjection.

An injection is a function that sends distinct elements in its domain
to distinct elements in its codomain, while a surjection covers the entire
codomain of the function. The definition of a bijection makes precise
the notion of “one to one correspondence”.
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Example 8.21.

(1) The map f : R → R defined by f(x) = x2 is not a bijection:
it is neither injective nor surjective. It is not injective because
f(−1) = f(1) (so distinct members of the domain can get sent
to the same element), and it is not surjective because there is
no real number x such that f(x) = −1.

(2) On the other hand, the map g : R≥0 → R≥0 defined by g(x) =
x2 is a bijection: it is injective: if a, a′ ∈ R≥0 and f(a) = f(a′),
then a2 = (a′)2, and since they are both non-negative, unique-
ness of the square root gives us that a = a′. It is surjective:
given a non-negative b, one can take a :=

√
b, and then f(a) = b.

(3) Let A := {1, 2, 3}, B := {2, 4}. The map f : A → B given by
f(1) = f(2) = 2 and f(3) = 4 is a surjection that is not an
injection. The map g : B → A given by g(2) = 1, g(4) = 2 is
an injection that is not a surjection.

Theorem 8.22. f : A→ B is a bijection if and only if for each b ∈ B
there is a unique a ∈ A such that f(a) = b.

Proof. Assume f is a bijection. Let b ∈ B. Since f is a surjection,
there is a ∈ A such that f(a) = b. a is unique: if a′ ∈ A is such that
f(a′) = b, then f(a) = f(a′), so since f is injective, a = a′.

Conversely, assume that for every b ∈ B there is a unique a ∈ A such
that f(a) = b. Then in particular f is surjective. To see f is injective,
assume a, a′ ∈ A and f(a) = f(a′). There is a unique a′′ such that
f(a′′) = f(a), so a′′ = a = a′, as needed. �

Bijections are a particularly nice class of functions. For a start, one
can start from a bijection, and produce an inverse:

Definition 8.23. Given a bijection f : A→ B, the inverse of f is the
function g : B → A that to each b ∈ B associates the unique a ∈ A so
that f(a) = b. We write g = f−1.

Remark 8.24. For any (not necessarily bijective) function f : A→ B
and any C ⊆ B, the inverse image f−1[C] is always defined, even
though the function f−1 itself need not be.

Example 8.25.

• The inverse of the map f : R≥0 → R≥0 given by f(x) = x2 is
f−1(x) =

√
x.

• The map f : R>0 → R>0 given by f(x) = 1
x

is a bijection
(exercise), and f−1 = f .
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• The inverse of the map f : {1, 2, 3} → {4, 5, 6} given by f(1) =
1, f(2) = 6, f(3) = 5 is given by f−1 : {4, 5, 6} → {1, 2, 3}
defined as f−1(6) = 2, f−1(5) = 3, f−1(1) = 1.
• Assume A is the set of days of the week. The map f that maps

each day to the next one is a bijection (why?), and its inverse
maps each day of the week to the preceeding one.

Theorem 8.26. Assume f : A → B is a bijection. Then f−1 is a
bijection.

Proof. Exercise. �

8.2.1. Cardinalities of sets. If two sets A and B contain 5 elements, say
A = {a1, ..., a5}, B = {b1, ..., b5}, we can build a bijection from A to B
that sends ai to bi for each 1 ≤ i ≤ 5. Conversely, if A has 6 elements
and B has 5 elements, we expect not to be able to put A and B in one
to one correspondence. This motivates the following definition:

Definition 8.27. Two sets A and B are said to have the same cardi-
nality or to be equipotent if there is a bijection f : A→ B.

Theorem 8.28. Let U be a set. The relation E on P(U) defined by
xEy if and only if x and y are equipotent is an equivalence relation.

Proof. Exercise. �

Definition 8.29. For n a natural number, we define the set [n] to be
{1, 2, ..., n}. More precisely, [n] := {m ∈ N | 1 ≤ m ≤ n} (so [0] = ∅).
For n a negative integer, we also define [n] = ∅.

We now prove the seemingly obvious, but crucial:

Theorem 8.30. Assume n and m are natural numbers. Then [n] and
[m] are equipotent if and only if n = m.

Proof. If n = m, then the identity function f : [n] → [n] defined by
f(x) = x is a bijection from [n] to [n] (exercise).

For the converse, we use induction on the propositional function p(x)
which says “If f: [m]→ [x] is a bijection, then m = x”.
Base case. If n = 0, then since the only function with codomain the
empty set is the empty function we must have f : ∅ → ∅ so m = 0 = n.
Inductive step. Assume p(n) holds. Assume f : [m] → [n + 1] is a
bijection, and we have to show m = n + 1. Notice that m > 0, as
the only bijection with empty domain is the empty bijection, so m = 0
would imply n+1 = 0, which is impossible. Let r := f−1(n+1). Define
the function g : [m− 1]→ [n] by
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g(k) =

{
f(k) if k < r

f(k + 1) if k ≥ r

First observe that the codomain of g is indeed [n], since g(k) 6=
f(r) = n + 1 for any k. We claim that g is a bijection. It is injective:
if g(k) = g(k′), assume without loss of generality that k ≤ k′. Then
either f(k) = f(k′) or f(k + 1) = f(k′ + 1) in which case k = k′, or
f(k) = f(k′ + 1), so k = k′ + 1, which is impossible since we assumed
k ≤ k′. g is also surjective: given b ∈ [n], use surjectivity of f to find
a ∈ [m] such that f(a) = b. Now let k be a if a < r, or a− 1 if a ≥ r.
Then it is easy to check that g(k) = f(a) = b, as needed.

Since g is a bijection, by the induction hypothesis, m − 1 = n, so
m = n+ 1. �

Theorem 8.31. Assume A is a set and n,m are natural numbers such
that A is equipotent to [n] and [m]. Then n = m.

Proof. Exercise. �

Thus we see that a set can be equipotent to at most one [n]. We can
now define precisely what it means for a set to have n elements.

Here, lecture 12 stopped and lecture 13 started.

Definition 8.32. For n a natural number, a set A is said to have
cardinality n or to have n elements (written |A| = n) if A and [n] are
equipotent.

We say A is finite if there is a natural number n such that |A| = n.
We say A is infinite if it is not finite.

Remark 8.33. If A is infinite, we will not define what |A| means, but
given another set B, we can still ask whether A and B have the same
cardinality.

Example 8.34.

(1) |∅| = 0, and more generally for a natural number n, |[n]| = n.
(2) N is infinite. To see this, assume for a contradiction that f :

N → [n] is a bijection. Define a new function g : N → [n + 1]
by

g(m) =

{
f(m− 1) if m ≥ 1

n+ 1 if m = 0

It is easy to check that g is a bijection. This contradicts
Theorem 8.31.
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We also have:

Theorem 8.35. Subsets of finite sets are finite, supersets of infinite
sets are infinite.

Proof. Exercise (assignment 6). �

8.2.2. To infinity and beyond. How does the notion of having the same
cardinality match our intuition for infinite sets? We will see some very
surprising facts happen. For a start, recall that N ⊂ Z and Z\N is
infinite. However:

Theorem 8.36. N and Z are equipotent: there is a bijection f : N→
Z.

Proof. Define

f(n) =

{
−n

2
if n is even

n+1
2

if n is odd

(So the sequence of values f(0), f(1), f(2), f(3), . . . looks like 0, 1,−1, 2,−2, . . .).
f is an injection: if f(n) = f(n′), then clearly if n and n′ are both

even (or both odd), n = n′, so assume without loss of generality that
n is even and n′ is odd. Then we have −n

2
= n′+1

2
, so −n = n′ + 1, so

0 = n′+n+1. Now n′ and n are both natural numbers, so n′+n+1 > 0,
a contradiction.
f is a surjection: given m ∈ Z, we consider two cases. Either m > 0,

in which case 2m− 1 ∈ N and f(2m− 1) = m, or m ≤ 0, in which case
−2m ∈ N and f(−2m) = m.

Therefore f is a bijection, as needed. �

This tells us that we can “rename” the natural numbers to make
them into the integers. In other words, one can give a list of all the
integers that looks like a0, a1, a2, . . .. We give this property a name:

Definition 8.37. A set is called countable if it is equipotent to N. An
infinite set that is not countable is called uncountable. A set is called
at most countable if it is countable or finite.

So the previous result tells us that Z is countable. To show a set A is
countable, we have to exhibit a bijection from N to A, or intuitively we
have to show how to list A as a0, a1, a2, . . . in such a way that the list
contains no repetitions and that for every a ∈ A there is n ∈ N such
that an = a. Such a sequence is sometimes called an enumeration.

In a sense, the countable sets are the “smallest” possible infinite sets.
We include the proofs of some of the next facts for reference, but they
have not been discussed in class.
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Fact 8.38. Assume A is an infinite subset of N. Then A is countable.

Proof. We define a bijection f : N→ A inductively as follows:

• f(0) is the minimal element of A (note that A is infinite, so
non-empty).
• f(n + 1) is the minimal element of A\{f(0), ..., f(n)}. Note

that the latter set is non-empty, since we are assuming that A
is infinite.

f is an injection: if f(n) = f(m), assume by symmetry n ≤ m. If
n < m, then as f(m) is an element of A\{f(0), ..., f(n)}, f(m) 6= f(n),
so n = m.
f is a surjection: if not, let m be the minimal element of A that is

not in the range of f (i.e. there is no n ∈ N such that f(n) = m). Then
we must have f(m) ≥ m, but the definition of f tells us that f(m).
Let k be minimal such that f(k) ≥ m. Then by minimality of m we
must have f(k) = m, a contradiction. �

By some “renaming”, we can also prove:

Fact 8.39.

(1) A set A is countable if and only if A is infinite and there is an
injection f : A→ N.

(2) An infinite subset of a countable set is countable.

We then obtain:

Fact 8.40. If f : N → A is a surjection, then A is at most countable.
More generally, if B is countable and f : B → A is a surjection, then
A is at most countable.

Proof. We prove the first part. The second follows by “renaming” B
to N (exercise).

One can define g : A→ N by g(a) = the minimal n such that f(n) =
a. g is an injection: if g(a) = g(a′) = n, then f(n) = a = a′. If A
is finite, there is nothing to prove, and if A is infinite, we apply Fact
8.39.(1) to see that A is countable. �

Are there sets that are larger than countable? Now that we have
seen that Z is countable, the next natural candidate would be Q. It
turns out it is also countable. First, we prove the following stronger
result:

Theorem 8.41. N× N is countable.

Proof sketch. We list the pairs of natural numbers in the following way
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(0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (3, 0), . . .

Explicitly, there are only finitely many pairs whose components sum
to 0, and list them first. Then we list the pairs whose components
sum to 1, then those whose components sum to 2, and so on. This is
injective, since we never repeat the same pair. This is surjective, since
given a pair (a, b) ∈ N×N, there are only finitely many pairs with sum
< n := a+ b, and only finitely many pairs with sum ≤ n before (a, b).

Although it can be done, it is a bit painful and no too insightful
to explicitly write the bijection we obtain, so we will leave this as an
exercise. �

Another more formal but less conceptual proof. We use problem 3 of
assignment 5 to see that every positive natural number n can be uniquely
written as n = 2mk for k,m natural numbers and k odd. In other
words, n can be associated to the pair (m, k). We do not yet have our
bijection, since k is required to be odd, and n positive, but we are very
close. Define the function f : N → N × N by f(n) = (m, k−1

2
), where

k and m are such that n + 1 = 2mk and k is odd. We leave it as an
exercise to see that f is a bijection. �

By some renaming left as an exercise (assignment 6), we obtain the
more general:

Theorem 8.42. If A and B are countable, then A×B is countable.

Theorem 8.43. Q is countable.

Proof. By Theorem 8.36, Z is countable. By Theorem 8.42, Z × Z is
countable. Now the map f : Z × Z → Q given by f(m,n) := m

|n|+1
is

a surjection (why?). Since it is a superset of N, Q is infinite and we
have just seen that Z×Z is countable. Therefore by Theorem 8.40, Q
is countable. �

We can also obtain the following very handy result. While again not
too hard, the proof has not been discussed in class.

Fact 8.44. Assume F is an at most countable family of at most count-
able sets, i.e. F = {A0, A1, . . .}, where An is at most countable for each
n ∈ N. Then the union

⋃
A∈F A =

⋃∞
n=0An is at most countable.

Proof. For each n ∈ N, we may assume by putting more elements
inside An (e.g. by replacing An by An ∪ N) that An is countable. Let
A :=

⋃∞
n=0An. Let f : N × N → A be defined by f(n,m) := fn(m)

(i.e. we pick the mth element from the nth set). Note that f need not
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be injective, as there could be duplicate elements, but we claim that
f is surjective: given a ∈ A, a ∈ An for some n, and hence since fn is
surjective there exists m so that fn(m) = a. Thus f(n,m) = a. This
proves that f is surjective. By Fact 8.40, A is at most countable. �

Now that we know Q is countable, it is natural to ask whether R
is countable. It turns out this is not true: R is uncountable. We will
need the following fact, whose proof uses the completeness axiom:

Fact 8.45. Every real number 0 < x < 1 has a decimal expansion,
i.e. there is a sequence a0, a1, a2, . . . with ai ∈ {0, ..., 9} such that x =
0.a0a1a2 . . .

