Synthesis for Rational Linear Arithmetic

Final report

Sebastien Vasey

EPFL

{firstname.lastname} @epfl.ch

Contents
1 Introduction 3
2 Examples 3
3 Synthesis and the Fourier-Motzkin method 4
3.1 Ordered Fields e 4
3.2 Linear ordered-field arithmetic 5
3.3 Synthesis e e 5
3.4 The Fourier-Motzkin synthesis method 6
4 Synthesis methods based on linear programming 8
4.1 Preliminaries e 8
4.1.1 The“unknown” symbol e e 8
4.1.2 Unsatisfiability e 8
4.1.3 Linear Programming i 8
4.2 Handling disjunctions and unboundedness oo 10
421 Generalidea e 10
4.2.2 Handlingunboundedness e 11
4.3 The Fourier-Motzkin method for optimization problems 13
4.4 Callingasolveratruntime e e e 13
4.4.1 Precomputations e e 14
442 SolvingaLPWS e 14
4.5 Multiparametric Linear Programming e e e e e e 15
451 Initialsetup e e e e e e 15
452 Mainidea e e 16

1 2011/6/10

453 Findingalltheregions e 17

454 Handling strictinequalitieso 18
5 Experimental results and practical applications 18
5.1 Implementationdetails e e 19
5.1.1 BasicUsage. e e e 19
5.1.2 CodeGeneration e 19
5.1.3 Thesimplexsolver e e 20
5.1.4 Arithmeticoperations e 20
5.1.5 Optimizationsandtricks e 21
5.2 Synthesis for floating pointtypes e e 22
5.3 Practical application: arocketcontroller 23
5.3 1 Setup e e e 24
5.3.2 Approximation as a synthesis problem o oL 24
5.3.3 Thecontroller algorithmo 25
5.3.4 Implementation and practicalresults 26
5.4 Performance measurement e e e e e 27
5.4.1 Performance of the simplexsolver 27
5.4.2 Performance of the synthesismethods 28
5.4.3 Performance ofthe generatedcode, 29
6 Conclusion and possible extensions 30
Appendices 33
A Grammar for the RChoose language 33
B Bounds on the denominator of a rational midpoint 33
C Finding the critical braking time 34
C.1 Description of the problem 34
C.2 Solution e e e e 35
D Efficiency of decision for linear rational arithmetic 35
D.1 SolvingalLPwithnegations e 37
D.2 Solvingaquantified LP e 38

2 2011/6/10

1. Introduction

In this report, | describerchoosec , a tool to synthesize code snippets from specificationstemriin the
language of linear rational arithmetia:choosec produces a Scatasubroutine that can readily be integrated
in a more complex project. The main idea is to let the progrendascribewhat is wanted rather thadmwto
obtain it. Another goal is to produce code thasjecializedo the task at hand, so that it runs faster than calling
a generic solver.

| outline some possible practical applications in contradry. In particular, | present a “proof of concept”
simulator of a rocket in a gravitational field. The rocketgme is partially controlled by synthesized code (see
Section 5.3).

2. Examples

Given two rational numbers andb, consider the problem of finding a rational numbesuch that: < « and
x < b. This can be directly written as a constraint fechoosec as follows:

RChoose (x)

{

x<a&&x<=b

}

This declares theariable x, the parametersa andb, and the relation that must satisfy with respect to the
parameters.

From this descriptionrchoosec will produce a Scala method taking as arguments the parafmetdphabeti-
cal order) and returning a list of elements correspondiritheoariableg. For the example above, the following
code is produced:

def foo (a : Rational, b : Rational) : List[Rational] =

{
val one__ : Rational = Rational(1,1)
val x__ : Rational = ((List[Rational](a,b)).min) — (one_.)
List(x--)

}

Here,Rational is a type implementing arbitrary precision rational nunsb&ynthesis for limited precision
types such as floating points is described in Section 5.2 .

Notice that given any: andb, there are infinitely many satisfying the constraints. One can try to restrict the
solution space by maximizing over all possibleThis is done by adding the function to maximize in square
brackets just before the constraints, like this:

RChoose (x)[x]

x<a&&x<=b

}

Notice that ifa < b, a is only a least upper bound (ireot a maximum) to the original problem, therefore no
solution exists. In such a casechoosec generates @recondition a formula of the parameters that is true
if and only if the resulting problem has a solution. In thasesathe precondition would be < a. The code
generated by the powerful, but slow, Fourier-Motzkin metfgee Section 3.4) is:

1http ://wuw.scala-lang.org/
2| use a list instead of a tuple, as the tuple size in Scala isdinand there could be many variables.

3 2011/6/10

val mOne__ : Rational = Rational(—1,1)
val zero__ : Rational = Rational(0,1)
if ((((mOne_.) x (a)) + (b)) < (zero_.))
List(b)
else
throw(new NoSolutionException(” Pre—condition not satisfied”))

Other problems that can make a constraint become unsatsfiab unfeasibility and unboundedness (see
Section 4.1.2).

For more complicated formulas, the Fourier-Motzkin methedomes too slow, so generating an exact pre-
condition is difficult. In that caserchoosec will use a special symboluhknown”, inside the precondition to
indicate uncertainty. Typically, the precondition thercdmes only necessary, but not sufficient. Consider the
following constraints:

RChoose (x,y)[2#x + y] {
2%x +y <= 42 &&
(1/2)sx + (3/4)xy < a &&
(5/9)xa — 4xy <= x &&
exists (v, 0 <=v && v + 1 ==2a) &&
forall (w, w < 1| a < w * 1000)

}

This demonstrates the syntax to use quantifiers and inpionehtnumbers. Note that the variables in this
example are: andy, and the only parameter is

The generated precondition for this exampleuisknown A (—1 + 555 < 0) A (1 —a < 0) . The last two
relations are due to the quantified parts of the constraitigreas the first one indicates that something more
may need to hold for the problem to be satisfiable. Indeedrristout the assignmeant= 2 satisfies the second
part of the precondition but the synthesized code will stllrn an error:

choosec.synthesis.NoSolutionException: Problem is bounded by least upper bound 464/45
and feasible but has no optimal solution
3. Synthesis and the Fourier-Motzkin method

In this Section, | give the basic definitions and describeRtwrier-Motzkin synthesis method.

3.1 Ordered Fields

Definition 1. An ordered field(F, +,x, <) is a field together with a total ordet satisfying the following
properties:

1. Foranya,b,c € F,if a < b, thena +c<b+c
2. Foranya,b € F, if a > 0 andb > 0, thenab > 0.

The rationals, computable, or real numbers are well knovamgtes of ordered fields, whereas finite fields
or the complex numbers cannot be ordered to satisfy the giroperties. Moreover, it is easy to see that any
ordered field must contain the rational numbers as a subfieddg 1993].

4 2011/6/10

To avoid any numerical issue, my implementation uses “puagibnal numbers (i.e implemented using un-
bounded precision integers) by default, but the technigiessribed in this report work for any ordered fié)d
so | will formulate them in this setting whenever possibletdthat the finite-precision floating point numbers,
as implemented on a modern computer, are not an ordered $ighetyaform a finite set. However they are very
fast to compute with, and one can argue they are a good “pahetpproximation” of an ordered field, so my
implementation can also cope with them, with the limitasi@l®scribed in Section 5.2.

