CONCEPTS OF MATHEMATICS, SUMMER 1 2014 FACTS ABOUT THE REAL NUMBERS

Fact (Axioms of real numbers). The real numbers are objects satisfying the following properties:

- (R_0) Among the reals, there are two distinguished elements, 0 and 1, with $0 \neq 1$. 0 and 1 have some special properties discussed below.
- (R_1) Binary operations + and \cdot are defined on the reals (they take two reals as input and produce one real as output).
- (R_2) Between any two reals x and y, one can ask whether x < y.
- Addition (+) satisfies the following properties: For all real numbers x, y, z:
 - (A_0) Associativity: (x+y) + z = x + (y+z).
 - $-(A_1)$ Commutativity: x + y = y + x.
 - $-(A_2)$ Zero is the additive identity: x + 0 = x.
 - $-(A_3)$ Existence of inverse: There is always a unique real number w such that x + w = 0.
- Multiplication (·) satisfies the following properties: For all real numbers x, y, z:
 - (M_0) Associativity: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
 - $-(M_1)$ Commutativity: $x \cdot y = y \cdot x$.
 - $-(M_2)$ One is the multiplicative identity: $x \cdot 1 = x$.
 - (M_3) Existence of inverse: If $x \neq 0$, there is a unique real number w such that $x \cdot w = 1$.
- Multiplication and addition interact as follows: For all real numbers x, y, z:

- (D_0) Distributive law: $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$.

- The ordering (<) satisfies the following properties: For all real numbers x, y, z:
 - (O_0) Trichotomy: exactly one of the following is true: 0 < x, x = 0, or x < 0.
 - $-(O_1)$ Closure under addition: If 0 < x and 0 < y, then 0 < x + y.
 - $-(O_2)$ Closure under multiplication: If 0 < x and 0 < y, then $0 < x \cdot y$.
 - $-(O_3)$ If x < y, then x + z < y + z.

• (C_0) The completeness axiom (will not be discussed in this course): If F is a non-empty collection of real numbers and there is a real number x such that for all y in F, y < x, then one can choose x with the additional property that for any x' < x there is y in F with x' < y.

Definition. For x a real number, the *negative* of x, -x, is the *unique* real number w such that x + w = 0 Similarly, define the *reciprocal*, x^{-1} , of a nonzero x to be the *unique* w such that xw = 1.

For real numbers x, y, we define x - y to mean x + (-y). Similarly, for y nonzero, we define x/y (also written $\frac{x}{y}$) to mean $x \cdot y^{-1}$.

Fact (Properties of addition and multiplication). For all real numbers x, y, z, w:

- (F_0) : $x \cdot 0 = 0$.
- $(F_1): -(xy) = (-x)y.$
- (F_2) : -x = (-1)x.
- (F_3) : (-x)(-y) = xy.
- (F_4) : If xy = 0, then x = 0 or y = 0 (or both).
- (F_5) : (x+y)(z+w) = xz + xw + yz + yw.

Fact (Properties of the ordering). For all real numbers x, y, z, w:

- (F_6): Totality: Exactly one of x < y, x = y, y < x always holds. Exactly one of $x \le y$ or y < x always holds.
- (F_7) : Reflexivity: $x \leq x$.
- (F₈): Antisymmetry: If $x \leq y$ and $y \leq x$, then x = y.
- (F_9) : Transitivity: If $x \leq y$ and $y \leq z$, then $x \leq z$. Similarly if \leq is replaced by <.
- Interaction with addition and multiplication:
 - $-(F_{10}): 0 < 1.$
 - $-(F_{11})$: If $x \leq y$ and $z \leq w$, then $x + z \leq y + w$. Similarly if \leq is replaced by <.
 - $-(F_{12})$: If $x \leq y$, then $-y \leq -x$. Similarly if \leq is replaced by <.
 - $-(F_{13})$: If $x \leq y$ and $0 \leq z$, then $xz \leq yz$.
 - $-(F_{14})$: If $0 \le x$ and $0 \le y$, then $0 \le xy$. Similarly if \le is replaced by <.
 - $-(F_{15}): 0 \leq x \cdot x$, and if 0 < x then $0 < x \cdot x$.
 - $-(F_{16})$: If 0 < x, then $0 < x^{-1}$.
 - $-(F_{17})$: If 0 < x < y, then $0 < y^{-1} < x^{-1}$.

 $\mathbf{2}$