16. In general, this sequence is not unique, i.e. there could
be two sequences describing the same number (like 0.1000000 . . . =
0.099999 . . .). However, two distinct sequences which do not contain
any 9 describe distinct real numbers.

Here, lecture 13 ended and lecture 14 started
We are now ready to prove uncountability of the reals. The method

of proof is called diagonalization and is due to Cantor:

Theorem 8.46. R is uncountable.

Proof. R is infinite, so it is enough to see it is not countable. Assume
for a contradiction that it is. Then any infinite subset of it is also
countable. In particular, the set X of real numbers 0 < x < 1 which
have a decimal expansion containing only 0s and 1s is countable. Let
f : N → X be a bijection. Write ai instead of f(i). Then we have
a list of all the elements of X containing no repetitions: a0, a1, a2, . . ..
Each ai has a decimal expansion ai,0, ai,1, ai,2, . . . with ai,j ∈ {0, 1} for
all i and j. Here is a table of the elements of X and their decimal
expansion:

0.a0,0a0,1a0,2a0,3a0,4 . . .

0.a1,0a1,1a1,2a1,3a1,4 . . .

. . .

0.ai,0ai,1ai,2ai,3ai,4 . . . ai,i . . .

. . .

From this table, we build a new member of X: For i a natural
number, we let bi be 1 − ai,i, i.e. it is 0 if ai,i is 1, and 1 if ai,i is

16We have not defined what this means exactly, but you can just think of it as
saying that from the sequence one can reconstitute the number (this actually means
x =

∑∞
i=0 ai10−(i+1), but we will not discuss infinite sums in this course).



54 SEBASTIEN VASEY

0. Let x := 0.b0b1b2 . . .. Intuitively, the decimals of x are built by
going through the diagonal of the table and taking the opposite of each
number there. Then x ∈ X since its decimal expansion contains only
zeroes and ones. Since f is surjective, there is a natural number i such
that ai = x, and so by uniqueness of decimal expansions containing
no 9s, we must have ai,j = bj for all natural numbers j. In particular,
ai,i = bi, but this is impossible since we defined bi to be 1 − ai,i. We
arrived at a contradiction, and this means X (and therefore R) is not
countable. �

From this result, we can conclude that in a well-defined sense, R
has many more elements than N: there are infinitely many reals and
infinitely many natural numbers, but the infinity of reals is strictly big-
ger than the infinity of natural numbers! This has many consequences,
some of which you will explore in your homework. For example, we can
deduce that there are uncountably many irrational numbers, or that
there are problems no computer program will ever be able to solve.
Using a similar method, one can also show that there is no largest size
of infinity: for every set A, there is a set B that is “strictly bigger”
than A, in the sense that there is no surjection from A to B.

End of lecture 14

9. Combinatorics

9.1. Counting. Lecture 15 started here.
We now go back to sizes of finite sets, and become interested in

computing them exactly in order to solve very concrete problems. Ex-
amples include computing the probabilities of various poker hands, the
number of solutions to integer equations, and the number of possible
paths between two points on a grid.

Most of the counting problems we will see are at the bottom solved
using two amazingly useful principles: the rule of sum and the rule of
product:

Theorem 9.1 (The rule of sum). If A and B are two disjoint (i.e.
A ∩ B = ∅) finite sets, then |A ∪ B| = |A| + |B|. More generally, if
n ∈ N and A0, A1, . . . , An are pairwise disjoint finite sets, then:

|A0 ∪ A1 ∪ . . . ∪ An| =
n∑

i=0

|Ai| = |A0|+ |A1|+ . . .+ |An|

By “A0, A1, . . . , An are pairwise disjoint”, we mean that any two of
them are disjoint, i.e. for any distinct i and j, Ai ∩ Aj = ∅. You will
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prove the rule of sum for two sets in assignment 7. Let’s see how we
can prove the general version from the two sets version:

Proof of the general rule of sum from the rule of sum for two sets. We
use induction on n. For the base case, if n = 0, there is only one set
and the rule of sum just tells us |A0| = |A0|, which is true. For the
inductive step, assume the rule of sum is true for n sets, and let’s
prove it for n + 1 pairwise disjoint finite sets A0, A1, . . . , An+1. Let
A := A0 ∪ A1 ∪ . . . ∪ An, and let B := An+1. We want to compute the
size of A0 ∪ A1 ∪ . . . ∪ An+1 = A ∪ B. Also, the induction hypothesis
tells us |A| =

∑n
i=0 |Ai|. Moreover, we have that A and B are disjoint

(if x ∈ A ∩ B, then x ∈ Ai ∩ An+1 for some i ≤ n, which is impossible
since the pairwise disjointness hypothesis tells us Ai∩An+1 = ∅). Thus
we can apply the rule of sum for two sets to get that

|A0∪A1∪. . .∪An+1| = |A∪B| = |A|+|B| =

(
n∑

i=0

|Ai|

)
+|An+1| =

n+1∑
i=0

|Ai|

�

The rule of sum also has a more intuitive formulation:

Fact 9.2 (The rule of sum, version 2). Let C be a finite set. If we
know each element of C is of exactly one type among T0, T1, . . . , Tn,
and there are ci many elements of type i, then |C| =

∑n
i=0 ci.

Example 9.3. Let’s say we would like to compute how many natural
numbers less than 100 are divisible by either 2 or 3. Let A be the set
of natural numbers less than 100 divisible by 2, and let B be the set
of natural numbers less than 100 divisible by 3. We want to compute
the size of A ∪ B. The members of A are 0, 2, . . . , 98, and there are
98
2

+ 1 = 50 of them. Similarly, B contains 99
3

+ 1 = 34 numbers. Does
this mean that by the rule of sum, |A∪B| = |A|+ |B| = 50 + 34 = 84?
No, since some numbers like 0 and 6 are both divisible by 2 and 3, and
so it is not true that A and B are disjoint, or said another way using
the “version 2” formulation of the rule of sum, it is not true that each
number between 0 and 100 is of exactly one type. It turns out that
A∩B contains exactly the multiples of 6 (this is not that easy to prove,
but it follows from uniqueness of prime factorization and you can take
it as granted for now), and that there are exactly 96

6
+ 1 = 17 of them.

When computing |A|+ |B|, we are basically adding the multiples of 6
twice, so to get the right size of A ∪ B, we must substract them once:
|A ∪B| = |A|+ |B| − |A ∩B| = 50 + 34− 17 = 67.
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The rule we just used to compute A∪B when they are not necessarily
disjoint holds in general. Note that if A and B are disjoint, |A ∩B| =
|∅| = 0 and we recover the rule of sum.

Theorem 9.4 (The inclusion-exclusion principle). For any finite sets
A and B, |A ∪B| = |A|+ |B| − |A ∩B|.

Proof. Assignment 7. �

Remark 9.5. There is also a more general version to compute |A0 ∪
A1 ∪ . . . ∪ An|, but we will not see it in this class. You might want to
think about what form it would take.

To state the rule of product, we first formally define a notation for
products of more than two numbers:

Definition 9.6 (Π notation). Assume f : (N\{0}) → R is a function
and n is a natural number. We define

∏n
i=1 f(i) inductively as follows:

•
∏n

i=1 f(i) = 1 if n = 0.

•
∏n+1

i=1 f(i) = f(n+ 1) ·
∏n

i=1 f(i).

We can similarly define
∏n

i=k f(i) for k a natural number. If k > n,
we adopt the convention that this is one.

Fact 9.7 (The rule of product). For any two finite sets A and B,
|A × B| = |A| · |B|. More generally, if n ∈ N and A0, A1, . . . An are
finite sets, then:

|A0 × A1 × . . .× An| =
n∏

i=0

|Ai| = |A0| · |A1| · . . . · |An|

Remark 9.8. In general, for three sets A, B, C, (A × B) × C 6=
A × (B × C) (the elements of the first are of the form ((a, b), c), the
elements of the second are of the form (a, (b, c)). This difference is
almost never of importance, and we will adopt the convention that
cartesian products are computed by putting the brackets on the left,
i.e. A×B×C = (A×B)×C. We will write (a, b, c) instead of ((a, b), c),
and similarly for longer products.

Similarly to the way we proved the general rule of sum from the two
sets version, we can prove the general rule of product from the rule of
product for two sets. The latter can be proven using induction and the
rule of sum, but this is a somewhat slow-going proof that we will not
discuss. It’s an excellent exercise for you to try!

The rule of product also has a more intuitive formulation:
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Fact 9.9 (The rule of product, version 2). Let C be a finite set. If
each element of C can be described in a unique way using a procedure
involving n+1 steps S0, S1, . . . , Sn , and each step Si can be performed
in ci ways regardless of how S0, S1, . . . , Si−1 are performed, then |C| =∏n

i=0 ci.

Example 9.10. Recall from assignment 6 that for n a natural number,
a binary n-tuple is a function from [n] to {0, 1}, which you can think
of as a string of n bits (0s or 1s). Fix a natural number n, and let
C be the set of binary n-tuples. We can think of building a binary
tuple as a procedure consisting in n steps S1, . . . , Sn, where at the ith
step we choose whether the ith coordinate of the tuple is 0 or 1. This
choice does not depend on the previous steps, and there are two ways
of making it, therefore by the rule of product there are

∏n
i=1 2 = 2n

many ways of choosing a binary n-tuple, and therefore there are 2n

many binary n-tuples: |C| = 2n.

Remembering assignment 6, there is a bijection from P([n]) to the
set of binary n-tuples, and hence |P([n])| = 2n. More generally, for
a finite set A, |P(A)| = 2|A|. If you have not found this argument
convincing enough, we give another proof of this result using induction
and the rule of sum:

Theorem 9.11. For any finite set A, |P(A)| = 2|A|.

Proof. Let n := |A|. We use induction on n. For the base case, if n = 0,
then A = ∅, and |P(∅)| = |{∅}| = 1 = 20. For the inductive step,
assume the result is true for all sets of size n, and assume |A| = n+ 1.
In particular, |A| ≥ 1, so A is non-empty. Fix a ∈ A. We can partition
P(A) into the set X of subsets of A that do not contain a and the set
Y of subsets of A that do contain a. We have that X ∩ Y = ∅ and
P(A) = X ∪ Y . Moreover, if we let A′ := A\{a}, we have that:

(1) |A′| = n, and hence by the inductive hypothesis |P(A′)| = 2n.
(2) P(A′) = X.
(3) There is a bijection17 f : X → Y given by f(S) = S ∪ {a}, and

therefore |Y | = |X| = 2n.

Thus by the rule of sum:

|P(A)| = |X ∪ Y | = |X|+ |Y | = 2n + 2n = 2 · 2n = 2n+1 = 2|A|

as needed. �

17We leave it to the reader to check it is really a bijection.
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Remark 9.12. In the rule of product, it is important that the elements
can be described in a unique way: consider the following wrong argu-
ments to count the number of elements in the set C := {1, 2, 3, 4, 6}:
every number can be built by first choosing a number k from 1 to 3,
then choosing a number m from 1 to 2, and multiplying m and k to-
gether. Therefore |C| = 3 · 2 = 6 (?!). While it is true that every
number in C can be represented in the way described above, we are
effectively counting 2 · 3 and 3 · 2 as a different number...

Here, lecture 15 ended and lecture 16 started.

Example 9.13. Five planes need to land at an airport one after the
other. How many possible orderings are there? To figure this out,
number the plane from 1 to 5 and the possible landing positions from 1
to 5 (the plane in position 1 lands first). To describe a possible landing
order, we can think of plane 1 choosing one landing position between 1
and 5 (five choices), then plane 2 choosing one of the renaming choices
(four of them), and so on until plane 5 takes the only leftover spot.
The choices at each step depend on the choices made at the preceeding
ones, but the number of those choices doesn’t. Therefore by the rule
of product there are 5 · 4 · . . . · 1 = 120 possible orderings.

In the example above, a landing order can be seen as a function
mapping plane i to its landing position. Such a function will be a
bijection (no position will be empty, and two distinct planes get two
distinct positions). We give such a map a name:

Definition 9.14. For any set A, a bijection from A to A is called a
permutation of A.

Generalizing the previous example, we obtain:

Theorem 9.15. For n a natural number, [n] (or any set with n ele-
ments) has exactly

∏n
i=1 i permutations.

Note that this works even if n = 0, since there is exactly one permu-
tation (the empty function) from the empty set to itself.

Notation 9.16. For n a natural number, denote by n! (said “n facto-
rial”) the number

∏n
i=1 i. Alternatively, n! can be defined inductively

to be 1 if n = 0 or (n− 1)! · n for n ≥ 1.

So a reformulation of the previous theorem is that for any natural
number n, there are n! permutations of [n]. More generally, we can
ask for the number of ways to arrange any k distinct elements of [n]
into a list (so order matters and repetitions are not allowed). Such
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lists are sometimes called arrangements. Notice that this is the same
as counting the number of injections from [k] to [n].