I will use Q to refer to the set of rational numbers, and the syn®ab refer to an arbitrary ordered field. For
an arbitrary sef, andm, n € Z~(, S™ will denote the set of components vectors of elementsipandS™*"™
will denote the set of matrices with lines,n columns, and elements

3.2 Linear ordered-field arithmetic

Definition 2. Given an ordered fiel@), aformula of linearQ-arithmeticis a first order boolean formula whose
relation symbols are&l, <, or =, and whose terms are of the form

Q11+ qr2 + ... + qnxy

whereq; € Q for all 4, and thex;s are variable symbols.

For example, a formula of linear rational arithmetic2is + 3b < %:c V(z =42 AN —Vy : y < z), whereas

z129 = 0 Oraz; + bzy < 1 are not formulas of linear arithmetic.

3.3 Synthesis

Given a formula of lineaQ arithmetico[zy, ..., z,,, a1, ..., a, |4, One is interested in the following questions:
1. Given value9$q, ..., b,, € Q for theparametersy, ..., a,, does there exigj, ..., y, € Q such that

Olyr/x1, ey Yn/Tn, b1/ar, .y b am] @

is true ?
2. If they exist, how can they be (efficiently) computed ?

Formally, to answer the first question one wants to filmim:ondition&[al, <oy Q] SUCH thatp < Jz1... 32,0
Because it will be evaluated on a computeneeds to be quantifier-free. Thus one wants to perfguantifier
eliminationon ¢.

To answer the second question, givien ..., b,, such thatd[b; /ai, ..., by /a,m] ONE wants to computevit-
nessesy; (b1, ..., bm)y ooy Yn (b1, ..., by) such that (1) is true (i.e one wants to find an explicit model fo

d)[bl/al, ceny bm/am])

A more elaborate formal definition of a synthesis procedsrgiven in [Kuncak et al. 2010]. Here it suffices
to say thatrchoosec takes as input a formula of line&} arithmetic and a (non-empty) subdet, ..., ,, } of
variables appearing in the formula, and outputs a predondjalso in the language of line&)-arithmetic) and
code to compute the witnesses as described above. Thissodked thesynthesizedode in this report.

rchoosec also takes as input a linear functign Q™ — Q to be maximized over all possible satisfiable values.
Here, linear meang must be of the forny (x1,...,z,) = q1z1 + ... + ¢uxn, With ¢; € Q for all . In order to

3The implementation could for example be modified to handéectimputable numbers.

*The notationg[yi, ..., y»] is used to denote a formula whose free variables afgin..., v, }, whereasp[t1 /x1, ..., t /2] denotes
the formula where:; has been replaced by.

5 2011/6/10

be able to synthesize more efficient code, it is sometimegerient to consider this input separately. However,
observe that maximizing over allxq, ..., z,, such thatp holds is equivalent to findingq, ..., x,, such that

¢f =G AVYL VY (2021, s Y /T] V (YL, Un) < (21,0 T0)). (2)

holds. Therefore adding an objective function does not gbdhe general problem. The following definitions
summarize the above discussion.

Definition 3 (Synthesis Problem)A synthesis problers a triple (¢, f, z), where¢ is a formula of linearQ
arithmetic,z is a vector ofn. > 1 free variables ob, andf : Q™ — Q is a linear objective function.

Definition 4 (Satisfiability) A synthesis problem{¢[z1, ..., xn, a1, ..., am], f, (21, ...,2,)) IS said to besat-
isfiable for parameter values,, ..., b, if 3x;...32,¢¢[b1/a1, ..., b /an] is true. The problem is said to be
unsatisfiabldf it is not satisfiable.

Computability One of the main reason for restricting oneself to the langud@rdered-field linear arithmetic
is that there exists a decision procedure for this the@yhere is an algorithm to decide if any closed formula of
the language is true or fafsdn contrast, it is a corollary of Gédel’s incompletendssdrem that if one allows
e.g multiplication between variables, then the problenvisomger decidable for rational arithmetic [Robinson
1949] (although it stays decidable for e.g arithmetic ohercomputable numbers [Tarski 1951]).

Efficiency Moreover, if one disallows disjunctions, any formula candeeided quickly using methods from
linear programming. This assertion is made precise in agipdh

Thus one can hope there also exists asymptotically effidgnthesis algorithms for some particular cases.
In contrast, integer programming is well-known to be NPdhao synthesis for integer linear arithmetic is
(believed to be) computationally more difficult, althouglan also be done (see [Kuncak et al. 2010]).

3.4 The Fourier-Motzkin synthesis method

The Fourier Motzkin quantifier elimination method does thkofving: given a formulap of linear arithmetic

and one of its free variable, it returns a new formula) that doesnot havex as a free variable such that
Jz¢ & 1 . Becausevz¢ is equivalent to-Jxz—¢, the method can be used as a decision procedure for linear
arithmetic. Moreover, the method can also be adapted ttegis, as is explained in details in [Kuncak et al.
2010]. In this Section, | will summarize the Fourier-Motzkinethod as it is used incchoosec . | assume

one wants to synthesize the formulawithout any objective function to maximize (one can alwage (L) if
needed), for the single variahleonly (synthesis for several variables is done recursively)

DNF assumption Giveng|x], first convert it to prenex disjunctive negation-normahfior.e find an equivalent
formulat[x] of the form

Y = Q121Q222...QmTm (V1 VP2 V... V ahy,)

Where@); € {V, 3}, and they;s are conjunctions, with the negations “pushed as far irssdeossible”. In the
worst case, such a conversion can be don@(@?!) time, where|¢| is e.g the size of a binary encoding for
¢. Itis then clear that all the quantifiers can be eliminatedising the Fourier-Motzkin quantifier elimination
method recursively.

Note however that even though eliminating an existentiahgjtier is simple, eliminating a universal quantifier
is not, as conversions to DNF must be done several timesxaon@e, consider the formuldy (¢, V ¢ V ...V
¢n). It can be rewritter-Jy—(¢1 V ... V ¢,) = =y, whereW[y] is in disjunctive normal form (i.e potentially

5 Observe that deciding a formula is the special case of syisthenen the set of variables includalsfree variables in the formula, i.e
when there are no parameters.

6 2011/6/10

exponentially larger tham, Vv ... V ¢,). Once quantifier elimination has been donelgrthe negation of the
result must again be converted to DNF... As a matter of fgathesis of universal quantifiers has been observed
to be very slow using the method. It follows that (2) is not agtical formula to use. The methods described in
Section 4 consider the objective function as a separatd.inpu

Synthesizing disjunctions Because of what has been said above, one can supfiofés in disjunctive
negation-normal form without quantifiers. One can actufilly remove negations by observing thata <

b) =b<a,~(a=5b)=(0<a—->b)V(0<b-a)andso on. Furthermore, observe thal(¢;, V ¢2) =
Jz¢y V Jxge, thus it suffices to recursively synthesize and ¢o. Then if 1,9, codey, codes are the
preconditions and the synthesized code for the first andhsleconjunctions respectively, the precondition for
¢ will be 11 V 19, and the code will be of the form:

if (¢1)
codeq
else if (v2)
codes
else
error (" Pre—condition not satisfied")

Synthesizing conjunctions To synthesize a conjunctiaf observe that if some relation in the conjunction can
be putin the forme = f(aq, ..., ax), wherez ¢ {a1, ..., ax}), then this gives an expression foias a function
of the parameters, so the code fohas been found. Otherwisg,can be put in the following form:

¢ = (/l\(lZ < x)) A (/((x < ul)> A (/i(LZ Sx)) A </<(x < UZ-)) 3

i=1 i=1 i=1 i=1

Wherez does not occur in ank, u;, L;, U;. It is then easy to see there is a solution if and only if thazends
are consistent, i.e the precondition should be:

/\(lZ < U,j) VAN /\(ll < Uj) AN /\(Li < U,j) A /\(LZ < Uj) (4)

0, 1, 0, 0,

If ¢ originally hadn literals, then (4) will have)(n?) literals in the worst case. Thereforevifariables needs to
be eliminated, the Fourier Motzkin synthesis method wiEt&@ (2") time in the worst case. Thus the algorithm
has doubly-exponential complexity, even if one does na tato account the conversion to disjunctive normal
form.

