
Simplewp documentation

Contents

1 What is simplewp ? 1

2 Why reStructuredText ? 2

3 How to use it ? 2

4 Program usage 3
4.1 wpcompile . 3
4.2 website-update . 3

5 The source hierarchy 4
5.1 global.conf . 4
5.2 rst/ . 4

5.2.1 Naming . 5
5.2.2 File-specific configuration . 5

5.3 html/ . 6
5.3.1 Naming . 6
5.3.2 Variables . 6

5.4 scripts/ . 8
5.5 tocopy/ . 8

6 RST format: improvements and limitations 9

1 What is simplewp ?

Simplewp creates an entire static website from a set of simple text files. It is written in Python1

and uses reStructuredText2 to convert plain text to HTML3.
The created website can contain a menu with links to the pdf, plain text and printable

version of the current page, as well as some text describing where the user is in the site.
Simplewp supports website with multiple languages and can also include links to translated

version of the same content in the website’s menu.
You can also write math equations using the latex syntax4.

1http://python.org/
2http://docutils.sourceforge.net/rst.html
3http://en.wikipedia.org/wiki/HTML
4http://svasey.org/projects/old-stuff/svrst_en.html#the-math-extension

1

http://python.org/
http://docutils.sourceforge.net/rst.html
http://en.wikipedia.org/wiki/HTML
http://svasey.org/projects/old-stuff/svrst_en.html#the-math-extension
http://python.org/
http://docutils.sourceforge.net/rst.html
http://en.wikipedia.org/wiki/HTML
http://svasey.org/projects/old-stuff/svrst_en.html#the-math-extension

2 Why reStructuredText ?

HTML is easily readable by machine (and by some humans), but it realy is cumbersome to
write because of its redundancy. Plain text lets you focus on the content, forgetting about
most of the technical and presentation details.

reStructuredText had all the features I wanted, plus a very handy extension mechanism to
add math support. Furthermore, it is very readable in its plain text form, which is especially
useful when you do not want to preview the text in HTML all the time.

3 How to use it ?

If you know reStructuredText5, simplewp is really simple to use: create a directory hierarchy
containing at least the following files and directories

• global.conf: contain some website configuration options

• html/: contains the html menu and footer files you might want to include on the top
and bottom of each of your website’s page

• rst/: contains the content of your website: plaintext .rst files, that will each become a
page of your website

• scripts/: might contain some scripts to run after or before the rst files have been
compiled. I personally use this to generate a robots.txt6 file, but other uses are possible,
of course

• tocopy/: contains all the files that you just want to copy into your website unchanged.
This might include images, css stylesheets, and other static content.

Assume this hierarchy has been created inside the directory website-source
You can then create a build directory, where the content of your website will appear in its

final form:

$ mkdir website-build

then just build your website:

$ wpcompile website-source website-build

then check out the result:

$ firefox website-build/somepage.html

etc...
To update your website, just change some of the content in the source and rebuilt it using

the same command as before. Only the sources that have changed will be recompiled.
Of course, it might happen that someone visits your site must when it is being compiled.

In that case he might be served some inconsistent content or get some error. To avoid that,
you should use the website-update utility:

5http://docutils.sourceforge.net/rst.html
6http://www.robotstxt.org/

2

http://docutils.sourceforge.net/rst.html
http://www.robotstxt.org/
http://docutils.sourceforge.net/rst.html
http://www.robotstxt.org/

$ website-update --content-directory=. website-content website-build

This will create a website-content symbolic link, and will change it everytime the content
changes. You should then serve the website in website-content to your users. Since a
symbolic link change is atomic on most UNIX-based systems, a user that is served a page
while the updating is done will either see the old site or the new site, but never a mix of both.

4 Program usage

4.1 wpcompile

wpcompile compiles a source hierarchy into a complete website. It takes two optionnal argu-
ments.

• The source directory (by default the current directory)

• The build directory: where the complete website should be built (by default in
$sourcedir/build).

Normally, wpcompile will only compile files that have changed since the last compilation.
However, if you want everything to be recompiled for some reason, you can use the --buildall
flag.

4.2 website-update

website-update maintains a symbolic link to your website’s content. It is used to update your
website in an atomic way. This is done by copying the content of your build directory to a
temporary directory and updating the symbolic link to point to the latter.

The program takes exactly two arguments:

• The path to the symbolic link (it is not necessary that it already exists)

• The path to the website content to put in place (i.e the build directory)

The following options can be used:

• --group=GROUPNAME: the name of the group that will own the temporary directory and
its content. The default is the current group.

• --user=GROUPNAME: the name of the user that will own the temporary directory and its
content. The default is the current user.

• --content-directory=DIR: The directory in which to create the temporary di-
rectory. If this is not specified, the directory name of the directory pointed
to by the symbolic link will be used. For example if the symbolic link
points to /home/www/tmp/website-update...abcdef, the content directory will be
/home/www/tmp/. This must be specified if the symbolic link has not been created.