Theorem 9.17. For natural numbers k ≤ n, the number of arrange-
ments of k distinct elements of [n] is given by:

n · (n− 1) · . . . · (n− k + 1) =
k−1∏
i=0

(n− i) =
n!

(n− k)!

Proof. We can build an arrangement of k elements by first selecting
the first element out of the n available ones, then select the second
element out of the (n− 1) remaining choices, and continuing this way
until there are (n− k + 1) possible choices for the kth element. From
the rule of product, we obtain the result. �

Note that this agrees with the formula for the number of permuta-
tions, where k = n.

Example 9.18. For k = 2 and n = 3, the 2-elements arrangements of
[3] are 12,21,13,31,23,32 . There are 6 = 3!

(3−2)! of them.

What if we ask for the number of ways to list k distinct elements of
[n] without repetitions when order does not matter? Such a list is just
a k-elements subset of [n], sometimes called a selection. We give the
number of selections a name:

Definition 9.19 (Binomial coefficient). The number of k-elements
subset of [n] is denoted by

(
n
k

)
(said “n choose k”).

If k < 0 or k > n,
(
n
k

)
is 0 (there are no set with a negative number

of elements, and no subset of [n] has more than n elements), and if
0 ≤ k ≤ n, there is a simple formula to compute it:

Theorem 9.20. If 0 ≤ k ≤ n, then:(
n

k

)
=

n!

k!(n− k)!

Proof. We count the number r of arrangements of k elements of [n] in
two ways: First, we have already seen that r = n!

(n−k)! . Second, to build

an arrangements, one can first pick a k-element subset of [n], and then
order it in one of k! possible ways. In this case the rule of product gives
us r = k!

(
n
k

)
. Thus n!

(n−k)! = k!
(
n
k

)
. Divide by k! to conclude. �

Example 9.21 (Number of poker hands). Poker is a game played with
a deck of 52 cards. Each card has a rank (one of 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A)
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and a suit (one of spade, heart, club, diamond). A hand is a set of
five (distinct) cards. Hands are ranked according to how rare they are:
the smaller the number of possibilities for a hand to occur, the more
valuable. Some specific hands are given names:

• A pair: two cards with the same rank.
• A three of a kind: three cards with the same rank.
• Four of a kind: Four cards with the same rank.
• A straight: The five cards can be listed to have consecutive

ranks. The rank can start with 2, 3, ..., 10, or A (there are 10
possibilities)
• A flush: The five cards have the same suit.

Unless stated otherwise, hands such as three of a kind are also pairs.
This differs from the standard poker terminology.

There are
(
52
5

)
= 2598960 possible hands, and there are for example

10 · 45 = 10240 possible straights (including straight flushes): there
are 10 ways of picking up the starting rank, then 4 ways of picking up
the suit for each of the 5 cards. There are

(
4
1

)(
13
5

)
= 5148 flushes: we

first choose a suit, then choose five possible (necessarily distinct) ranks.
Thus flushes occur less often and so are more valuable than straights.
To compute the number of straight flushes, we note that a straight
flush is entirely determined by the suit and the starting rank, so there
are only 4 · 10 = 40 straight flushes. Thus the number of straights that
are not straight flushes is 10 · 45 − 40 = 10200.

Assuming each hand is equally likely, the probability that a type of
hand occurs is simply the number of possible hands with that type
divided by the total number of hands. For example, the probability to
obtain a straight flush is 40

2598960
which is less than one in ten thousand.

The probability to obtain a straight (or a straight flush) is 10240
2598960

≈
0.004, or 4 in a thousand.

Remark 9.22. A wrong way to count the number of flushes would be
to say that a flush can be described by first choosing one of 52 cards,
then choosing the four remaining cards out of the 12 that have the suit
of the first one, and finally concluding from the rule of product that
there are 52 ·

(
12
4

)
= 25740 flushes. The problem is that the description

above is not unique: for example one could first choose an ace of spades,
then a 2, 3, 5, 7, or one could first choose a 7 of spade and then an ace,
2, 3, 5.

The binomial coefficients appear in many areas of mathematics and
have a number of very nice properties. For example:

Theorem 9.23 (Pascal’s formula). For any natural numbers k and n:
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(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
Proof. We give two types of proofs: a combinatorial proof that com-
putes the same number in two different ways, and an algebraic proof
that simply uses known formulas for the binomial coefficient. The al-
gebraic proof is more formal, but also less insightful and technically
harder to understand. The combinatorial proof gives information as
to why the result is true, which is often something you expect of good
proofs.
Combinatorial proof . We can choose a k-elements subset of [n] by
either excluding n and choosing k elements of [n− 1] (

(
n−1
k

)
possibili-

ties), or deciding to include n and choosing the k−1 remaining elements
from [n − 1] (

(
n−1
k−1

)
possibilities). Any k-elements subset is of exactly

one of these two types, so by the rule of sum, the result follows.
Algebraic proof . The formula is true if k > n (as all the coefficients
involved are 0), and also if k = n (both sides are 1, even if k = n = 0),
so we may assume k < n and n > 0. Note also that for k = 0, the
formula holds (both sides are 1:

(
n
0

)
= 1 for any integer n). Thus

we can assume 1 ≤ k < n. We did this checking to make sure that
(n − 1 − k)!, (k − 1)!, or (n − 1)! made sense (recall that we haven’t
defined what we meant by objects such as (−1)!). Now let’s compute:(

n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
+

(n− 1)!

k!(n− 1− k)!

=
k(n− 1)!

k!(n− k)!
+

(n− k)(n− 1)!

k!(n− k)!

=
k(n− 1)! + (n− k)(n− 1)!

k!(n− k)!

=
n(n− 1)!

k!(n− k)!

=
n!

k!(n− k)!

=

(
n

k

)
�

Thus we can generate the binomial coefficients inductively by build-
ing Pascal’s triangle: its rows are numbered starting from 0: row n
contains n + 1 elements, and the first and last element of row n are
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always 1 (they denote
(
n
0

)
and

(
n
n

)
respectively). Elements of each row

are numbered from 0 to n. To compute element number k of row n,
for 1 ≤ k < n, add elements k − 1 and k of row n − 1 together. By
Pascal’s formula, it follows that element k of row n is exactly

(
n
k

)
. The

first few rows of Pascal’s triangle are:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

From this we can for example read off that
(
5
2

)
= 10.

An interesting open problem regarding Pascal’s triangle is Singmas-
ter’s conjecture: There a natural number N such that every number
larger than one appears at most N times in Pascal’s triangle. As of
2014, it is unknown whether any number larger than one can appear
more than 8 times in Pascal’s triangle (the only number known to
appear 8 times is 3003). There are no known examples of numbers
appearing exactly five or exactly seven times.

Here, lecture 16 ended and lecture 17 started (algebraic proof of Pas-
cal’s formula covered in lecture 17).

The binomial coefficients also appear in a formula for powers of sums:

Theorem 9.24 (The binomial theorem). For any real numbers x and
y and any natural number n:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

Before proving it, we need some simple facts about sums:

Theorem 9.25. For f, g : N → R, n a natural number, and c a real
number:

(1)
∑n

i=0 cf(i) = c
∑n

i=1 f(i).
(2)

∑n
i=0 f(i) + g(i) = (

∑n
i=0 f(i)) + (

∑n
i=0 g(i)).

Proof. Exercise: use induction. �

Proof of the binomial theorem. Again, we can prove this both algebraically
or combinatorially.
Combinatorial proof . We can see the identity is true by observing
that the coefficient of xkyn−k in the expansion of (x + y)n is going to
be the number of ways to choose x k times out of n when applying the
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distributive law and choosing y the other times. A little bit of thinking
should convince you that this is

(
n
k

)
.

Algebraic proof . We prove the identity by induction on n. If n = 0,
then both the left hand side and right hand side are one. Now assume
the result is true for n and let’s prove it for n+ 1. Using the induction
hypothesis, expand:

(x+ y)n+1 = (x+ y)(x+ y)n

= (x+ y)
n∑

k=0

(
n

k

)
xkyn−k

=
n∑

k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xkyn−k+1

=
n+1∑
k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=0

(
n

k

)
xkyn−k+1

= xn+1 + yn+1 +
n∑

k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=1

(
n

k

)
xkyn−k+1

= xn+1 + yn+1 +
n∑

k=1

((
n

k − 1

)
+

(
n

k

))
xkyn+1−k

= xn+1 + yn+1 +
n∑

k=1

(
n+ 1

k

)
xkyn+1−k

=
n+1∑
k=0

(
n+ 1

k

)
xkyn+1−k

You should be able to follow each step. We first make a change of
variable and rearrange the sums in order to be able to use Theorem 9.23.
Once this theorem has been used, we put the sums back together. �

Example 9.26. Using the binomial theorem, we can compute

(x+ y)4 =
4∑

i=0

(
4

k

)
xkyn−k = y4 + 4y3x+ 6y2x2 + 4x3y + x4

Where we have used that
(
4
1

)
=
(
4
3

)
= 4 and

(
4
2

)
= 6.

So far, we have given formulas for the number of ways to select
k ≤ n elements of [n] when repetitions are allowed and order matters
(this is nk, by a straightforward generalization of Example 9.10), when
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repetitions are not allowed and order does not matter (this is
(
n
k

)
), and

when repetitions are not allowed and order does matter (this is n!
(n−k)!).

We now investigate the remaining case.

Theorem 9.27. For k and n natural numbers, n ≥ 1, the number of
ways to pick k elements of [n] when you are allowed to repeat the same
element and order does not matter is

(
k+n−1
n−1

)
. This is also the number

of natural number solutions to the equation x1 + x2 + . . .+ xn = k.

Proof. For the last sentence, simply observe that a list of k elements
where order does not matter but elements can be repeated can be
completely described by giving for each i ∈ [n] the number of times
(xi) it appears in the list. Since the list has k elements, we must have
x1 + x2 + . . .+ xn = k.

To compute the number of solutions to such an equation, we think of
having k units to allocate between x1, . . . , xn: we think of our k units
as k dots on a line (think of writing k in “base 1”), that have to be
separated by n−1 “+”s. For example, if n = 4 and k = 8, the solution
x1 = 1, x2 = 0, x3 = 4, and x4 = 3 would be described by:

·+ + · · · ·+ · · ·
Thus all we have to do is decide where to put the n− 1 “+”s. There

are k + n − 1 many possible positions and n − 1 many “+”s, so the
total number of solutions is

(
k+n−1
n−1

)
. �

Remark 9.28. As often with those kind of combinatorial arguments,
it is safer to try to remember the proof than to try to remember the
final formula.

To sum up, we have derived the following formulas to compute the
number of ways to pick k out of n elements (where k, n ∈ N):

With repetitions Without repetitions
Ordered nk n!

(n−k)! if k ≤ n, 0 otherwise

Unordered
(
k+n−1
n−1

)
if k ≥ 1, 1 otherwise

(
n
k

)
Here, lecture 17 ended, and lecture 18 started.

9.2. The pigeonhole principle. The simplest application of the pi-
geonhole principle (often attributed to Daniel Kleitman) is that out of
three people (with a well-determined sex), two must have the same sex.
More generally:

Theorem 9.29. For k and n natural numbers, if we place more than
kn objects into n boxes, then one box must have more than k elements.
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Said more formally, if m > kn, and f : [m]→ [n], then for some i ∈ [n],
|f−1[{i}]| > k.

Proof. We have that f−1[[n]] = [m] (f maps any element of [m] some-
where in [n]), and for any two distinct i and j in [n], f−1[{i}] ∩
f−1[{j}] = ∅ (an element of [m] cannot be sent both to i and to j).
Thus using the rule of sum with Ai := f−1[{i}]:

m = |f−1[[n]]| =
n∑

i=1

|Ai|

Now assume for a contradiction that |Ai| ≤ k for all i. Then m =∑n
i=1 |Ai| ≤

∑n
i=1 k = nk, which contradicts the hypothesis that m >

nk. �

Although it is very intuitive and simple to prove, the pigeonhole
principle can be used to demonstrate many non-obvious facts. The
name comes from the fun obvious fact that if we take more than n
pigeons and put them into n boxes, then one box must contain more
than one pigeon (this is an application of the principle with k = 1).

Example 9.30. In Pittsburgh, two people must have the exact same
number of hairs: It is estimated than an average human head has about
n := 150000 hairs, and Pittsburgh has about m := 300000 inhabitants
(it has more, but let’s take away the inhabitants that have more than
150000 hairs from that number). If we take the people of Pittsburgh
to be the objects and the number of hairs to be the box of an object
in the pigeonhole principle, we obtain that two objects must fall into
the same box, i.e. two inhabitants of Pittsburgh must have the same
number of hairs. Note that the proof is nonconstructive: it tells us
nothing about who those people are. This comes from the fact the
pigeonhole principle was proven by contradiction.