To find an explicit value for, let L be the maximum of all lower bounds, aftthe minimum of all upper
bound$. Then if (4) is satisfied, then eithér = U, andz = U is a solution to (3), of. < U, and anyz such
that L < z < U is a solution.

Finding a good midpoint As any ordered field contains the rationals, a solution thveays works is to take
T = # i.e the average betweeh and U. However, this may not always be optimal, so ichoosec
computingz is left to the implementer of the ordered field’'s data type.rdon this can be found in Section
514

81f there are no lower bounds, one can simply take U — 1. Similarly, if there are no upper bounds= L + 1 is a solution.

7 2011/6/10

4. Synthesis methods based on linear programming

Even though it is very powerful, the Fourier-Motzkin methwas a very high computational cost.

The methods presented in this Section are a better altegrfati many practical cases. Their main drawback is
their lack of generality: they often cannot determine a sigffit precondition to the satisfiability of the problem.
As a direct consequence, they cannot (in general) be usethtioesize formulas with quantifiers.

| first recall some definitions from linear programming, ahdrt move on to explain the methods in detail.

4.1 Preliminaries
4.1.1 The “unknown” symbol

To deal with the fact that the synthesis methods may notnetumeaningful precondition anymore, | use a new
symbol,unknown, in linear arithmetic formulas to represent uncertairmyotmally, the symbol can be seen as
a black box that can contain either true or false. A formalniéin of the resulting three-valued logic can be
found in [Kleene 1952].

4.1.2 Unsatisfiability

The following definitions show all the ways in which a syntlsgsroblem can fail to be satisfiable.

Definition 5 (Feasibility) A synthesis problen? := (¢[x1,...,Zpn,a1,..,an], f, (21, ...,2,)) iS said to be
feasiblefor the parameter valuds, ..., b, if (¢,0,(z1,...,2,)) is satisfiable for those parameter values, i.e
¢lb1/ai, ..., bm /any] has a model.

Definition 6 (Boundedness)A feasible synthesis proble® := (¢[x1, ..., Zn, a1, ..., am], f, (@1, ..., Tp)) IS
said to beboundedfor the parameter valués, ..., b,, if there existsC' € Q such that for ally, ...,y, € Q,
Oly1/x1, oy Yn /T, b1/ar, ..., by /ay,] implies thatf (yi, ..., y,) < C. The smallest such’ is called theleast
upper boundf P’

Definition 7 (Maximizability). A feasible and bounded synthesis problBm= (¢[x1, ..., Tn, a1, ...y @], [, (21, oy 1))
is said to banaximizabldor the parameter valuds, ..., b,, if the least upper bound of the problem is also a
maximum, i.e there existg, ..., y, such thawy[y; /1, ..., yn/xn, b1 /a1, ..., bm /ap] @and f(y1, ..., yn) = L.

Examples Assumingx is the variable one wants to maximize, and there are no paeasnehe problems
associated with the formulag < 1) A (x > 1),z > 1,z < 1, anda < 1 are unfeasible, unbounded,
unmaximizable, and maximizable respectively. The leagtetufound of the last two i$, and it is only a
maximum for the last one.

Lemma 1. A synthesis problem is satisfiable (for some given parametieies) if and only if it is maximizable
for those values.

Proof. Follows directly from the definitions. O

4.1.3 Linear Programming

| recall a few elementary definitions and theorems from lipgagramming. | closely follow [Eisenbrand 2011],
but the proofs can also be found in other introductory boikes[Bertsimas and Tsitsiklis 1997] or [Matousek
and Gartner 2006].

"Such a smallest element always exists: the Fourier-Motgyimhesis method can be used to compute it.

8 2011/6/10

Definition 8 (Linear program) Let m,n € Z~g, A € Q™*™, b € Q™,c € Q". A linear program (LP)is an
optimization problem that can be put in the form

max{ch Az < bz eQ"} (5

where the inequality is taken componentwise.

Definition 9 (Linear program with strict inequalities)Let m,n,r € Zsg, A1 € Q™. b; € Q™ ¢ €
Q" Ay € Q7™ by € Q. A linear program with strict inequalities (LPW$ an optimization problem of
the form

max{clz: Ajz < by A Agz < by, z € Q"} (6)

where the inequalities are taken componentwise. The lipeggram corresponding to (6) is the one where the
strict inequality is replaced by a non-strict one.

Definition 10 (Dual of a linear program)The dual of (5) is defined to be the linear program
min{bTy : ATy =c,y >0,y € Qm} 7)
(5) is also callegrimal with respect to (7).
Note that a linear program is maximizable if and only if itéaéible and bounded. Such a relation does not hold

for a linear program with strict inequalities.

If the LP is bounded, one can always do a change of coorditatiet the matrixA have full column rank.
Hence in what follows | assume the LP is bounded and that taxmé has full column rank, unless stated
otherwise.

Definition 11 (Basis) A basisfor the LP (5) is a seB C {1, ...,m} such thai B| = n and A is invertible®.
Thevertexof a basisB is 2%, := A3 'bp. A basis is said to béeasibleif its vertex is such thatlz, < b.

Definition 12 (Roof). A roof for the LP (5) is a basi® such that the LP
max{c’z : Apz < bp} (8)

is bounded.

Lemma 2. Let B be a basis. The® is a roof if and only ifc € cond{a; | a; € B}), i.e ¢ can be written
c=Y,epAial with\; > 0foralli € B.

Intuitively, a roof can be thought of as a set of half-spacasnbling the LP polyhedron from above. Note that
Lemma 2 implies that the roofs of a linear programrii depend on the vectdr. A feasible basis can be
thought of as simply a vertex of the LP polyhedron. The reteghip between the two is given by:

Lemma 3. A feasible basis3 is a roof if and only if its vertex is an optimal solution of th® (5) . Such a basis
is said to beoptimal
Given an initial roofB, one can use thgual simplex algorithnfAlgorithm 1) to find an optimal basis.

The primal simplex algorithm is similar, but starts with adéle basis and moves up along the constraint
polyhedron to find a roof. My implementation uses the duajpdixalgorithm for reasons that will be explained
in Section 4.4.

The termination and efficiency of Algorithm 1 depend on hogpsttwo and three are implemented. The way
andj are chosen is called thgivot rule While hundreds of such rules have been devised, it is stilirgportant

#The notationA s denotes the submatrix of formed with the lines indexed bi. | sometimes writex; for Ay;;.

9 2011/6/10

Algorithm 1 Dual simplex algorithm
1: while B is not feasibledo
20 Findi € {1,...,m} — B such thau,z7; > b;.
3: Findj € B such thatB’" := (B U {i}) — {j} is a roof, and the vertex aB’ is feasible forB, i.e

Apxy, < bp.
4: If such aj does not exist, the LP is unfeasible, otherwiseHet= B’.
5. end while

open problem whether there exists a rule that lets the simpithod take polynomial time in the worst case.
The question is related to the polynomial Hirsch conjectur¢he diameter of polyhedrons, see e.g [Eisenbrand
et al. 2010]. There are however polynomial time algorithiorslihear programming not based on the simplex
method [Schrijver 1986], while the time complexity of thenpiex algorithm has been shown to be polynomial
time if one allows a “small” random perturbation of the injp8pielman and Teng 2001].