• --no-remove-old: By default, the directory that the symbolic link pointed to before the
update is removed. If you do not want this to be the case, use that option.

• --to-copy=FILE: Specify additional content (file or directory) to copy into the website.
This is useful if something that was not part of the simplewp hierarchy is also part of
the site (see the Trac documentation for more). This can be given multiple times.

3

5 The source hierarchy

Here are the details on the elements of the source hierarchy. Note that any element that is
not described here will be ignored by the compiler and can therefore be used for other things
safely.

5.1 global.conf

This contains options global to the whole website. The syntax of this file is that of an INI file7.
An example file would be:

[DEFAULT]
root-url = http://example.com

Note that this file is optionnal. The root-url variable is the only variable that is taken
into consideration. It should contain the url to the root of the website. This is used when
generating the relative link in the PDF file.

5.2 rst/

This is the most important directory of all, as it should contain the content of your website. This
can contain any number of .rst files, contained in any number of directories and subdirectories.
Each of these file will be converted to html and pdf, and the resulting hierarchy will mirror
that of rst files. For example if the rst/ directory contains the following files:

index.rst
somepage.rst
other/

otherpage.rst
other2/

secondpage.rst

then after compilation, the hierarchy will look like this in the build directory:

index.source
index.chtml
index.pdf
index.html
somepage.source
somepage.chtml
somepage.pdf
somepage.html
other/
otherpage.source

otherpage.chtml
otherpage.pdf
otherpage.html
other2/

7http://en.wikipedia.org/wiki/INI_file

4

http://en.wikipedia.org/wiki/INI_file
http://en.wikipedia.org/wiki/INI_file

secondpage.source
secondpage.chtml
secondpage.pdf
secondpage.html

The .chtml files contain only the html converted from the rst file (it is used as a printable
version), whereas the .html files contain this and the header and footer. The .source files are
the original rst source.

Note that you should setup your web server to give the proper mime type for these files
(i.e text/plain for .source files and text/html for .chtml).

5.2.1 Naming

As seen before, all RST files must end in .rst. Additionnaly, you can add a language indication
by making the part before the .rst end with the two-letter code of the language in which the
document is written, prefixed by an underscore (_). For example, if your document is written
in English, you could name it document_en.rst. In that case, document_fr.rst would be
treated specially by wpcompile as the French translation of the document.

If no language is given, English is assumed. It is good practice to always give a language
code, just in case a translation is done later.

If you do not want to have a very large RST file compiled to html, you can split it up
into smaller parts: to do that, just add a number before the .rst part of the name. For
example, the files index_en.00.rst and index_en.10.rst will be compiled into the single file
index_en.html, with the content of index_en.00.rst followed by that of index_en.10.rst.

There is a special file named head.rst, that should not be used as a document name. In
it, you should put code that you think should go on top of every rst file you compile. For
example, I use it to enable the math role by default. If a file head.rst is in $dir, all the RST
files below $dir, including those in subdirectories will have the content of that file prepended.
However, if there is an head.rst file in $dir/$subdir, the files below $dir/$subdir will use
that head.rst file.

5.2.2 File-specific configuration

What if you do not want a specific RST file to have the content of head.rst included ? What
if you do not want it to be compiled to PDF ? In that case you have to create a configuration
file for the specific RST file. You should name it name-without-rst.conf. For example, if
the RST file is index_en.rst, the configuration file would be named index_en.conf. The
syntax of the configuration file is that of a simple INI file8. The variables that are taken into
consideration are

• stylesheet: specify an alternate css stylesheet for the html file

• pdfopts: additionnal options to pass to the pdf compiler

• htmlopts: additionnal options to pass to the html compiler

• nopdf: if specified, this means the file should not be compiled to pdf
8http://en.wikipedia.org/wiki/INI_file

5

http://en.wikipedia.org/wiki/INI_file
http://en.wikipedia.org/wiki/INI_file

• alternatepdf: if specified, this means the file should not be compiled to pdf, but that
another PDF file, named $basename.pdf will be provided. The only difference with
nopdf is that a link to the PDF version is still created. It is the user’s responsibility to
create the PDF file.

• nohtml: if specified, this means the file should not be compiled to html

• title: alternate title for the html file. By default, the top-level header of the RST file
is used.

• print-stylesheet: css stylesheet used for the printable (chtml) version

• nohead: if specified, this means we should not happen the head.rst file to the source file

• alternatecat: give a list of space-separated files (path given relative to html/) to be
put before and after the html version of the rst file.

5.3 html/

This contains the html files to be put before and after the html version of the rst file. They
are usually used to include a menu and a footer to each page. You can put special variables in
the html files, and they will be replaced by some useful content at compile-time.