The pigeonhole principle was introduced by Dirichlet in 1834 in order
to study approximation of real numbers with rationals. To motivate the
next result, assume you want to approximate π with a rational number
(it is a nontrivial fact that π is irrational). Assume you want your
rational number to have a denominator less than or equal 100. You
might think that 314

100
would then be a reasonable approximation, but

actually a bigger denominator is not always better: 22
7

is a slightly bet-

ter approximation to π, and 333
106

is correct to four decimal places. More
generally, you may ask how close an approximation you can achieve
if you want your denominator to have size less than n. This is the
question Dirichlet’s result answers:
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Theorem 9.31 (Dirichlet’s approximation theorem). For every real
number x and positive natural number n, there exists a rational p

q
with

p, q integers, 1 ≤ q ≤ n and:∣∣∣∣x− p

q

∣∣∣∣ < 1

qn
≤ 1

q2

This tells us in particular that real numbers can be approximated
arbitrarily closely by rational numbers. Before presenting the proof,
we need one more fact about the real numbers. The proof uses the
completeness axiom.

Fact 9.32. For every real number x, there is a unique integer n such
that n ≤ x < n+ 1.

Definition 9.33. For x and n as above, we call n the floor of x and
write n = bxc. If x is not an integer, we call n+ 1 the ceiling of x and
write n+ 1 = dxe. If x is an integer, its ceiling is just x. The fractional
part 〈x〉 of x is defined to be x− bxc.

Example 9.34. The fractional part of 1 is 0, and its ceiling and floor
are 1. The ceiling of 4

3
is 2, its floor is 1, and its fractional part is 1

3
.

The fractional part of π is π − 3 = 0.1415 . . .. Its floor is 3 and its
ceiling is 4.

Proof of Dirichlet’s approximation theorem. Let x be a real number
and n a positive natural number. Consider the fractional parts:

〈0〉, 〈x〉, 〈2x〉, . . . , 〈nx〉
They form n + 1 numbers and each falls into exactly one of the

intervals: [
0,

1

n

)
,

[
1

n
,

2

n

)
, . . . ,

[
n− 1

n
, 1

)
There are only n such intervals. Therefore18 by the pigeonhole prin-

ciple there exists i < j in {0} ∪ [n] such that 〈ix〉 and 〈jx〉 fall into
the same interval. In particular, |〈jx〉 − 〈ix〉| < 1

n
. This implies19 that

x(j− i) is at distance less than 1
n

from an integer, i.e. for some integer

p, |x(j−i)−p| < 1
n
. Let q := j−i. Then we have |qx−p| < 1

n
. Dividing

18It could actually be that for some i 6= j, 〈xi〉 = 〈xj〉. In this case the pigeonhole
principle does not apply but we also get that they are in the same interval.

19Exercise 1 in the additional problems for week 4 asks you to check this formally.
This is not a very hard fact to believe though: think of the decimal representation
of real numbers.
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the inequality by q, |x − p
q
| < 1

nq
. We also have 1

nq
≤ 1

q2
because we

took q ≤ n. �

Another simple application of the pigeonhole principle is:

Theorem 9.35. At a party with six students, there are three people
that either all know each other, or all do not know each other (compare
with problem 5 of assignment 3). We assume knowledge is a symmetric
(but not necessarily transitive) relation.

Proof. Name the students x1, . . . , x6. Look at the relationships x1 can
have with the five other students: for each 2 ≤ i ≤ 6, either x1 knows
xi or x1 does not know xi. We can see this as assigning each of these
m = 5 students one of n = 2 boxes. By the pigeonhole principle, there
are three students who either all know x1, or all do not know x1. By
symmetry, we can assume we fall into the first case, and rearranging the
names we can assume x2, x3, x4 all know x1. If any two of x2, x3, x4 know
each other, then as they also know x1 we have found three students who
all know each other. If none of x2, x3, x4 know each other, then we have
found three students who all do not know each other. �

If only five students are at the party, the result is no longer true
(can you think of an example?). Questions asking for the largest (or
smallest) object with a given property are called extremal problems,
and the pigeonhole principle is often extremely useful to solve them.
Here is another extremal result:

Theorem 9.36 (The Erdős–Szekeres theorem). Assume n is a natural
number. Any sequence of n2+1 distinct real numbers contains a mono-
tone (i.e. either strictly increasing or strictly decreasing) subsequence
of length n+ 1.

Example 9.37. Take n = 2. The sequence 1, 3,−1, 0,−π has length
5 = 22 + 1, and so according to the theorem must contain a monotone
subsequence of length 3. Indeed, 1, 0,−π is such a subsequence. By
inspection, it can be seen that the first four elements do not contain a
monotone subsequence of length 3. In general, n2 + 1 is the optimal
length: for any natural n, there is a sequence of length n2 with no
monotone subsequence of length n (can you see why?).

Proof of the Erdős–Szekeres theorem. Let a1, a2, . . . an2+1 be an arbi-
trary sequence of distinct real numbers. For each i ∈ [n2 + 1], let
xi denote the length of the longest increasing subsequence ending at
ai, and let yi denote the length of the longest decreasing subsequence
ending at ai (so in the example above, x4 = 2, as witnessed by the sub-
sequence −1, 0). Assume for a contradiction the theorem fails. Then
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xi, yi ≤ n for all i ∈ [n2 + 1]. Since we also have that xi, yi ≥ 1 for
all i, we have xi, yi ∈ [n], so for a fixed i, the product rule tells us
that the number of possible pairs (xi, yi) is |[n]× [n]| = n2. Now there
are n2 + 1 many possible is, and only n2 possible values for the pairs,
thus the pigeonhole principle tells us there must exist i < j such that
(xi, yi) = (xj, yj). There are two cases: either ai < aj or ai > aj. If
ai < aj, then it cannot be that xi = xj, as any increasing subsequence
ending with ai induces an increasing subsequence ending with aj with
one more element. Similarly, if ai > aj, yi 6= yj. This contradiction
concludes the proof. �

Here, lecture 18 ended, and lecture 19 started.

10. Number theory

Number theory is one of the oldest classical areas of mathematics,
where there are many beautiful results and many open questions (such
as Goldbach’s conjecture). We will also present an application to com-
municating securely on the internet. For now, we just mention the
problem we will discuss: assume Alice and Bob want to privately com-
municate over the internet, but their communications are monitored.
How can they hide the content of their messages?

10.1. The fundamental theorem of arithmetic. After an earlier
introduction to prime numbers, culminating in Theorem 7.18, we now
begin a more systematic study. Recall the following facts about divid-
ing and being coprime:

Theorem 10.1. Assume n, m, and k are integers.

(1) If k divides n and k divides m, then k divides n+m.
(2) If k divides n, then k divides n ·m.
(3) If m and n are coprime, then n and m− n are coprime.

Proof. These were covered in assignment 5 (the last fact was mistated
there but is still correct by the same proof). For completeness, we give
the proofs:

(1) Fix n′ ∈ Z such that n = kn′. Fix m′ ∈ Z such that m = km′.
Then n+m = k(n′ +m′) so k divides m+ n.

(2) Fix n′ such that n = kn′. Then nm = kn′m = k(n′m) so k
divides n ·m.

(3) Assume m and n are coprime but n and m − n are not. Then
there exists a prime p dividing n and m− n. By (1), p divides
n + m − n = m. Thus p divides m and n and so m and n are
not coprime, contradiction.
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�

Recall that a natural number n ≥ 2 is prime if the only natural num-
bers dividing it are 1 and n. The first few primes are 2, 3, 5, 7, 11, 13, . . ..
Now, it is far from obvious that this list goes on forever. From what
we know so far, it could be that there are only a billion primes, and
that all numbers are a product of those. It turns out this is not the
case. This was shown by Euclid already around 300 BC.

Theorem 10.2. There are infinitely many primes.

Proof. Assume n ∈ N and p0, p1, . . . , pn are distinct prime numbers.
We build a new prime q which is not in this list, showing that there
must be more than n + 1 primes. Since n is arbitrary, the result will
follow.

Consider m := p0p1 . . . pn + 1. m is not necessarily prime20, but by
Theorem 7.18 there must be a prime q that divides m. Thus q cannot
divide m − 1 = p0p1 . . . pn (if q divides m − 1 then as q also divides
m, Theorem 10.1 tells us that q divides m − (m − 1) = 1, which is
impossible as q is prime), so q cannot be one of p0, . . . , pn. �

Our next goal is to prove uniqueness of a number’s prime factoriza-
tion. This turns out to be surprisingly tricky. A very useful fundamen-
tal result toward this goal is:

Theorem 10.3 (Bézout’s lemma). Assume m and n are coprime inte-
gers. Then there exists integers a and b such that am+ bn = 1.

Proof. We can assume that m and n are natural numbers: once the
result is proven for the natural numbers, we can replace m and n by
−m and −n if necessary and correspondingly change the signs of the
a and b we obtain.

We prove the result by strong induction on m+n, i.e. we prove p(x)
by strong induction where p(x) says: for every natural numbers n and
m such that x = m + n, if n and m are coprime, there exists integers
a and b such that am+ bn = 1.

For the base case, if n ≤ m and n = 0, then to have n and m
coprime we need m = 1. In this case we can take a = 1, b = 0.
For the inductive step, assume m and n are coprime natural numbers,
and the result is true for all coprime natural numbers m′, n′ with
m′ + n′ < m + n. Swapping m and n if necessary, we can assume
n ≤ m. We have already proven the result for n = 0, so assume n > 0.
By Theorem 10.1, n′ := n and m′ := m − n are coprime, and since
n > 0, m′ + n′ = m < m + n. By the induction hypothesis (note that

20As exemplified by 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509.
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m′ ∈ N), there exists integers a′ and b′ such that a′m′ + b′n′ = 1, i.e.
a′(m− n) + b′n = 1, so a′m+ (b′ − a′)n = 1. Take a := a′, b := b′ − a′
to get the result. �

Example 10.4. 15 and 8 are coprime, and (−1) · 15 + 2 · 8 = 1.

Intuitively, Bézout’s lemma says that two coprime integers n and m
are very independent in the sense that any integer can be written as
an integer combination of n and m.

We now turn to the question of when a number that divides a product
divides one of the factors. Recall that this is not true in general (4
divides 2 · 2 but 4 does not divide 2).

Theorem 10.5. Assume m,n, k are integers. If m and n are coprime
and m divides nk, then m divides k.

Proof. By Bézout’s lemma, there are integers a and b such that am +
bn = 1. Multiplying both sides of this equation by k, we get that
amk + bnk = k. Now m divides amk, and m divides ank (since it
divides nk by assumption), so by Theorem 10.1, it must divide the
sum, i.e. m divides k. �

A simple consequence is:

Theorem 10.6 (Euclid’s lemma). Assume n and k are integers and p
is prime. If p divides nk, then either p divides n or p divides k. More
generally, if p divides n0n1 . . . nr, then p divides ni for some i.

Proof. Assume p does not divide n. Then p and n must be coprime,
so we can apply the previous theorem (with m = p). The general case
now follows by an easy induction (exercise). �

We can now prove:

Theorem 10.7 (The fundamental theorem of arithmetic). Any natural
number n ≥ 2 can be uniquely written as a product of primes (up to
re-ordering of the factors).

Proof. We have already proven existence (Theorem 7.18). We prove
uniqueness by strong induction on n. The base case is when n = 2 (or
more generally when n is prime) and is true by definition of a prime
number. For the inductive step, assume n = p0p1 . . . pm = q0q1 . . . qr,
where the pis and qis are prime and m, r ≥ 1. Now by Theorem 10.6,
p0 divides qi for some i. Since qi is prime, this means that p0 = qi.
By re-ordering the qjs, we can assume i = 0, i.e. q0 = p0. Applying
the induction hypothesis on p1p2 . . . pm = n

p0
= n

q0
= q1q2 . . . qr, we get

that the lists p1, p2, . . . , pm and q1, q2, . . . , qr must be the same up to
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re-ordering (so in particular m − 1 = r − 1, so m = r). Thus the list
p0, p1, . . . , pm and p0 = q0, q1, . . . , qr are also the same. This concludes
the proof of uniqueness. �

Remark 10.8. We can also see 1 as the unique product of no primes
at all (the empty product). With this convention, we obtain that every
positive natural number is a unique product of primes.

10.2. The Euclidean algorithm. How can we compute the coeffi-
cients a and b in Bézout’s lemma? To see this, introduce the concept
of a greatest common divisor

Definition 10.9. For integers m and n, the greatest common divisor
(gcd) of m and n, written gcd(m,n) is the maximal number that divides
both m and n. If m = n = 0, there is no such maximum, so we define
gcd(0, 0) := 0.

Example 10.10. gcd(15, 20) = 5, gcd(8, 15) = 1.

Here, lecture 19 ended and lecture 20 started.
Here are some elementary properties of the gcd:

Theorem 10.11. Assume n, m, and k are integers.

(1) gcd(n,m) = gcd(m,n).
(2) gcd(n,m) = gcd(±n,±m).
(3) gcd(n,m) = gcd(n,m+ kn).
(4) gcd(n,m) = 1 if and only if n and m are coprime.
(5) gcd(n,m) = 0 if and only if n = m = 0.
(6) If n divides m, gcd(n,m) = |n|. In particular, gcd(n, 0) = |n|.
(7) If n = ka, m = kb, and a and b are coprime, then gcd(n,m) =
|k|.