The relation between feasible bases and roofs is strongdgdi to the following Theorem.

Theorem 1 (Strong duality) Let A € Q™™ be an arbitrary matrix. Then the primal LP (5) is feasible and
bounded if and only if its dual (7) is feasible and boundedhét case the optimal values coincide. Moreover, if
(5) is feasible and unbounded, (7) is unfeasible, and silyila(7) is feasible and unbounded, (5) is unfeasible.

Corollary 1 (Feasibility is almost as difficult as optimalitylf (5) is feasible and bounded, an optimal value can
be found by finding a point inside the polyhedrf, y)” € Q™ | Az < bAATy = cAy > OAbTy < Tz}

4.2 Handling disjunctions and unboundedness

To use linear programming methods starting from a generghsgis problenP := (¢, f, (z1,...,x,)) , the
first steps is to eliminate negations, quantifiers and dégians. Then it is easy to see the resulting problem is
in fact a linear program with strict inequalities.

To eliminate quantifiers from, the Fourier-Motzkin method must unfortunately be usetniglating negations
from ¢ is done as explained in Section 3.4. To deal with disjunsti@me first needs to conveftto disjunctive
normal form. Hence | assumgis in the form

O =1V P2.V Py

where thep;s are conjunctions. Synthesis methods for the problBms- (¢;, f, (z1, ..., x,)) are described in
the next sections, so | assume they are available, and thal.

4.2.1 General idea

Suppose one only cares about synthesizing code, not alegqotabondition. Given parameter valgs..., b, €
Q, suppose that alP;s are maximizable for those values, andAgt:= (z1,, ..., z,,;) be the corresponding
ith optimal assignment. Theh is itself maximizable, and the synthesized code shouldututpe assignment
among theX;s that maximizey.

Consider however what happens when k.g= 2 and P; is not maximizable. Then the satisfiability &f
depends omvhy P; is not maximizable: for example iP; is “only” unfeasible, butP, is maximizable, therP

is maximizable and the synthesized code should oukputOn the other hand iP; is feasible but unbounded,
then P is also feasible but unbounded, so it is not satisfiable. fbeg it is necessary to make the synthesized
code for theP; return their exactesultsrather than just errors if they are unsatisfiable. To defirseptecisely,

| first extendQ in order to express unsatisfiability results:

10 2011/6/10

Definition 13. Given an ordered fiel@), define

Q = (Q X {—170})U{—OO,OO} (9)
and order it using the lexicographical order, consideritng as a smallest element, and as a largest element.

Intuitively, Q can be thought of a@ with a smallest and a largest element added, and such thetdoyz € Q,
there existse, such thate, < z, but for ally < z with y € Q, y < z.. In other words, there exists an element
“infinitesimally smaller” thanz.

Definition 14 (Optimal value of a LPWS)The optimal valueof a linear program with strict inequalities is
an element of Q defined as:

e r = —c0o if L is unfeasible.

e r = o if L is feasible but unbounded.

e r = (q,—1) if L is feasible and bounded but not maximizable, with least uppandg.

e r = (g,0) if L is maximizable with maximurg.

Definition 15 (Result of a LPWS) Theresultof a linear program with strict inequalities with variables ..., =,
is a tuple(r, x) where

e r € Q is the optimal value of the LPWS.

e € Q" is an optimal vertex if the LPWS is maximizable, andtherwise.

Example The result of the LPWSnax{2z : =z < 1} is ((2,0),1), whereas the result of the LPWS

max{2z : x < 1}is((2,—1),0). From the ordering defined in Definition 13, one sees that giienal value of
the first LPWS is larger than the second one.

From now on, | assume that the synthesized code foliBeeturns the result of the corresponding LPWS.
Let codey, ..., code;, be the synthesized codes for tRgs, then one can synthesize the following codefofi
assume the input parameters &e.., b,,)

val (r1, y1) = codey (b1, ..., b))

val (1, yr) = codeg (b1, ..., bm)
val j = arg max{r; | i € {1, ..., k}}
if (r; € Q x {0})
return y;
else
error ("‘Problem is unsatisfiable™)

This simply expresses the fact that if the LPWS that achitwe$argest value is maximizable, then the problem
is maximizable, otherwise it is not.

This code works fine, but it is not clear what preconditionudti@o with it. Moreover, one needs to compute
the results ofall P;s before obtaining a result, whereas if €2gwere unbounded for the particular parameter
values, then there would be no need to consider the othetgmngb For this reason it is useful to look more
closely at what causes unboundedness in order to synthmasizeefficient code.

4.2.2 Handling unboundedness

The following results characterize the unboundedness wfithesis problem whose constraint is a conjunction.

11 2011/6/10

Lemma 4. Suppose the LPWS in (6) is feasible. Then it is unbounded if and only if its @sponding LA/
is feasible and unbounded.

Proof. The “only if” part is straightforward. To prove the “if” pgrintroduce a new variablg and the constraint
A < ¢'z to both L and L’. Apply Fourier-Motzkin elimination tal’ to eliminate all variables buk. By
hypothesis,L’ is unbounded, s& must not have any upper bound in the resulting formuldBecausel’ is
a LP, all the inequalities in) are non-strict. Applying Fourier-Motzkin elimination t will only result in
some of those non-strict constraints becoming strict Xatill will not admit any upper bound. Therefoieis
unbounded. O

Theorem 2. If a synthesis problen® without disjunctions, negations or quantifiers is feastale unbounded
for some parameter valuds, ..., d,., then forany parameter valueq; is either unfeasible or unbounded.

Proof. Consider the LPWS associated withand the parameter valuds, ..., d,.. By Lemma 4, it suffices to
consider the corresponding linear prograrthat can be writtemax{c’z : Az < b}. Note that onlyb depends

on the choice of parameter values. By hypothe5iss feasible but unbounded. By Theorem 1, the dual linear
programmin{b”y : ATy = ¢,y > 0} is unfeasible. But unfeasibility of the dual does not depend, and
therefore does not depend on the parameter values. Thusdh&MR is always unfeasible, hence the primal LP
is always either unfeasible or feasible but unbounded. O

The proof of Theorem 2 suggests an algorithm for finding & that can potentially be unbounded: if the
dual LP corresponding t&; is feasible,P; is always bounded (if it is feasible). Otherwise, it is alwagjther
unfeasible or unbounded. Testing feasibility of the dualchiR be done at synthesis time because this does not
depend on the problem’s parameters.

SupposePy, ..., P. are potentially unbounded, where8s, 4, ..., P, are always bounded. if= k, no problems

are always bounded, so one immediately see thi always unsatisfiable. OtherwisB,, ..., P, all need to

be unfeasiblein order for P to be satisfiable. Once this is known, the code in Sectiorl42n be used for
Py1 V..V P

Boundedness assumptionOne can synthesize the potentially unbounded problemsréisguhe objective
function is zero, since only feasibility matters. Thus wlkgnthesizing a conjunctiomne can assume it cannot
be unbounded will always make this assumption in what follows.

Precondition Let, ..., 1} be the synthesized preconditions for the probléts.., P, assumingPy, ..., b,
were synthesized with zero objective function. Then a resrgqbutnot always sufficient) condition foP is

= (=1 A hgc A=) A (Wrg1 Vo V) (20)

The first part expresses that all potentially unboundedlpno® must be unfeasible, and the second one that at
least one of the other problems must be maximizable. Thistia sufficient condition, since even if one problem
is maximizable, there could exist an unmaximizable probigth a larger least upper bound. When there are no
strict inequalities inp, 1, ...¢, then this cannot happen, hence in that eageindeed arquivaleniconditior?.
Otherwise, the synthesized precondition will{pe unknown to indicate the fact that it is not sufficient.