5.3.1 Naming

Each html file should be named according to the following format:

$basename.$language.$relpos.$pos.html

Where

• $basename can be anything you like and serves to identify the file

• $language is the two character language code of the document, or all if it is to be used
with any language.

• $relpos is either bef (before) or aft (after), the position of the html file relative to the
RST content

• $pos is a number indicating the order in which the html files must be concatenated. For
example, if there is footer.en.aft.00.html and and end.en.aft.10.html, end will
come after footer.

5.3.2 Variables

If you include a special string that begins and ends with three underscores (___), it will be
considered a variable and be replaced at compile time by its value. Here is a list of all the
variables

• LANG contains the two-character code of the file’s language or en if unknown.

• TITLE contains the page’s title

6

• SYLESHEET contains the path to the css stylesheet. By default, it is css/default.css
(relative to the root directory, but the path is changed depending on the position of the
html file in the hierarchy

• SITE_TREE return some html indicating where the page is in the site hierarchy. For
example, from a page named projects_en.html located at the root of the hierarchy,
this will look like this:

home

/

projects

• TRANSLATION_LINKS If the page is available in more than one language, print a small
menu with a link to the alternate version of the page. For example, if the page is
available in English and French, and the currently viewed version is English, this will
return something like this:

<p>

EN

|

FR

</p>

• PAGE_SOURCE Returns the path to the plaintext version of the page.

• PDF_VERSION_LINK If no pdf version exists, return nothing. Otherwise, return a link to
the pdf version of the page, preceeded by a “ | ”. For example:

| PDF

• PAGE_COMPILED_HTML Return the path to the printable version of the page (.chtml file).

• ROOT_DIR Return the relative path to the hierarchy root directory.

• YEAR Return the current year as a 4 digit number

• MONTH Return the current month as a 2 digits number

• MDAY Return the current day of the month as a 2 digits number

7

5.4 scripts/

Scripts in that directory whose name begins with precompile. will be run before the rst files
are compiled to html, scripts whose name begins with postcompile. will be run after the
files are compiled to html. As argument, those scripst will be passed the path to the root
source directory and the path to the build directory. Here is one of my postcompile script,
that generates a robots.txt9 file:

#!/usr/bin/env python

Generate the robots.txt file. The generated file is compatible with the
document published at http://www.robotstxt.org/orig.html (i.e no wildcards
or other Allow statement

import sys

from os.path import join
from os import getcwd

from simplewp.robotstxt import excludeAlternative

sourceDir = sys.argv[1]
buildDir = sys.argv[2]

rstDir = join (sourceDir, ’rst’)
outputFile = join (buildDir, ’robots.txt’)

disallowAlt = excludeAlternative (rstDir)

with open (outputFile, ’w’) as outputStream:
outputStream.write (’User-agent: *\n’)
outputStream.writelines (disallowAlt)

The simplewp.robotstxt.excludeAlternative function generates a list of strings con-
taining each line of the robots.txt file excluding each non-html version of the same page. This
is done to avoid duplicate content indexing, as this might hamper the site’s rating10.

5.5 tocopy/

Files in that directory are just copied as is in the build hierarchy. So for example, if you have
a css/ directory in tocopy, and your build directory is /home/www/build, then once the site
is built, there will be a /home/www/build/css/ directory mirroring the content of css/

Note that you should really put a css directory in tocopy: by default, the path to the CSS
stylesheet of the .html files is css/default.css in the build directory. It is css/print.css
for the .chtml files. This means you should create those files and use them as stylesheets.

9http://www.robotstxt.org/
10http://support.google.com/webmasters/bin/answer.py?hl=en&answer=66359

8

http://www.robotstxt.org/
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=66359
http://www.robotstxt.org/
http://support.google.com/webmasters/bin/answer.py?hl=en&answer=66359

6 RST format: improvements and limitations

I use my own programs (svrst) to build rst files. Even though they heavily use the ones given
with docutils, there are some differences that you should take into account.

The main improvement is that you can write math. The main limitation is that some of
the syntax is forbidden if you want to be able to convert into pdf, as I made the pdfs look nicer
than originally at the price of some heavy hacking. See the svrst page11 for more.

Note that the conversion to PDF works, but somewhat does not look as good as one would
want it to. You can always add latex options into the /etc/simplewp/stylesheet.tex file to
try to work around that.

11http://svasey.org/projects/old-stuff/svrst_en.html

9

http://svasey.org/projects/old-stuff/svrst_en.html
http://svasey.org/projects/old-stuff/svrst_en.html

	What is simplewp ?
	Why reStructuredText ?
	How to use it ?
	Program usage
	wpcompile
	website-update

	The source hierarchy
	global.conf
	rst/
	Naming
	File-specific configuration

	html/
	Naming
	Variables

	scripts/
	tocopy/

	RST format: improvements and limitations