Proof. Exercise (assignment 8). �

From Theorem 10.11.(7), we see that one way to compute the gcd
of two positive natural numbers is to multiply the primes that appear
in both prime factorizations. However, there is no known general fast
method to compute the prime factorization of a number. There is a
very quick method to compute the gcd though. This relies on Theorem
10.11.(3): instead of computing the gcd of n and m, we can compute
the gcd of n and m − kn, where of course we should take k so that
m− kn is small. There is a natural choice for such k:

Theorem 10.12. For any integers m and n with n nonzero, there
exists unique integers k and r such that m = nk + r and 0 ≤ r < |n|.
We call k the quotient and r the remainder of the division of m by n.
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Proof. We first prove existence. Let’s first assume that m and n are
non-negative. Take l to be the minimal natural number such that nl >
m (such a minimal element exists: since n is nonzero, n(2m) > m and
so the set of those l is nonempty. Now use the well-ordering principle).
Let k := l − 1. Intuitively, we have picked k to be the largest natural
number such that nk ≤ m, which should fit your idea of what the
quotient of a division is. Let r := m − nk. Let’s check they are as
desired:

• Since m is non-negative, we must have l > 0. Thus k = l−1 is a
natural number, and by minimality of l we must have nk ≤ m.
• Therefore r = m−nk is non-negative. Moreover, nk+r = m <
nl = n(k + 1) = nk + n. Taking away nk from the left hand
and right hand sides of this equation, r < n = |n|.

We now have proven existence for non-negative m and n. Assume
now that at least one of m or n is negative. Let m′ := |m|, n′ := |n|.
Take k′ and r′ as given by the previous case such that m′ = k′n′ + r′,
0 ≤ r′ < |n| = n′. We consider two cases:

(1) If m is non-negative, then m = m′ and n is negative so n′ = −n
and we can take r := r′ and k′ := −k.

(2) If m is negative, then we have that m = −m′ = −k′n′ − r′. If
r′ = 0, we set r := r, k = −k′ if n is positive, k = k′ otherwise.
Otherwise, we cannot allow a negative remainder, so we again
consider two cases:
(a) If n is positive, n′ = n, so let k := −k′−1, r := n−r′. Then

kn+ r = (−k′−1)n+n− r′ = −k′n− r′ = −k′n′− r′ = m.
(b) If n is negative, n′ = −n, so let k := −(−k′−1), r := n′−r′.

Then kn + r = −(−k′ − 1)n + (n′ − r′) = (−k′ − 1)n′ +
(n′ − r′) = −k′n′ − r′ = m.

Next, we show uniqueness. Assume we have m = nk + r = nk′ + r′

for integers r, r′, k and k′ such that 0 ≤ r, r′ < |n|. We show that
k = k′, from which it must follow that also r = r′. Permutting k and
k′ if necessary, we can assume k ≤ k′. Find a non-negative l such that
k + l = k′. Then m = nk′ + r′ = n(k + l) + r′ = nk + nl + r′. Thus
r = nl + r′. If l = 0, we are done. So assume for a contradiction
that l > 0. Then we must also have that n > 0 (recall that n 6= 0):
otherwise since 0 ≤ r′ < |n| = −n, r = r′+ ln < −n+ ln ≤ 0, which is
impossible. But then n = |n| ≤ nl ≤ nl + r′ = r < |n|, a contradiction
again.

�

Example 10.13.
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• 7 = 2 · 3 + 1 so if m = 7 and n = 3, we get k = 2, r = 1.
• −7 = 3 · (−3) + 2. So if m = −7 and n = −3, we get k = 3,
r = 2.

We can now describe the Euclidean algorithm for computing the gcd
of two integers n and m:

(1) Replace n by −n and m by −m if necessary in order to get
n,m ≥ 0.

(2) Swap n and m if necessary so that n ≤ m.
(3) If n = 0, output m.
(4) Otherwise, 0 < n, so let k be the quotient and r := m − nk

the remainder of the division of m by n. Recursively compute
gcd(n, r) and output it.

Step 1 is correct by Theorem 10.11.(2), step 2 is correct by Theo-
rem 10.11.(1), step 3 is correct by Theorem 10.11.(6), and step 4 is
correct by Theorem 10.11.(3). The algorithm terminates because once
n and m are natural numbers, the algorithm is only used on natural
number values and the sum of those values strictly decreases at each
step. In fact, it can be shown that the algorithm terminates after only
(approximately) log2(n+m) steps.

Example 10.14. Let us compute g := gcd(n,m) where n = 1252
and m = 3031. We already have n ≤ m. We have that 3031 =
2 · 1252 + 527 so the remainder of the division of 3031 by 1252 is
527, hence gcd(1252, 3031) = gcd(1252, 527). We continue in this way:
1252 = 2 · 527 + 198, so the remainder of the division of 1252 by
527 is 198. Thus g = gcd(527, 198). Again, 527 = 198 · 2 + 131 so
g = gcd(198, 131). Next, 198 = 1 · 131 + 67, so g = gcd(131, 67).
131 = 1 · 67 + 64, so g = gcd(67, 64). 67 = 1 · 64 + 3, so g = gcd(64, 3).
64 = 21·3+1, so g = gcd(3, 1). Finally, 3 = 3·1+0, so g = gcd(1, 0) = 1.

Note that we never needed to find the prime factorizations of 1252
and 3031. It turns out 1252 = 2 · 2 · 313 and 3031 = 7 · 433. What
does this have to do with Bézout’s lemma? Well, keeping a paper trail
of what the Euclidean algorithm exactly does enables us to compute
integers a and b such that 1 = a · 1252 + b · 3031:

Example 10.15. Taking n = 1252 and m = 3031 again and reversing
our steps in the previous example, we know that 64 = 21 · 3 + 1, so
1 = 64 − 21 · 3. To make the steps clearer, we will write the numbers
that were plugged into the gcd function and must be expanded further
in boldface. We have:
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1 = 64− 21 · 3(1)

From the previous step, 67 = 1 · 64 + 3, so 3 = 67− 64. Plugging
this into (1), we get:

1 = 64− 21 · (67− 64) = 22 · 64− 21 · 67(2)

We continue backtracking in this way until we obtain the coefficients
for 1252 and 3031: we know 64 = 131− 67, so:

1 = 22 · (131− 67)− 21 · 67 = 22 · 131− 43 · 67(3)

From the computations in the previous example, we have that 67 =
198− 131, so:

1 = 22 · 131− 43 · (198− 131) = 65 · 131− 43 · 198(4)

Now, 131 = 527− 2 · 198, so:

1 = 65 · (527− 2 · 198)− 43 · 198 = 65 · 527− 173 · 198(5)

We have that 198 = 1252− 2 · 527, so:

1 = 65 · 527− 173 · (1252− 2 · 527) = 411 · 527− 173 · 1252(6)

Finally, 527 = 3031− 2 · 1252, so:

1 = 411 · (3031− 2 · 1252)− 173 · 1252 = 411 · 3031− 995 · 1252
(7)

So if a = 411, b = −995, we have 1 = am+ bn. This can be checked
by a direct calculation.

The algorithm hints that Bézout’s lemma generalizes as follows:

Theorem 10.16. For integers m, n, and k, the following are equiva-
lent:

(1) gcd(n,m) divides k.
(2) There exists integers a and b such that k = am+ bn.

In particular, there exists integers a and b such that am + bn =
gcd(n,m).

Proof. Exercise (assignment 8). �

Here, lecture 20 ended and lecture 21 started.
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10.3. Modular arithmetic.

10.3.1. b-ary representations of natural numbers. We have seen there
are many ways to represent a natural number n. One way is to write
it as 1 + 1 + ... + 1 (with n many ones). We also know from Theorem
10.7 that every natural number greater than 1 can be uniquely written
as a product of primes. Yet another representation is to write our
number in its decimal (base 10) expansion you are all familiar with.
More generally, one can also write the number in another base. Let’s
revisit what this means:

Definition 10.17. Assume b ≥ 2 is a natural number, and let n be
a natural number. A base b (or b-ary) representation of n is a list
am, ..., a0, for m a natural number, such that:

(1) n =
∑m

i=0 aib
i.

(2) ai ∈ {0, 1, ..., b− 1} for all 0 ≤ i ≤ m, and am > 0 if m > 0.

Notice that as opposed to the prime factorization, the b-ary repre-
sentations expresses the number as a sum rather than as a product.

Example 10.18. The base 10 representation of 543 is given by 5, 4, 3,
since 543 = 3 · 100 + 4 · 101 + 5 · 102. The base 2 representation of 15
is 1, 1, 1, 1, since 15 = 1 · 20 + 1 · 21 + 1 · 22 + 1 · 23 (check it).

Before proving existence of such a representation, we need

Theorem 10.19. For b 6= 1 a real number and m a natural number :

m∑
i=0

bi =
1− bm+1

1− b
=
bm+1 − 1

b− 1

Proof. Assignment 4. �

Theorem 10.20. Assume b ≥ 2 is a natural number and let n be a
natural number. Then n has a unique base b representation.

Proof. We first prove the existence of the representation by induction
on n, i.e. we use induction on the propositional function p(x) which
says “x has a base b representation”.
Base case. 0 can be written as 0 ·b0, so one can take m = 0 and a0 = 0
to be the representation.
Inductive step. Assume n has a base b representation cm, . . . , c0. We
want to find a base b representation of n+ 1. We consider two cases:

• Case 1: c0 = . . . = cm = b − 1. Then we set a0 = . . . =
am = 0, and am+1 = 1. We show that am+1, . . . , a0 is a base b
representation of n+ 1:
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n =
m∑
i=0

cib
i =

m∑
i=0

(b− 1)bi = (b− 1)
m∑
i=0

bi = (b− 1)
bm+1 − 1

b− 1
= bm+1 − 1

Therefore, n+ 1 = bm+1, proving that am+1, . . . , a0 is indeed
a representation of n+ 1.
• Case 2: ct < b − 1 for some t. Pick the smallest such t. Then

the base b representation of n is of the form cm, . . . , ct+1, ct, b−
1, . . . , b − 1. Set a0 = . . . = at−1 = 0, at = ct + 1, and ai = ci
for i > t. We claim this forms a base b representation for
n+ 1 (that is, the base b representation of n+ 1 is of the form
cm, . . . , ct+1, ct + 1, 0, . . . , 0). This can similarly be checked as
above:

n =
m∑
i=0

cib
i

=
t−1∑
i=0

cib
i +

m∑
i=t

cib
i

= (b− 1)
t−1∑
i=0

bi +
m∑
i=t

cib
i

= bt − 1 +
m∑
i=t

cib
i

= (ct + 1)bt − 1 +
m∑

i=t+1

cib
i

So

n+ 1 = (ct + 1)bt +
m∑

i=t+1

cib
i =

m∑
i=t

aib
i =

m∑
i=0

aib
i

as needed.

This proves existence of the representation. For uniqueness, assume
not and let n be a minimal natural number that has (at least) two
different b-ary representations, say am, . . . , a0 and cr, . . . , c0. By sym-
metry, we can assume m ≤ r. If m < r, then we have

n =
m∑
i=0

aib
i ≤

m∑
i=0

(b− 1)bi = bm+1 − 1 < br
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and since by definition of a representation cr > 0, n ≥ br, a contra-
diction. Therefore, m = r. Now if m = 0, the representations must be
the same, so we also have m > 0, and so am, cm > 0. Now am−1, ..., a0,
cm − 1, ..., c0 are distinct representations (removing the first digit if it
is zero) for the number n− bm, contradicting minimality of n. �

You should convince yourself that the least significant digit in the
b-ary representation of a number n is the remainder of the division of n
by b. It turns out that those remainders interact quite well with integer
addition and multiplication. To study this more carefully, we revisit
the relation introduced in Example 8.11.(2):

Definition 10.21. Fix an integer n. For integers x and y, we say
x ≡ y mod n (said “x is congruent to y modulo n”) if n divides x− y.
As usual, we write x 6≡ y mod n if it is not true that x ≡ y mod n.

For a fixed natural number, we have already observed that this is an
equivalence relation. We also discussed that for n = 0 and n = 1, this
relation is not very interesting (if n = 0, this is just regular equality
and if n = 1, any two integers are congruent). Moreover, x ≡ y mod n
if and only if x ≡ y mod −n (signs do not influence divisibility), so we
will really only be interested in this relation for n ≥ 2. Observe that
x ≡ 0 mod n precisely when n divides x.

Example 10.22.

(1) 42 ≡ 2 mod 5.
(2) −42 ≡ −2 ≡ −2 + 5 ≡ 3 mod 5.

The reason this relation is so important is that it plays very well
with addition and multiplication:

Theorem 10.23. Fix an integer n. Assume x1, x2, y1, y2 are integers
such that x1 ≡ x2 mod n and y1 ≡ y2 mod n. Then:

(1) x1 + y1 ≡ x2 + y2 mod n.
(2) x1y1 ≡ x2y2 mod n.

Proof. By assumption, we have that n divides x2 − x1 and n divides
y2 − y1.

(1) We have to see that n divides x2 + y2− (x1 + y1) = (x2− x1) +
(y2 − y1). Since n divides both terms, it must divide the sum.

