CONCEPTS OF MATHEMATICS, SUMMER 12014 FACTS ABOUT THE REAL NUMBERS

Fact (Axioms of real numbers). The real numbers are objects satisfying the following properties:

- $\left(R_{0}\right)$ Among the reals, there are two distinguished elements, 0 and 1 , with $0 \neq 1$. 0 and 1 have some special properties discussed below.
- $\left(R_{1}\right)$ Binary operations + and \cdot are defined on the reals (they take two reals as input and produce one real as output).
- $\left(R_{2}\right)$ Between any two reals x and y, one can ask whether $x<y$.
- Addition (+) satisfies the following properties: For all real numbers x, y, z :
- $\left(A_{0}\right)$ Associativity: $(x+y)+z=x+(y+z)$.
- $\left(A_{1}\right)$ Commutativity: $x+y=y+x$.
$-\left(A_{2}\right)$ Zero is the additive identity: $x+0=x$.
- $\left(A_{3}\right)$ Existence of inverse: There is always a unique real number w such that $x+w=0$.
- Multiplication (\cdot) satisfies the following properties: For all real numbers x, y, z :
- $\left(M_{0}\right)$ Associativity: $(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
- $\left(M_{1}\right)$ Commutativity: $x \cdot y=y \cdot x$.
- $\left(M_{2}\right)$ One is the multiplicative identity: $x \cdot 1=x$.
- $\left(M_{3}\right)$ Existence of inverse: If $x \neq 0$, there is a unique real number w such that $x \cdot w=1$.
- Multiplication and addition interact as follows: For all real numbers x, y, z :
$-\left(D_{0}\right)$ Distributive law: $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.
- The ordering $(<)$ satisfies the following properties: For all real numbers x, y, z :
- $\left(O_{0}\right)$ Trichotomy: exactly one of the following is true: $0<$ $x, x=0$, or $x<0$.
$-\left(O_{1}\right)$ Closure under addition: If $0<x$ and $0<y$, then $0<x+y$.
- $\left(O_{2}\right)$ Closure under multiplication: If $0<x$ and $0<y$, then $0<x \cdot y$.
- $\left(O_{3}\right)$ If $x<y$, then $x+z<y+z$.
- $\left(C_{0}\right)$ The completeness axiom (will not be discussed in this course): If F is a non-empty collection of real numbers and there is a real number x such that for all y in $F, y<x$, then one can choose x with the additional property that for any $x^{\prime}<x$ there is y in F with $x^{\prime}<y$.

Definition. For x a real number, the negative of $x,-x$, is the unique real number w such that $x+w=0$ Similarly, define the reciprocal, x^{-1}, of a nonzero x to be the unique w such that $x w=1$.

For real numbers x, y, we define $x-y$ to mean $x+(-y)$. Similarly, for y nonzero, we define x / y (also written $\frac{x}{y}$) to mean $x \cdot y^{-1}$.
Fact (Properties of addition and multiplication). For all real numbers x, y, z, w :

- $\left(F_{0}\right): x \cdot 0=0$.
- $\left(F_{1}\right):-(x y)=(-x) y$.
- $\left(F_{2}\right):-x=(-1) x$.
- $\left(F_{3}\right):(-x)(-y)=x y$.
- $\left(F_{4}\right)$: If $x y=0$, then $x=0$ or $y=0$ (or both).
- $\left(F_{5}\right):(x+y)(z+w)=x z+x w+y z+y w$.

Fact (Properties of the ordering). For all real numbers x, y, z, w :

- $\left(F_{6}\right)$: Totality: Exactly one of $x<y, x=y, y<x$ always holds. Exactly one of $x \leq y$ or $y<x$ always holds.
- $\left(F_{7}\right)$: Reflexivity: $x \leq x$.
- $\left(F_{8}\right)$: Antisymmetry: If $x \leq y$ and $y \leq x$, then $x=y$.
- $\left(F_{9}\right)$: Transitivity: If $x \leq y$ and $y \leq z$, then $x \leq z$. Similarly if \leq is replaced by $<$.
- Interaction with addition and multiplication:
$-\left(F_{10}\right): 0<1$.
$-\left(F_{11}\right)$: If $x \leq y$ and $z \leq w$, then $x+z \leq y+w$. Similarly if \leq is replaced by $<$.
$-\left(F_{12}\right):$ If $x \leq y$, then $-y \leq-x$. Similarly if \leq is replaced by $<$.
$-\left(F_{13}\right)$: If $x \leq y$ and $0 \leq z$, then $x z \leq y z$.
$-\left(F_{14}\right)$: If $0 \leq x$ and $0 \leq y$, then $0 \leq x y$. Similarly if \leq is replaced by $<$.
- $\left(F_{15}\right): 0 \leq x \cdot x$, and if $0<x$ then $0<x \cdot x$.
- $\left(F_{16}\right)$: If $0<x$, then $0<x^{-1}$.
$-\left(F_{17}\right)$: If $0<x<y$, then $0<y^{-1}<x^{-1}$.