9Note however that the symboahknown could appear in the;s

12 2011/6/10

Code The synthesized codes for potentially unbounded problezed not return a full result, only a boolean
that is true if and only if the problem is feasible. The finahthesized code faP will then check that all those
booleans are false before using the code from Section ©2thd bounded problems.

Now that disjunctions have been handled, the next Sectionsks on bounded synthesis problems whose
constraint formulas are conjunctions. Three differenthods are given.

4.3 The Fourier-Motzkin method for optimization problems

If one is willing to let the precondition become only neceggsaut not sufficient, it turns out the Fourier-Motzkin
synthesis method can be used also with an objective fungtiarmuch more efficient manner than what was
presented in Section 3.4. | found the idea in [Schrijver 1986

Givenglzy, ..., zy, a1, ..., ay,] @nd the linear objective functiofy use the Fourier-Motzkin synthesis method on
o N (N < f(x,...,25)), cOnsideringh as a parameter. One obtains an equivalent formi{laay, ..., a,,| and
some codeode to producery, ..., z, from A aq, ..., a,.

Because is a conjunctiony) is also a conjunction, which can be writtén= 1 [a1, ..., an] A 2N, a1, ..., am],
where each literal ofy, contains\. It is cleariy, is a necessary and sufficient condition to the feasibility of
the synthesis problem, so it is also a necessary conditiéts tnaximizability. By hypothesis, the problem is
bounded whenever feasible, Sanust have at least one upper boundin

Fixing the parameters, one can view the upper bounds as efemi€) as follows: ifq is a strict upper bound,
view it as(q, —1). If ¢ is a non-strict upper bound, view it &g, 0). Let L be the resulting set of elements@f
From correctness of the Fourier-Motzkin method, using #u thaty is an equivalent formula to, it follows
that the optimal value of the corresponding LPWS is givemiy L.

To sum up, the following code (with parameter input..., b,,) will be synthesized?:

val A = min L
if (\eQx{0})

return (X, code(X, b1, ...,bm))
else

return (A, 0)

Note that even though this is not written explicitly,depends omy, ..., b,,.

11 A unknown can be used as a precondition. Thi&known symbol is not needed if contains only elements
of Q x {0}, i.e all the upper bounds onare non-strict. In that case the code above can also be aptinm the
obvious way.

This method is simple to implement, and no specific probleppear when dealing with strict inequalities,
as opposed to the next two methods. However its computatomst is as high as that of Fourier Motzkin
elimination...

4.4 Calling a solver at runtime

As already explained, the synthesis problemf, (z1, ..., z,)), whereg is a conjunction without quantifiers or
negations can be seen as a LPWS

max{ch A1 < by NAsx < bg} (11)

The code assumes the preconditionholds

13 2011/6/10

where only the vectors, andb, depend on the parameters. Since the parameters will be koot runtime,
a simple idea is to generate code that calls a solver for Beldause some precomputations depend onlggn
Ay andc, they can be done at compile-time. | first assume (11) is etprit to a linear program of the form

max{c’z : Az < b} (12)
| then explain how the method can be adapted if the probleeaibyra LPWS.

4.4.1 Precomputations

Making A full rank The first step is to perform a coordinate transformation ab_thhas full column rank.
One then obtains an equivalent LP problemx{c” 2’ : A’z’ < b}. At the end of the synthesized code, the
coordinate transformation is played backward in order taiolthe solution to the original problem. The details
are explained in [Eisenbrand 2011]. Because the problemuaded by hypothesis, such a transformation is
always possible. Algorithmically, one simply does Gaussldn elimination om4, obtaining a matrixJ such
that AU is in column-reduced form. This matrix essentially dessilthe change of coordinates to be done.
Note that because this transformation does not deperdiboan be done at compile time. From now ohis
assumed to have full column rank.

Finding an initial roof As shown by Lemma 2, the roofs of (12) do not depend and hence do not depend
on the parameters. For that reason, my runtime solver usekutd simplex algorithm, so that | can precompute
its initial roof at compile-time. It would also have been giide to use the primal simplex algorithm and compute
an initial feasible basis by considering the dualhf{b”y : ATy = ¢,y > 0}. However,b’y is not a linear
function, so converting to the dual slightly complicatestters...

To compute the initial roof, the LP

max{cl z, Az <0,z <1} (13)

is solved, with its initial roof containing” z < 1, andn — 1 linearly independent lines of such that together
with ¢ they form a linearly independent set (such lines exist bezdihas full column rank).

By construction, (13) is feasiblé (s a solution) and bounded. If the final optimal raBfcontains the line
Ty < 1, this means the Ll?nax{ch : Az < 0} does not have a roof (any of its roof has vertex zero, but
B has a non-zero vertex). Thus (12) does not have a roof schisrainfeasible or unbounded. Because it is
bounded by hypothesis, it must be unfeasible, so in thattbasgynthesis result can immediately be returned.

If B does not contain the line’z < 1, B is also a roof for (12) and hence the synthesized code carlysimp
call the LP solver withB as a starting roof (the matri»ﬁjg1 can also be computed in advance). In that case, the
returned precondition will simply benknown, as nothing can be inferred before the solver has run. Thises

of the main drawback of this method.

4.4.2 Solving a LPWS

Up to now, this report has explained how linear programs essobved, but nothing has been said about LPWS.
It turns out the result of a LPWS can be found by solving sonteted linear programs. To solve the LPWS
(11), the first thing to do is to solve the corresponding LP

max{cT:U s Ajz < by A Agz < bo} (14)

The precomputations described in Section 4.4.1 can be don@4). By Lemma 4, (14) is bounded. If it is
unfeasible, then clearly (11) is also unfeasible. Otheifsz* is an optimal solution of (14), and,x* < by,

14 2011/6/10

x* is also an optimal solution of (11) with optimal valdé := ¢Z'z*. If not, it might still be possible to find an
optimal solution of the LPWS among all possible optimal sohs of (14). To find out, add a new variabie
and solve a second LP:

max{d : Ajz < by A Aoz +6(1,1,..., DT <bp AM < cTzA0<5< e} (15)

Wheree > 0 can be chosen arbitrarily (a smallmay reduce the number of iterations). Observe that (15) is
feasible (as (14) is feasible) and bounded by construckitwreover if B is an optimal roof for (14)B U {m}

is an initial roof for (15), wheren is the index of the line describing the constraint e. Letd* be the optimal
value of (15).

If §* > 0, then taking the first components of the corresponding adtirartex gives a solution to the original
LPWS. Otherwiseg* = 0, so (11) is not maximizable. However, it must still be deteved whether it is
feasible or not. To do so, (15) is solved without the constrad < ¢’ . If the resulting optimal value is greater
than zero, (11) is feasible but not maximizable, with leggiar bound\/. Otherwise it is unfeasible.

Using this method, three LPs of similar size must be solvatienworst case. | have been unable to find a more
efficient algorithm...

4.5 Multiparametric Linear Programming

One can wonder whether more can be done than what is desanilgsttion 4.4: since the matrit and the
vector ¢ are fixed, wouldn't it be possible tspecializethe simplex algorithm to make it run faster for that
particular case ?