(2) Pick integers k and m such that nk = x2−x1 and mn = y2−y1.
Then x1 = x2 − nk, y1 = y2 −mn, so:

x1y1 = x2y2 − x2mn− y2nk + n2mk = x2y2 + n(−x2m− y2k + nmk)
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Therefore x1y1−x2y2 = nc for c := −x2m−y2k+nmk which is
an integer. Hence n divides x1y1−x2y2, so x1y1 ≡ x2y2 mod n.

�

Thus we obtain that if m is an integer, n 6= 0, then m ≡ r mod n,
where r is the remainder of the division of m by n. To see this, observe
that by definition we have that m = nk + r and nk ≡ 0 mod n. Also,
for b ≥ 2, if am, . . . , a0 is the b-ary representation of a natural number
n, then n ≡

∑m
i=0 aib

i mod b, and since b ≡ 0 mod b, n ≡ a0 mod b.
That is, n is congruent modulo b to the least significant digit of its
b-ary representation. As another example, we demonstrate a trick to
determine divisibility by 9:

Theorem 10.24. A natural number n is divisible by 9 if and only if
the sum of its decimal digits is divisible by 9.

Proof. Let am, . . . , a0 be the decimal representation of n. We have that
10 ≡ 1 mod 9, and therefore 10i ≡ 1 mod 9 for any natural number i.
Therefore:

n =
m∑
i=0

ai10i ≡
m∑
i=0

ai · 1 mod 9

Therefore n ≡ 0 mod 9 if and only if
∑m

i=0 ai ≡ 0 mod 9. �

Remark 10.25. Modular arithmetic appears a lot in the real world:
computers (or really, any kind of digital counter) sometimes “overflow”
when adding one to the largest integer their memory can store. In this
case, the result is usually obtained by “going back to 0” (or whatever
the lower bound for the representation of integers is). Closer to nature,
many cyclic phenomenons can be described using modular arithmetic:
time (days of the week, of the year, minutes on a clock), or even space
(the earth is round...) are examples.

10.3.2. A long remark on equivalence classes. This has not been covered
in class but is here for your own background

For n ≥ 1, there are infinitely many representations for the same
number modulo n. For example, 2 ≡ 7 ≡ −3 ≡ 1000000002 mod 5.
This is sometimes inconvenient and we would like to work with unique
representations. You might suggest to always work with the remainder
of the division by n, but for example the remainder of the division of
7 by 5 is 2, and the remainder of the division of 8 by 5 is 3, yet the
remainder of the division of 7 · 8 ≡ 2 · 3 ≡ 1 mod 5 is 1 which is not
2 · 3 = 6. Instead, we will work with our friends from assignement 5:
equivalence classes.
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Fix an integer n. Recall that the equivalence class of the integer x
under the relation of congruence modulo n is the set of all integers y
such that x ≡ y mod n. The notation that we previously introduced
was [x]E, where E is congruence modulo n, but this is a bit bulky, so
we will write x̄ for the equivalence class of x modulo n. Note that this
implicitly depends on n, even though it is not present in the notation.
Thus n should be made clear from context.

We write Zn for the set of equivalence classes modulo n (this is often
called Z/nZ, and in assignment 5 this was called A/E for A = Z and
E congruence modulo n).

For example, if n = 3, 0̄ is the set of all elements congruent to 0 mod-
ulo 3, i.e. 0̄ = {0, 3,−3, 6,−6, 9, . . .} = 3̄. Similarly, 1̄ = {1,−2, 4,−5, 7, 10, . . .} =
4̄ and 2̄ = {2,−1, 5,−4, 8,−7, 11, . . .}. Thus we have that Z3 =
{0̄, 1̄, 2̄}. In general, for n > 0, |Zn| = n as the only possible remainders
of the division of a number by n are {0, 1, . . . , n− 1}.

We can define multiplication and addition between equivalence classes
in the natural way:

Definition 10.26. Fix an integer n. For integers x and y, we define
an addition and a multiplication on x̄ and ȳ as follows:

(1) x̄+ ȳ = x+ y.
(2) x̄ · ȳ = x · y.

This makes sense by Theorem 10.23: if we have x1 = x2 and y1 = y2,
then x1 + x2 = y1 + y2. In other words, the definition of addition does
not depend on which integer x in the equivalence class we picked. The
same remark applies to multiplication.

In this way we obtain a structure with n elements (Zn), in which
we can do addition and multiplication in a way that respects many of
the axioms of real numbers. Of course, the elements of Zn are not real
numbers, so there are some differences as well (for example, there is no
good way of defining an ordering on Zn). Yet we will see that for prime
ns, Zn behaves like the reals as far as addition and multiplication is
concerned.

Here, lecture 21 stopped and lecture 22 started.

10.3.3. Division in modular arithmetic. We know we can add and mul-
tiply fine even in modular arithmetic. We can also subtract, since the
negative of an integer is also an integer. What about division? At first
glance, this seems to be a nonsensical question: 1

4
is not even an integer

so how would we make sense of dividing 1 by 4 (say modulo 5)? Well,
recall how division was defined for the real numbers: we first defined
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the reciprocal of a number x to be a number y such that xy = 1. This
definition also makes sense in our context:

Definition 10.27. Fix an integer n and an integer x. We say an
integer y is an inverse of x modulo n if xy ≡ 1 mod n. In this case,
we write x−1 ≡ y mod n. If x has an inverse, we can then “divide” an
integer z by x modulo n by looking at zx−1 modulo n.

Remark 10.28. In this notation, x−1 is not the same as the real num-
ber 1

x
(which we called the reciprocal of x): as noted before, something

like 1
4
≡ −1 mod 5 does not make any sense: congruence modulo 5 is

defined for integers only. In this course, we will always use the word
reciprocal for x−1 in the real numbers, and inverse for x−1 modulo n.

Example 10.29.

(1) An inverse of 4 modulo 5 is 4: 4 ·4 ≡ 16 ≡ 1 mod 5. An inverse
of 3 modulo 7 is 5: 3 · 5 ≡ 15 ≡ 1 mod 7. We also have that −2
is an inverse of 3 modulo 7 (because −2 ≡ 5 mod 7).

(2) As with the real numbers, for |n| 6= 1, 0 never has an inverse
modulo n.

(3) Even though it is nonzero, 2 does not have an inverse modulo 4:
this can be seen by trying all possible candidates (there are only
four of them: 0, 1, 2, 3). For any integer y either 2y ≡ 0 mod 4
or 2y ≡ 2 mod 4. This can be explained by the fact that 2 is
even, so there is no way to multiply it by something that would
produce an odd remainder to the division by 4.

Thus we see that inverses need not exist, even for nonzero numbers.
Before studying the question of existence further though, let’s think
about uniqueness. In the sense of pure equality, inverses are not unique
(as demonstrated by the first example). However, they are unique
modulo n:

Theorem 10.30 (Uniqueness of inverses modulo n). For a fixed integer
n, if y and y′ are inverses of x modulo n, then y ≡ y′ mod n.

Proof. By definition, we have that xy ≡ 1 mod n. Multiplying both
sides of this equation by y′, we get that y′xy ≡ y′ mod n. Now y′x ≡
1 mod n by definition of y′, so y ≡ y′ mod n. �

Let’s now think about existence of inverses. We saw that 2 does not
have an inverse modulo 4. It turns out this is related to the fact that
2 shares a common factor with 4, and that this is the only obstacle:

Theorem 10.31 (Existence of inverses modulo n). Fix an integer n.
If x and n are coprime, then x has an inverse modulo n.
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Proof. By Bézout’s lemma, there exists integers a and b such that ax+
bn = 1. Thus ax − 1 = −bn, i.e. ax ≡ 1 mod n. Therefore a is an
inverse of x. �

Note that the proof also tells us how to compute an inverse: just use
the Euclidean algorithm to obtain integers a and b so that ax+ bn = 1.
Then a is an inverse of x modulo n.

Thus we conclude that things work especially well when n is prime:

Theorem 10.32. Assume p is a prime and x is an integer. If x 6≡
0 mod p, then x has an inverse modulo p.

Proof. If x 6≡ 0 mod p, then p does not divide x, so x and p are coprime
and the result follows from the previous theorem. �

Example 10.33. We can solve the modular equation: 51x ≡ 42 mod 11
(for x ∈ Z) as follows: first we can reduce 42 to −2 modulo 11, and 51
to −4 modulo 11, so the equation becomes (−4)x ≡ 2 mod 11, or (mul-
tiplying both sides by −1), 4x ≡ 2 mod 11. First note that the solution
is not 1

2
(this is not an integer). To get an integer solution, we find an

inverse of 4 modulo 11 (such an inverse must exist since 11 is prime).
We could use the Euclidean algorithm to compute the gcd of 4 and 11,
but we instead use trial and error to establish that 4 · 3 ≡ 1 mod 11,
hence 3 is an inverse of 4 modulo 11. Multiplying both sides of the
equation by 3, we obtain x ≡ 6 mod 11. This is the only solution
(modulo 11) by uniqueness of inverses modulo 11. The set of integer
solutions can be described by {x ∈ Z | x = 6 + 11k for some k ∈ Z}.
10.4. Two important theorems. What if we want to solve systems
of linear equations like ax ≡ m1 mod n1, bx ≡ m2 mod n2? The gen-
eral case is a bit annoying to state (e.g. because we first need to know
each equation individually has a solution), but the most fundamental
result is:

Theorem 10.34 (The Chinese remainder theorem). Assume n0,m0, n1,m1, . . . , nk,mk

are integers. Assume that n0, n1, . . . , nk are pairwise coprime. Then
there exists an integer x satisfying the system of equations:

x ≡ m0 mod n0

x ≡ m1 mod n1

. . .

x ≡ mk mod nk

Furthermore, x is unique modulo n0n1 . . . nk.
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Proof. The result is clear for k = 0 so assume k ≥ 1. Let’s first prove
existence. We will take x to be of the form

∑k
i=0mibi, where bi is such

that bi ≡ 1 mod ni but bi ≡ 0 mod nj for j 6= i. You should convince
yourself that such an x will work. Let’s see how to find the bis.

For i between 0 and k, define ai :=
∏

j 6=i nj (i.e. we take the product

of all the njs except ni). We have that ai and ni are coprime (if a
prime p divides ai and ni, then by Theorem 10.6 it must divide some
nj with j 6= i, and so ni and nj are not coprime, which contradicts the
pairwise coprime assumption). Thus ai has an inverse modulo ni. Let
ci be such an inverse, and let bi := aici. Then the bis are as desired:
bi ≡ 1 mod ni by definition of an inverse, but ai ≡ 0 mod nj for j 6= i,
so also bi ≡ 0 mod nj.

To see uniqueness, assume x and x′ are solutions to the system.
We have that for each i, x ≡ x′ mod ni, so ni divides x − x′. Since
the nis are pairwise coprime, they share no common prime factors,
and so we must also have that n0n1 . . . nk divides x − x′, i.e. x ≡
x′ mod n0n1 . . . nk. �

The name “Chinese remainder” comes from the fact that generals in
ancient China would use this theorem to count their soldiers: soldiers
would be asked to line up in rows of n0 soldiers, and then in rows of
n1 soldiers for n0, n1 coprime integers. The general would only count
the number of soldiers in the last row and deduce the total number
of soldiers. You will have the opportunity to explore this application
further in assignment 9.

Here, lecture 22 ended and lecture 23 started.
Another very useful theorem is about exponentiation:

Theorem 10.35 (Fermat’s little theorem). Assume p is prime and x is
an integer. Then xp ≡ x mod p. If x 6≡ 0 mod p, then xp−1 ≡ 1 mod p.

Proof. The first part is a reformulation of problem 3 in assignment 8.
For the second part, simply multiply the equation xp ≡ x mod p by an
inverse of x modulo p (exists as x is not zero modulo p). �

Remark 10.36. The adjective “little” is used to distinguish Fermat’s
little theorem from Fermat’s last theorem, a much harder result which
was only proven more than 300 years after Fermat by Andrew Wiles. It
says that there is no positive integer solution to the equation xn +yn =
zn when n ≥ 3 is a natural number.

Example 10.37. Fermat’s little theorem lets us do modular expo-
nentiation very quickly. For example, let’s compute the remainder
of the division of 4788 by 7. This is congruent to 588 mod 7. Now,
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88 = 4 + 14 · 6, so 588 = 54+14·6 = 54 · (56)14. By Fermat’s little
theorem, 56 ≡ 1 mod 7, so we only have to compute 54 mod 7. A
useful method for this is repeated squaring : 52 ≡ 25 ≡ 4 mod 7, and so
54 = (52)2 ≡ 42 ≡ 16 ≡ 2 mod 7.

Example 10.38. Fermat’s little theorem also lets us prove quickly
that a number n is not prime. Let’s for example take n = 341. To
see whether it is prime, one could check all possible divisors. This
is okay for such a small number but would take a ridiculous amount
of time for larger numbers. On the other hand, the contrapositive of
Fermat’s little theorem tells us that if we can find an integer x such that
x341 6≡ x mod 341, then 341 is not prime. Let’s compute the remainder
of 7341. We could use repeated squaring, but we can get away with
less: 73 ≡ 343 ≡ 2 mod 341, so 7341 ≡ 73·113+2 ≡ 2113 · 72 mod 341.
Now 210 ≡ 1024 ≡ 1 mod 341, so 2113 ≡ 211023 ≡ 8 mod 341, and
72 ≡ 49 mod 341. Thus 7341 ≡ 8 · 49 ≡ 392 ≡ 51 mod 341. Since
51 6≡ 7 mod 341 this shows us that 341 is not prime. Indeed, it turns
out 341 = 11 · 31.