The general problem of specializing an algorithm if parttefinput is known at compile time is callgzhrtial
evaluatiofJones et al. 1993], and several powerful technigues exidbtthis automatically. However, | found
it hard to partially evaluate Algorithm 1 directly, for seaereasons:

1. As already mentioned, the best known worst-case upperdoon the number of iterations is exponential.
2. The result of each iteration depends heavily on the véctor

Still, some form of “indirect” partial evaluation can be d@onThe idea is to split the parameter space into
polyhedral regionslf the parameters are in a given region, their correspandiaximizer can be determined
by evaluating a simple linear function. This Section ddmsiwhy this is even possible, and how it can be done.

The dual version of the algorithm | present here has first liseribed to me by Friedrich Eisenbrand (see
Acknowledgments).

4.5.1 |Initial setup
| first assume the synthesis problem can be described as a LP
max{cl z : Az < b} (16)

For A € Q™*™, where onlyb depends on the parameters. How to adapt the method if théeprdb a LPWS
is explained in Section 4.5.4.

Note that in (16)p depends on the parameters in a linear way. In facan be written

b=w+ FO (17)

15 2011/6/10

where® € Q" is the vector containing theparameters, and € Q™, F' € Q™*" are known at compile-time.
Therefore the LP can be rewritten

max{c’z : Az <w + FO} (18)

Finding a solution to (18) as a function of the parametersied multiparametric linear programmingThe
algorithm | will present looks a a little like the one given[®al and Nedoma 1972], but is slightly simpler, at
the cost of ignoring the issue of overlapping regions. Oittmgrovements have been published, see e.g [Borelli
et al. 2003].

45.2 Mainidea

Lemma 5. The setK of all parameters for which (18) is feasible is convex.

Proof. Let ©1, ©, € K. By definition of K, there existsx1,z5 € Q" such thatdxz; < w + FOq,
Axg <w+ FOy . Thusforanyd < A <1,

A()\.%'l + (1 —)\)1‘2) = Nz + (1 —)\)AI‘Q
< MNw + FOy) + (1 — \)(w + FOy)
— w+ F(AO; + (1 - \)©y)

Therefore\®; + (1 — \)O2 € K. O

Lemma6. Let J := {1,...,m}. Aset of linesB C J is an optimal basis of (18) f@omeparameter values, if
and only if the following conditions are true:

1. Agis invertible
2. (AzHTe>0
3. The polyhedron defined by the equation

(AgAR'Fp — F3)© <wp — AgAg'wp (19)
is non-empty. Here | have defindgl:= J — B.

Proof. By Lemma 6, it is enough to show is a feasible roof. The first condition expresses tBds a basis,
the second that it is a roof (using Lemma 3.is feasible if its vertexz* satisfiesAz* < w + F©. By
definition ofz*, Apx™ = wp + FpO, thusB is feasible if and only ifA z2* < wz + F50. Using the fact that
Tt = Agl(wg + Fp0O), and rearranging the terms, one obtains (19). O

Note that ifc = 0, any basis will satisfy the second condition of the Lemma@se one wants to reduce the
number of optimal bases, it is a good idea to replaedgth a non-zero vector in that case. Taking any non-zero
line of A will do, for example.

Assuming a listBy, B, ..., By, of all optimal bases satisfying Lemma 6 is available, findimg solution to (18)
for a given® is easy: search through the list until a baBigs found such that (19) is satisfied. Then the optimal
solution is given byr* = A]_;l(wB + Fg0©), and the maximal value by’ z*. The synthesized code would look
like this:

16 2011/6/10

if (© satisfies (19) with B = B){
val xopt = Agll (wp, + Fp,©)
val r = (cT'z*,0)
return (r, xopt)

}
else if (© satisfies (19) with B = By){

=

else if (O satisfies (19) with B = By){

=

else {
// Problem is unfeasible
return (—o0,0)

}

In contrast to calling a solver at runtime, this code onlylestes simple arithmetic expressions. In particular,
testing if (19) is true will evaluate a conjunction of lineartithmetic withm — n literals. In the worst case,
k(m — n) literals need to be evaluated, which can be a probleiisflarge. Although | have not implemented
this, it is possible to make the search take only abogtk) operations if one is willing to do a lot more
preprocessing [Tgndel et al. 2002].

One can output a necessary and sufficient precondition liygake disjunction of (19) for all optimal bases.

4.5.3 Finding all the regions

One question remains: how can the list of all optimal basdsired ? One simple strategy is to test all possible
n-subsets of 1, ...,m} and add only those that satisfy the conditions of Lemma 6e Notvever that to test
whether (19) has a solution, the corresponding linear aragneeds to be solved, so to test this for all possible
subsets, one would need to sol{/¢) linear programs in the worst case, which is clearly prohigit The
approach presented below is better in some cases.

Definition 16 (Neighboring basis)Twon elements set®; and B, are said to baeighborsf |BiNBs| = n—1.

Definition 17 (Graph of optimal bases) et S be the set of all bases satisfying the conditions of Lemméé. T
graph of optimal baseis defined as the undirected graph with vertex$ét which two bases share an edge if
and only if they are neighbors.

Theorem 3. The graphG of optimal bases is connected.

Proof. If |S| < 1, there is nothing to prove. Otherwise, 1By, B2 be two different optimal bases i@. Let
01, ©2 be two different parameter vectors for whiéh and B, respectively are optimal bases. By Lemma 5,
O(\) := AO;1 + (1 — A\)O©, admits an optimal basis for arily< A < 1. Intuitively, one has to choose among
those bases to form a path froB to Bs in GG. To do this, consider (18) as a parametric linear progrark in
only, i.e of the formmax{c’z : Az < w + F(0©()\))} which is equivalent tanax{c’z : Az < @ + F\}, for
somew € Q™, F € Q™*!, One can consider the associated LP

(o) (1) (0 1) (5) < 20)

17 2011/6/10

The last two lines indicate that < A < 1. Note that the matrix of the LP has full column rank. By theabo
discussion, (20) is feasible (in fact it is feasible for a)yand bounded, as one Bf U{m+1}, or BU{m+2}

is a roof for it. To each roof of (20) correspond at least onénegd basis inG, and conversely to each optimal
basis inG correspond at least one roof in the LP. IE2be an optimal basis for (20), arig be a corresponding
basis inG. Starting from the roof corresponding i, run the simplex algorithm to readB. To the sequence
of visited bases corresponds a path fré&nto B* in G. Similarly, there is a path fron®, to B*. Hence there
is a path fromB; to B,. O

Theorem 3 suggests the following algorithm: find an initiptimal basisB. List all the neighboring bases of
B, and find out which ones are optimal. Then repeat the same f&tefhose bases, until the full graph has been
built. In other words, do a graph traversal Gn

Finding the initial basis An initial optimal basis can be found in two steps. First, fendarameter vecta*
such that (18) is feasible. This can be done by solving the itiPrwo objective function, considering bathand
© as variables. Second, find an optimal basis for the lineagraromax{c’z : Az < w + FO*}.

Computational complexity The number of neighbors of anelement subset dfl, ..., m} isn(m — n). Thus

if there arek optimal bases, the algorithm will che@®(n(m — n)k) sets for optimality. If, e.gF" has a low
column rank, there could be much fewer optimal bases (@%)mso for such cases the algorithm is much faster
than the brute-force approach.

However, it is very easy to come up with examples where thebauraf regions grow exponentially. Consider
for example the dual of (18)

max{—(w + FO)Ty :y € P}

Taker = m,w =0, F = I,,,andP the cube, i.eP? := {y € Q™ | -1 < y; < 1,i € {1,...,m}}. Then for any
of the 2™ vertices of P, there is & such that it is an optimal vertex.