Remark 10.39. The method above does not always work: there are
numbers n such that xn ≡ x mod n for all x, but n is not prime. These
are called Carmichael numbers. An example is 561 (which is divisible
by 3).

10.5. Application: the RSA cryptosystem. Most of the material
in this subsection was taken from [Wikc].

In his famous book [Har92], the mathematician G.H. Hardy declared
that number theory was the purest part of pure mathematics, and was
unlikely to ever have any practical application. The development of
sophisticated communication systems later proved him wrong.

Consider the following problem: Alice and Bob want to privately
communicate through some communication channel (for example a
phone or the internet), but they know that the channel is monitored
and that everything they say will be listened to. We assume Alice
and Bob cannot meet physically (maybe Alice lives in New York and
Bob lives in Paris): all their communications must happen through the
monitored channel. We assume the eavesdropper can listen to what Al-
ice and Bob say, but cannot modify the content of their conversation.
On networks such as the internet, such a situation is very common
(ebanking, shopping, private email/chat, evoting, connecting to your
andrew account...), although the assumption that the eavesdropper
cannot change the data in transit does not always hold.

You should convince yourself that Alice and Bob cannot simply agree
on some secret code over their communication channel: the secret code
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would be picked up by the eavesdropper. Amazingly, there is still a
way Alice and Bob can communicate securely (or at least, nobody has
figured out how to break that scheme yet). This is the RSA cryptosys-
tem, named after its inventors: Rivest, Shamir, and Adleman. This is
one of the most widely used cryptosystem on the internet: every time
you see “https” in the address bar of your browser, RSA is likely being
used in some way.

Warning: the scheme described below is oversimplified and has sev-
eral flaws that an actual implementation must address. Do not try to
use it as given to communicate securely.

Let’s describe how Alice can send a private message to Bob (the
symmetric method will allow Bob to reply to Alice). Before going into
the number-theoretic details, we give a physical analogy: assume Alice
and Bob could use the (physical) mail system. In this case, Bob buys a
very strong lock and sends an empty suitcase, together with the (open)
lock, to Alice. Crucially, Bob keeps the lock’s key. In this way anybody
who intercepts the suitcase only gets a worthless lock and no key to
open it once closed. Alice puts her secret message in the suitcase, and
closes it using the lock. Note that she does not need the lock’s key to
do this. She then sends the suitcase back to Bob. On transit, nobody
can open the lock (it is very strong). Bob receives the suitcase and can
open it since he kept the lock’s key.

In our case, the lock and the key will be coded by numbers. We
will call the lock Bob’s public key (anybody, including Alice or the
eavesdropper, can see it and use it to send Bob locked suitcases), and
its key will be called Bob’s private key (only Bob has it and he never
sends it out, even to Alice).
Key generation. To allow her to communicate, Bob must first send
some data (the lock and suitcase in the physical analogy) to Alice: he
randomly chooses two large distinct primes p and q (although we will
not go into the details, there are algorithms to do this). By “large”,
we mean about a thousand decimal digits. Bob computes n := pq,
n′ := (p− 1)(q− 1), and picks a natural number 2 ≤ e < n′ coprime to
n′ (a prime not dividing n′ would work for example). Bob sends n and
e to Alice (but, crucially, keeps p, q, and n′ secret). We refer to the
pair (n, e) as Bob’s public key. The triple (p, q, n′) is refered to as Bob’s
private key. Of course, the eavesdropper will also know the public key
(n, e). However, no efficient way is currently known to deduce n′, p or
q from (n, e) (in particular, no efficient way is known to factor n into
p and q), so we assume Bob is the only one to know (n′, p, q).
Encryption. Now, we assume the message Alice wants to send to Bob
can be coded as a finite string of 0s and 1s, and therefore as a number
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m. We assume further that the message is coded in such a way that
2 ≤ m < n (if not, Alice can always split her message into smaller
parts and repeat the scheme).

Of course, m is secret and so Alice can’t just send m over the com-
munication channel. Instead, she sends some cyphertext c ≡ me mod n
(for example, c could be the remainder of the division of me by n). It
is possible for Alice to compute such a c since Bob previously sent her
n and e. The computation can be done quite efficiently using repeated
squaring. However, with only n and e, no efficient way is known to
revert the process, i.e. get back m from me mod n (This is known as
the discrete logarithm problem. Of course, e should be taken sufficiently
large so that me > n). Thus the eavesdropper cannot do anything with
c, n and e alone.
Decryption. Recall however that Bob also kept secret his private key
(n′, p, q). To recover m from c, Bob computes an inverse d of e modulo
n′ (it exists since e was chosen coprime to n′ and can be computed
efficiently using the Euclidean algorithm), and computes cd modulo n.
Note that since nobody but Bob knows n′, Bob is also the only one to
know d.

We claim that this works: m ≡ cd ≡ med mod n.
To prove this, we use the Chinese remainder theorem: recall n = pq,

with p and q distinct primes. In particular, they are coprime and so
it is enough to see m ≡ med mod p and m ≡ med mod q separately
(because then med and m are both solutions to the system of equations
x ≡ med mod p and x ≡ med mod q, so by the uniqueness part of
the Chinese remainder theorem, m ≡ med mod pq = n). Let’s see
m ≡ med mod p, and the proof for q will be symmetric.

First observe that if m ≡ 0 mod p, then med ≡ 0 ≡ m mod p, as
desired. So we can assume m 6≡ 0 mod p.

Recall that d is an inverse of e modulo n′ = (p − 1)(q − 1), so
ed ≡ 1 mod n′, i.e. for some integer h, hn′ = ed − 1, or ed = hn′ + 1.
Thus:

med ≡ mhn′+1 ≡ mh(p−1)(q−1)+1 ≡ (mp−1)h(q−1) ·m mod p

By Fermat’s little theorem, mp−1 ≡ 1 mod p (this is where we are
using m 6≡ 0 mod p), hence med ≡ m mod p, as desired.

Here, lecture 23 ended and lecture 24 started.
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11. Probability

Probability is an important mathematical tool which is used to an-
alyze uncertainty. Some of its results sometimes run counter to our
intuition. We will for example explore the three following problems:

(1) A family with two children has at least one boy. What is the
probability that the other child is also a boy?

(2) Thirty students sit in a room. What is the probability that two
of them share the same birthday?

(3) In every single course, the math majors have performed better
than the English litterature majors. Did the math majors also
perform better overall?

Try to answer each before reading on! Hint: They are tricky. The
answer to some even depends on how we interpret them.

11.1. Defining probabilities. Precisely defining “probability” is com-
plicated. The simplest example of a probabilistic event is that of tossing
a coin: Experience shows that if we toss a coin n times, it will fall on
head roughly n/2 times and fall on tail on the other half of the times.
Thus the ratio of the number of heads to the total number of tossing
is approximately 1/2. When n is very large, we expect this ratio to get
closer and closer to 1/2. At the limit, it should be exactly 1/2. We call
this limit the probability that a random coin toss falls on head.

Similarly, if we roll a (fair) die we expect to get a six (or any other
number) approximately once every six times. Thus we would say that
the probability of rolling a six is 1/6.

We can see the two examples above as performing an experiment
(tossing a coin or rolling a die) and associating a probability to each
outcome depending on how likely it is to happen. In the examples
seen so far, each outcome had the same probability (they were equally
likely). This need not be the case: we could for example flip a biased
coin that is head a quarter of the times and tail the remaining three
quarters of the time. We can also ask for the probability of a set of
outcomes (called an event) to happen. For example, experience shows
the probability to roll a six or a five on a fair die is 2/6 = 1/3.

Based on those examples, we will use the following axiomatic defini-
tion of probability:

Definition 11.1. A finite probability space is a non-empty21 finite set
S together with a function P : P(S)→ R satisfying the following three
axioms:

21This actually follows from the axioms (can you see why?).
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• (P0) If A ⊆ S, 0 ≤ P (A) ≤ 1.
• (P1) P (S) = 1.
• (P2) If A and B are two disjoint subsets of S, P (A ∪ B) =
P (A) + P (B).

P is called the probability function of S.
We say S is uniform if P ({a}) = 1

|S| for every a ∈ S.

We see S as the set of outcomes and P as a function that gives the
probability that a subset of outcomes (an event) happens. We can also
talk about infinite probability spaces, but the situation is much trickier
there.

Note that (exactly as in the proof of Theorem 9.1), if A0, A1, ...,
Ak are pairwise disjoint subsets of S, then P (A0 ∪ A1 ∪ . . . ∪ Ak) =∑k

i=0 P (Ai). In particular, ifA = {a0, a1, . . . , ak}, we have that P (A) =∑k
i=0 P ({ai}). Thus the probability an event A can be computed from

the probabilities of the elements of A. In case the space is uniform, we

get that P (A) = |A|
|S| , so only the size of A is needed. Question about

the space then often translate to counting problems in combinatorics.

Example 11.2.

• We can model the experiment of tossing a fair coin with the
finite probability space S = {head, tail} with probability func-
tion P ({head}) = P ({tail}) = 1

2
(and with other values defined

in the only possible way as described above). This is a uniform
probability space. If we instead specify P ({head}) = 1

4
and

P ({tail}) = 3
4

we obtain a non-uniform probability space.
• We can also model the experiment of rolling a fair die with
S = [6], P ({i}) = 1

6
for i ∈ [6]. This is a uniform probability

space.
• Consider the more complicated experiment of rolling two fair

dice. We can model it with the probability space S = [6] × [6]
and the uniform probability function (P ({(i, j)}) = 1

36
for i, j ∈

[6]. For n ∈ [12], let An denote the event that the sum of the
two die is n. There is only one way to get a 12: (6, 6), so
P (A12) = 1

36
, but there are for example two ways to get an 11:

(5, 6) and (6, 5). Thus P (A11) = 2
36

= 1
18

. You should convince
yourself that the most likely sum is 7, as it can happen in 6
possible ways: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). Thus
P (A7) = 6

36
= 1

6
. As an exercise, you should figure out the

probability of the other Ais.
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We will very quickly drop the formalism: We will often write events
in plain English instead of explicitly writing the set, and the probability
space will often be left implicit.

Before proving some elementary properties of probability spaces, we
need to define the complement of a set. Note that this depends on the
probability space we are working in.

Definition 11.3. Assume S is a finite probability space. For A ⊆ S,
the complement Ac of A is the set S\A of elements of S not in A.

Theorem 11.4 (Elementary properties of probability spaces). Assume
S is a finite probability space with probability function P . Assume
A,B ⊆ S.

(1) P (Ac) = 1− P (A).
(2) P (∅) = 0.
(3) P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof.

(1) It is easy to check that S = A ∪Ac, and A and Ac are disjoint,
therefore by axiom (P2) of probability spaces, P (S) = P (A ∪
Ac) = P (A) + P (Ac). By axiom (P1) of probability spaces,
P (S) = 1. Thus 1 = P (A) + P (Ac), i.e. P (Ac) = 1− P (A).

(2) Take A = S in the previous property and use axiom (P1).
(3) This is very similar to the proof of the inclusion-exclusion princi-

ple you have done in assignment 7. We have that A = (A\B)∪
(A ∩ B), and those sets are disjoint. Thus by (P2), P (A) =
P (A\B) + P (A ∩ B), so P (A\B) = P (A) − P (A ∩ B). Simi-
larly, P (B\A) = P (B)− P (A ∩B). Finally, A ∪B = (A\B) ∪
(A ∩B) ∪ (B\A), and those three sets are pairwise disjoint, so
repeatedly using axiom (P2):

P (A ∪B) = P (A\B) + P (A ∩B) + P (B\B)

= P (A)− P (A ∩B) + P (A ∩B) + P (B)− P (A ∩B)

= P (A) + P (B)− P (A ∩B)

�

Example 11.5. Assume we are rolling two fair dice (i.e. we are in
probability space of Example 11.2.(3)). What is the probability that
the first die is even or the sum of the two is 7? We could either list
all possibilities that this can happen and count them, or compute each
event separately: Let A be the event that the first die is even, B the
event that the sum is 7.



21-127 LECTURE NOTES 89

We have that P (A) = 1
2

(either by counting all possibilities, or by
observing that the probability that the first die is odd must be the same
and that those two probabilities must sum to one), and we already
observed that P (B) = 1

6
. This does not mean that P (A ∪ B) = 1

2
+ 1

6

as the set A and B are not disjoint (e.g. (4, 3) ∈ A ∩ B). We have to
compute the probability of A ∩ B. Simply by counting, this is 1

12
and

so we get that P (A ∪ B) = P (A) + P (B)− P (A ∩ B) = 1
2

+ 1
6
− 1

12
=

1
2

+ 1
12

= 7
12

.