It follows that the method also has computational compjeixib high to be used on “large” problems. However
the complexity is still asymptotically better than that afufier-Motzkin elimination.

4.5.4 Handling strict inequalities

If the problem to be synthesized is the LPWSx{c’ 'z : A1z < b; A A < by}, techniques similar to the one
explained in Section 4.4.2 can be used: find all the optimsg¢®éor the LPsax{c’ 'z : Ajx < b AAsz < by},
max{§ : Ajx < by AAgz +6(1,1,...,1)T <byAclz > N}, andmax{6 : Ajz < by AAsx+6(1,1,...,1)T <
b2}, where\ is considered a parameter which will be replaced by the malxiralue of the first LP. Then
generate the code equivalent to the algorithm describeddtich 4.4.2.

When the problem has strict inequalities, the synthesizedgmdition is no longer sufficient so one needs to
take its conjunction with thenknown symbol before returning it.

5. Experimental results and practical applications

In this Section, | describerchoosec , my implementation of the algorithms presented in the jaevisections.
| explain how | measured its performance on some sample asistiproblems. | also present the integration of
synthesized code in a rocket simulation.

18 2011/6/10

5.1 Implementation details

All the synthesis methods for linear rational arithmetisaed in this report have been implemented in a Scala
program | call rchoosec . The program takes as input a constraint in linear ratioritiiraetic and produces
the synthesized code in Scala. This Section gives somdgetsits implementation.

5.1.1 Basic Usage

This documents exactly whatchoosec does, and the input it takes.

The RChoose language For conveniencerchoosec can read its input from a text file written in tR€hoose
language. The simple syntax of this language has beerrdtestin Section 2, and should be self-explanatory.
A context-free grammar for the language is given in appeAdix

It is of course also possible to directly construct the a@msts in Scala using the internal representation used
by rchoosec.

Choosing the synthesis methodThe synthesis method can be chosen by the user via commanadpiions.
They are documented in tlREADME file coming with the program. If no specific method is givere Fourier-
Motzkin method for optimization problems will be used formall” problems, and a solver will be called at
runtime for large problems. Here “small” means that the matrof the LP has less than 9 lines, and less than
5 variables. Those numbers are somewhat arbitrary, se®®éctor ideas on how to better choose a default
method.

Precondition rchoosec outputs the precondition on standard output, and also svititgs a comment in the
generated code.

Generated code rchoosec generates Scala code for @bject containing two methods:

e The synthesized method: takes as arguments the parameterstarn values for the variables so that they
satisfy the constraints, or throw an exception if there asaiutions. This first checks that the precondition
is satisfied.

¢ A main method that can be used for testing: reads the parametarstamdard input, launch the synthesized
method, and prints the results.

The object also contains several variables defining ratiomastants used in the generated code (see Section
5.1.2), as well as the LP solver used in the synthesized dduesolver is defined outside of the synthesized
method, so that it can keep its state from one invocationeofitthod to the next. This is useful for optimizations
like remembering the last optimal basis, and trying it agh@next time the solver is called, see Section 5.1.5.

5.1.2 Code Generation

Code generation irchoosec is not as simple as printing the code samples shown in secdidnand 4. Indeed,
they are too general: it may happen that some conditionéresid £ statement is always false, or that the value
of a variable is a constant that can be propagated furthess iths important to do someptimizationbefore
printing the synthesized code.

To do this, I first synthesize code in a simple intermediatglmage, internally calleglimple. | run the following
optimizations on the resulting code:

1. Constant propagation and constant folding
2. Dead code elimination

19 2011/6/10

3. Some symbolic folding, e.g if the expression- 2x appears, it can be simplified 8a:
4. Hash Consing

The first two optimizations are described in [Schwartzba@b8?. Hash consing simply declares one variable
for each different constant rational number appearingéncthde: the idea is that since e.g zero appears several
times, it will only be initialized once. This also makes tr@e much more readable, since one can give very
short names to those variables.

Those optimizations are done on the code repeatedly, uiitiéd point is reached.

5.1.3 The simplex solver

rchoosec has its own simplex solver. The solver works for any ordereld fiand is exact, i.e it assumes there
are no numerical errors in all of the ordered field’s operatioperations.

Performance The solver was not written with performance in mind. For eglanall matrix operations are
performed functionally, without any destructive updateeTesults of Section 5.4 confirm the program is slow,
even compared to other exact solvers.

Pivot rule The solver implements the dual simplex algorithm (Algaritli). The lexicographical pivoting
rule is used, as described in [Eisenbrand 2011]. This ruégagiiees that the solver will always terminate (i.e
no cycling can occur), even if the LP is degenerate.

5.1.4 Arithmetic operations

In this Section, | describe how | implemented some arithengpierations that are useful for synthesis.

Finding a good midpoint between two rationalsin the Fourier-Motzkin synthesis method, one often needs to
find a numberz such thatL < x < U. An obvious suchr is £5Z. It turns out however that this choice can
be far from optimal for rationals, as it increases the size ahnecessarily. As an extreme example, suppose
L= ﬁ U= W Then the average would %\u(;&)ﬂ which must use about 2000 bits to store the
denominator, but = 0 is also a midpoint that takes a much smaller amount of memory.

Because of this problem, the synthesized code uses thaethstethodipTo instead of directly computing an
average. Itis up to the implementer of the ordered field'a tigte to provide the method. For rationals, | use a
binary-search-like algorithm that finds arwith smallestdenominator. | now describe this algorithmlf< 0,
andU > 0, takex = 0. Otherwise, by symmetry one can assuime L < U.

Let L = %, U= Zq’—;, whereqi, q2 € Z=o,p1,p2 € Z>0,8cd(p1,q1) = ged(pe, g2) = 1. One wants to find

e <U, i.e% < 2—;, i.epge < pag,i.e

Pg2 < p2g —1 (21)
o L <uxie
P1g <pg—1 (22)
If ¢ is fixed, (21) implies
p2q —1
p< (23)
q2

20 2011/6/10

and (22) implies

p> {M] (24)
q1

Assuming consistency of the bounds, the minim&ir a giveng* is

X 41
o= {p1q w (25)
q1

In conclusion, to know if a give* can be used as denominator, it suffices to check that (24) 28)date
consistent, then a correspondingan be found by (25). The algorithm simply does a binary $etrdind an
optimal denominatog*. One can for example start with lower bound 1, and upper b@gngh. However, by
doing straightforward manipulations of (22) and (21), oae show that

{ @+ g wgfg[m%+m+@w (26)
b2q1 — P1G2 p291 — P192
2

The algorithm uses these bounds instead. As a simple exacopisider what happens on input= % U=3s.

Then {MW = 5, and it turns out indeeg < 2 < 2. This is a much better solution than the average of

p291—PpP1G2
L andU, % Note that the denominator of the average, 12, is even whesethe upper bound given by (26)
which is 11. This example shows the lower-bound is tight. €kemplel = % U= % gives2 as minimal

denominator, which is tight with respect to the upper boum¢26).

Notice that since* increases whenevet increases, the algorithm actually gives a rationarofllest encoding
sizebetweenl andU.