Here, lecture 24 ended and lecture 25 started.

11.2. The birthday paradox. Assume n people are in a room (for a
fixed n ∈ N). What is the probability that two of them have the same
birthday? We assume that each person has a birthday that falls in one
of the 365 days of a year (no February 29th allowed) and that each day
is equally likely to be a person’s birthday. Formally, we can model this
using the probability space S := [n][365] (each outcome is represented
by a function s : [n] → [365] that you can see as a list s(1), s(2),
..., s(n) giving the birthday of each person) with probability function
P ({s}) = 1

|S| (i.e. each possible list is equally likely). We are looking for

P (A) where A is the set of lists s where s repeats the same date twice
(i.e. s is not an injection). We have a lot of experience with counting
but it is easier to count injections than non-injection, so we will first
compute P (Ac) (the probability that a random s is an injection which
is the probability that no two persons share the same birthday).

Since the space is uniform, P (Ac) = |Ac|
|S| , so we only have to compute

|Ac| and |S|, which since we have a lot of experience with counting
should be easy:

• |S| = 365n: it is simply the number of ways to choose n out of
365 dates when order matters and repetitions are allowed.
• |Ac| is the number of ways to choose n out of 365 dates when

order matters but repetitions are not allowed. When n > 365,
this is 0 (by the pigeonhole principle). When n ≤ 365, this is

365!
(365−n)! = 365 · 364 · . . . · (365− n+ 1).

In the end we obtain that:

P (Ac) =

{
365!/(365−n)!

365n
= 365·364·...·(365−n+1)

365n
if n ≤ 365

0 if n > 365

So using Theorem 11.4, P (A) = 1−P (Ac). So we get that if n > 365,
P (A) = 1 which makes sense (the pigeonhole principle tells us that two
persons must have the same birthday). But just from the computed
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answer, is hard to get a feeling for what happens when n ≤ 365. Let’s
assume for example we would like to estimate the number of people

we need to get P (A) above 1/2. To get an estimate for 365!/(365−n)!
365n

, we
first observe that

365!/(365− n)!

365n
=

365− 0

365
· 365− 1

365
· 365− 2

365
· . . . · 365− (n− 1)

365

=

(
1− 0

365

)
·
(

1− 1

365

)
·
(

1− 2

365

)
· . . . ·

(
1− n− 1

365

)

To continue, we will use22:

Fact 11.6. Assume x is a real number with 0 ≤ x ≤ 1. Then 1− x ≤
e−x, where e is a real number (that we will not define here) such that
2.71 < e < 2.72.

Using this fact, we get:

(
1− 0

365

)
·
(

1− 1

365

)
·
(

1− 2

365

)
· . . . ·

(
1− n− 1

365

)
≤ e−

0
365 · e−

1
365 · . . . · e−

n−1
365

= e−
∑n−1

i=0
i

365

= e−
1

365

∑n−1
i=0 i

= e−
n(n−1)
2·365

So we get that P (Ac) ≤ e−
n(n−1)
2·365 , so P (A) = 1−P (Ac) ≥ 1−e−

n(n−1)
2·365 .

So if 1−e−
n(n−1)
2·365 ≥ 1

2
, then P (A) ≥ 1

2
. Solving for n (we will not discuss

the details, but this is straightforward if you know about logarithms
and the quadratic formula), we get n ≥ 23. In general, if we replace
365 by an arbitrary number m, we get that we need to take n around√
m in order to make the probability greater than 1/2.
Even though there is nothing paradoxical about this result, some

people find it surprising that the number is so low. As n grows bigger
than 23, the probability grows quickly: it is larger than 0.8 for n = 35
(the number of students enrolled in this class), and larger than 0.99
when n is 60.

22We take as a given that the exponential function exists, see Fact 5.13.
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11.3. Conditional probabilities. Conditional probabilities describe
“restrictions” of experiments. For example, if you roll two dice, you
may be interested in the probability that they sum to 7 given that you
rolled a 4 with the first die. One has to be very precise when specifying
what the restriction is, as illustrated by the following example:

Example 11.7. A family with two children has at least one boy.
What is the probability that the other child is also a boy? We assume
that each child is either a boy or a girl and that the two outcomes are
equally likely.

• One way to interpret this question is that we know one of the
following three possibilities is true:
(1) The two children are boys
(2) The younger child is a boy and the older one is a girl.
(3) The younger child is a girl and the older one is a boy.

In this case, there are only one out of those three possibilities
where the other child is a boy, so the required probability is
1/3.
• Another way to interpret this question is that we know one of

the two children is a boy (say the oldest one), and we are asking
for the probability that the youngest one is also a boy. In that
case, the probability is 1/2.

This is yet another example of the ambiguity of plain English. To
state the above question more precisely, we now define conditional prob-
ability. As always, we are working in a finite probability space S with
probability function P .

Definition 11.8. Assume A and B are two events with P (B) 6= 0.
The probability of A given event B (written P (A|B)) is defined to be

P (A|B) =
P (A ∩B)

P (B)

Note that if P (B) = 0, P (A|B) is left undefined.

Example 11.9. We can model the previous example as an experiment
with probability space S = {girl, boy} × {girl, boy}, where a pair in
S lists the sexes of the children with the youngest child first. The
probability function is uniform: for x ∈ S, P ({x}) = 1

4
. The event

A representing that the family has two boys is the set {(boy, boy)}.
If we interpret the question as meaning that we know not all chil-
dren in the family are girls, then we are conditioning with respect to
B = {(boy, girl), (boy, boy), (girl, boy)}. If we interpret the question as
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meaning that we know that the (say oldest) child is a boy, then we are
conditioning with respect to C = {(girl, boy), (boy, boy)}. It is now
easy to check using the definitions that P (A|B) = 1

3
and P (A|C) = 1

2
.

Example 11.10. If we throw two dice, what is the probability that
the second one is a 6 (call this event A) given that the first one is a six
(call this event B)? The intuition is that it should be 1/6: the result
of the first throw has no influence on the second one. We can compute
this formally.

P (A|B) =
P (A ∩B)

P (B)
=

1/36

1/6
=

1

6

Thus we have that P (A) = P (A|B) and so P (A∩B) = P (A|B)P (B) =
P (A)P (B). We give this condition a name:

Definition 11.11. Two events A andB are called independent if P (A∩
B) = P (A)P (B).

Clearly, events are not always independent (as an extreme case, if
B = A, P (A ∩ A) 6= P (A)2 if 0 < P (A) < 1. Intuitively, being
independent means that (if P (B) 6= 0) P (A|B) does not depend on B
at all:

Theorem 11.12. If A and B are independent and P (B) 6= 0, then
P (A|B) = P (A).

Proof. By definition, P (A|B) = P (A∩B)
P (B)

, and by independence, P (A ∩
B) = P (A)P (B), so the result follows. �

Example 11.13 (Simpson’s paradox). During a semester, students
must take exactly one class which is either “Concepts of mathematics”
(21127) or “Medieval litterature” (76330). Assume we are given the
following data describing the number of students majoring in math or
English who chose and passed each course23:

Passed 21127 Took 21127 Passed 76330 Took 76330
Math majors 150 190 9 10
English majors 20 40 140 160

Let M describe the event that you are a math major, E the event
you are an English major. Let A denote the event that you passed the
course you selected, Tx that you took course x. We have that for any
course x, P (A|Tx∩M) > P (A|Tx∩E) (for example, P (A|T21127∩M) =

23The numbers were made up and any ressemblance to reality is purely
accidental.
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150
190

= 15
19

, whereas P (A|T21127 ∩E) = 20
40

= 1
2
. Thus for any given class,

the math majors did better than the English majors. Does that mean
that they did better on average, i.e. does that mean that a greater
proportion of math majors passed their class? No: P (A|M) = 150+9

200
=

159
200

, whereas P (A|E) = 20+140
200

= 160
200

. The problem is that more English
majors took the hard class than math majors did.

The previous example illustrates that we often have data for the con-
ditional probabilities, but not for the unconditioned ones. For example,
how would you compute the probability P (A) that you passed? Well,
we can derive it from P (A|M) and P (A|E). This technique is called
conditioning :

Theorem 11.14 (Conditioning). Assume A and B are events with
0 < P (B) < 1. Then

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

More generally, if B0, B1, . . . , Bk are pairwise disjoint, 0 6= P (Bi) for
all i, and B0 ∪B1 ∪ . . . ∪Bk = S, then:

P (A) =
k∑

i=0

P (A|Bi)P (Bi)

Proof. The first part follows from the second by setting B0 = B, B1 =
Bc. For the second part, observe that for each i, P (A|Bi)P (Bi) =
P (A ∩ Bi), and A = (A ∩ B0) ∪ (A ∩ B1) ∪ . . . ∪ (A ∩ Bk) (exercise!).
Since the Bis are pairwise disjoint, the sets in the previous union are
also pairwise disjoint and thus:

P (A) =
k∑

i=0

P (A ∩Bi) =
k∑

i=0

P (A|Bi)P (Bi)

as needed. �

Going back to the previous example, we have that M c = E, and
P (M c) = 1− P (M), so P (A) = P (A|M)P (M) + P (A|E)(1− P (M)).
Since 200 out of 400 students are math majors, P (M) = 1

2
, so we get

that P (A) = 1
2

(
159
200

+ 160
200

)
= 319

400
.

We can also try to reverse what we are conditioning on: What is
P (E|A), i.e. given that I passed, what is the probability that I am an
English major? This is answered by the following:

Theorem 11.15 (Bayes’ theorem). Assume A and B are events with
P (A) and P (B) nonzero, then:
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P (B|A) =
P (A|B)P (B)

P (A)

Proof. We simply use the definition of conditional probability twice:

P (B|A) =
P (A ∩B)

P (A)
=
P (A|B)P (B)

P (A)

�

Remark 11.16. In practice, conditioning is often used to compute
P (A) in the denominator of Bayes’ theorem.

Here, lecture 25 ended and lecture 26 started (the birthday paradox
is still to be covered)

In the previous example, we have:

P (E|A) =
P (A|E)P (E)

P (A)
=

(160/200) · (1/2)

319/400
=

160

319

Bayes’ theorem is often very useful to compute results of clinical
trials where e.g. you know the number of persons who failed a test
for some illness and you want to get the probability that they have
the illness (given the effectiveness of the test). You will explore this
application in your assignment. We move on to discuss a very puzzling
result:

Example 11.17 (The Monty-Hall problem). You are a contestant at
a game show and are asked to choose between one of three doors.
Behind one of the door is a spaceship, and behind the two other doors
are boring math textbooks. You can have whatever is behind the door
you choose to open. You randomly pick a door but before you can
open it the host opens one of the other doors, revealing a boring math
textbook. The host then asks you whether you want to change your
choice of door. Should you change?

To model this problem, we assume without loss of generality that you
initially picked door number one. The solution is of course symmetric
in the other cases. We work on the space S = [3]× [3], where the first
component of the pair gives the door behind which the spaceship is
hidden, and the second component is the door that the host opened.
We know for example that P ({(a, a)}) = 0 for all a ∈ [3], since the
host always opens a door that has a boring book behind it, and also
P ({(a, 1)}) = 0 since you picked the first door. On the other hand, it
is not that easy to figure out the probability of the other outcomes.
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For i ∈ [3], let Hi denote the event that the host selected door i, and
let Ai be the event that the spaceship is behind door i. We want to com-
pute P (A1|H2) and P (A1|H3) to figure out what the chances are that
there is a spaceship behind the first door. Let’s compute P (A1|H2), and
the symmetric computation will give us that P (A1|H3) = P (A1|H2).

By Bayes’ theorem, P (A1|H2) = P (H2|A1)P (A1)
P (H2)

. Now, P (A1) = 1
3

since the spaceship is equally likely to be behind each door. Also,
P (H2|A1) = 1

2
: if there is a spaceship behind the first door, then the

host can choose to open either the second or the third door and will
do so (we assume) with equal probability.

It remains to compute P (H2). For this, we condition on the pairwise
disjoint events A1, A2, and A3 (note that S = A1 ∪ A2 ∪ A3):

P (H2) = P (H2|A1)P (A1) + P (H2|A2)P (A2) + P (H2|A3)P (A3)

We have already figured out what P (H2|A1)P (A1) is. We also know
that P (Ai) = 1

3
for all i ∈ [3]. Now if the prize is behind the second

door, then since you picked the first door, the host has no choice but
to open door 3. Thus P (H2|A2) = 0. Similarly, P (H2|A3) = 1. Thus
P (H2) = 1

2
· 1
3

+0+1 · 1
3

= 1
2
. Putting everything together, P (A1|H2) =

1/6
1/2

= 1
3
. Therefore P (A3|H2) = P (Ac

1|H2) = 1 − P (A1|H2) = 2
3

(it is

easy to check that the rule for computing the probability of comple-
ments also holds when conditioning).

In conclusion, the spaceship is much more likely to be behind the
other door and therefore you should accept the host’s offer and change
your choice of door. Thus one’s initial intuition that there is one chance
out of two that door one is right turns out to be completely wrong!

End of lecture 26. An additional application of Bayes’ theorem to
spam detection was also discussed.
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