Approximating a real number by a rational If one chooses not to synthesize floating point code (seédBect
5.2), the synthesized code must be called with pure ratiartalments. Initializing a rational number from a
floating point number: is of course a conceptually simple operation, but one mayt wamerelyapproximate
x with a rational of low denominator. More generally, giverealmumber: and a natural numbey, one wants
to (quickly) find the best rational approximatiento = with denominator at mos¥. Clearly, such a rational
will not always have denominata¥; for example, ifx = % N = 100, the obvious best approximation :is
itself, andz cannot be written exactly as a rational with denominator. T0@re are less trivial examples, e.g

£ is a better approximation to than3.14 = 344

The problem is well known, and there is an efficient algorittorsolve it using continued fractions, see e.g
[Schrijver 1986]. This is what | ended up implementing.

Converting a rational to a floating point value This must be done when synthesizing code for floating point
types (see Section 5.2). Inrchoosec , this is simply implemented by converting the numerator el
denominator to floating point, and dividing them. It is cl#@s does not work for corner cases, like gfé%

S0 rchoosec fails in those cases.

5.1.5 Optimizations and tricks

| describe some optimizations to the methods describedtioss 3.4 and 4 that are implementedrnhoosec

1A proof is given in appendix B.

21 2011/6/10

Checking feasibility Before starting synthesis of a formula without conjuncsioquantifiers or negations,
rchoosec first checks whether there exists parameters for which ieh&dution. This is done by considering
the parameters as variables, and calling a simplex solver.

Column-reducing the constraint matrix If any of the synthesis method of Section 4 is usetthoosec
actually always applies the change of coordinate desciitb&skction 4.4.1 to make the constraint matrix full
rank. There are several reasons for doing this:

1. The number of variables is reduced.

2. This is an alternative to solving the dual LP to find out vieethe problem can be unbounded: as explained
in [Eisenbrand 2011], when the problem is unbounded eitieecoordinate transformation fails, or an initial
roof cannot be found. Since those are steps that are doneaginylaen calling a solver at runtime, they may
as well be used for the other methods.

Eliminating equalities Given a formula¢ without negations, conjunctions or quantifiegs,needs to be
converted to the LPWS in “standard” formdixz < b1 A Asxz < bs. If ¢ contains the equality = b, a
straightforward trick is to write that equality as< b A b < a. This is not the best thing to do however:
solving linear programs is harder than doing Gaussian eétion ! Thus what is done irchoosec instead is

to first perform Gaussian eliminations to eliminate the &tjga in ¢, synthesizing code as explained in Section
3.4, and only then use the more advanced methods of Section 4.

A generalization of this idea is to try to use the Fourier-kkit method “as long as possible”, i.e if a variable
in ¢ can be eliminatevithoutmaking the formula’s size grow, this must be attempted. Hofately, | haven't
had time to implement this extension...

Remembering the last optimal roof When synthesizing code that calls a solver at runtime, ixjmeted that
the code will be called several times in one program run. ldege in some cases the parameter values may
not differ that much from one call to another, hence the ogltinasis is likely to stay the same. For that reason,
rchoosec 's solver keeps track of the last optimal roof found for eaalr pf constraint matrix4 and objective
vectore. This last optimal roof is used as an initial roof the nextdithe solver is called.

If the parameter values are very different from one call tortbxt, there is no reason to believe the last optimal
roof is better or worse than the one computed at syntheses, timis the effect of this optimization should be
somewhat neutral.

If, however, the parameters stay close, this optimizatamlead to dramatic improvements, as shown in Section
5.4.3

5.2 Synthesis for floating point types

Because they have finite-precision, floating point typesoaie considered as ordered fields. Because of
numerical imprecisions, the results given by LP solveraigishem are almost never exact. While this may
not be a problem for some problems in engineering, seveeakdtical applications need exact solutions. For
example, when using an LP solver to find bounds to integerrproging problems, it matters very much
whether a maximum is larger th&30.000001, or just larger thari99.999999 . In general, many complicated
issues arise when one wants to write correct programs tedtasting point types, see e.g [Monniaux 2007].

For that reason, | chose to always do the computations gxatthwever, the synthesized code can still be
computedusing exact numbers, beaxecutedwith floating points. This can work especially well when the
generated code is very simple, as with the Fourier-Motzkith multiparametric linear programming methods.
In that case however, the performance win may not be wordimd,approximating the floating point values with
rationals (see Section 5.1.4) could be a better option.

22 2011/6/10

LP solver for floating point arithmetic The LP solver implemented irrchoosec does not work well with
floating point types: the code was not written with numergtability in mind, so very small roundoff error can
change what happens when doing Gaussian elimination, akd antiheoretically non-singular matrix become
singular. In fact, in most of the tests | ran some assertiaitsd in the middle of the algorithm.

To implement a numerically robust LP solver, techniques fikatrix factorization must be used to make sure
the algorithm can always follow its course.

Testing simple synthesized code with floating point type@n the other hand, synthesized code that does not
call a solver can be run without problems with floating poymigts. This does not mean it always returns correct
results. In particular, deciding whether a problem is maxale or only feasible and bounded can be very
tricky. | tested the synthesized code with the S@alable type, but also with th€martFloat type [Darulova
and Kuncak 2011]. In the latter, an interval is maintainedlbatime in which one can be sure the exact value
lies.

Consider what happens when synthesizing code for the lastjghe of Section 2 (using multiparametric linear
programming). Recall that the exact result for input patame = 2 is that the problem is bounded but not
maximizable, with least upper bouﬁgl ~ 10.31. However, when synthesizing for the Schataible type, and
running the code with input, the result isc = 30.5,y = —19.0. The maximal value i&x + y = 51 which is
much larger thari0.31, and also blatantly violates the constrélmt+ y < 42. Thus even in this small example,
numerical imprecisions can lead to catastrophic consemseh

It turns out such a disaster does not happen when using thieeFMbtzkin method on the same problem. There
is a simple explanation: recall that to solve a LPWS using Brstlver, one needs to add a new variabénd
maximize it over a related LP, with constraint< §. The result of the LPWS depends on whethiet 0, or

0 > 0. Thus even a very small imprecision when computirggan make it become non-zero. In conclusion, the
code synthesized using multiparametric linear progrargnsmumerically very unstable if the constraint has
strict inequalities, which is not the case for the Fouriestikin method.

Notice that if one synthesizes (still with the multipararie P method) the code f@martFloats, and runs it
with the same input, the output becomes

comparison failed! uncertainty interval: [-2.2786005886354417E-15,
1.834511378785379E-15]

Total time: 159 ms

List ([30.49999999999998,30.50000000000002], [-19.000000000000014,-18.999999999999986])

The “comparison failed!” error indicates that it could nat thecided what the result of a comparison between
two values was, as their intervals overlapped. Thus it diibetcaught that something wrong happened !

5.3 Practical application: a rocket controller

A lot of problems in optimal control theory can be reducedi®dolving of a linear program [Zadeh and Walen
1962]. Because control laws are typically implemented irbedded hardware (that sometimes has to work
under real time constraints), it makes sense to try to slmeithe LP solver to the problem at hand in order
to generate faster code. In fact, it turns out some of thosblgms can be written as synthesis problems for
linear rational arithmetic, in the sense of this report [Benmad et al. 2002]. Typically, the parameters are the
real world conditions, and the variables describe the obfdw, i.e what the controller should do in response
to those conditions. Code synthesized by a multiparameRicolver has for example been integrated into a
system to maximize the adhesion of a car tire to the road gloat al. 2001].

23 2011/6/10

In this Section, | describe how | used the methods of thismtdpsynthesize code to make a falling rocket land
using the minimal amount of fuel. The problem is also brieftgatibed in both [Bertsimas and Tsitsiklis 1997]
and [Matousek and Gartner 2006].

5.3.1 Setup

| describe the one-dimensional version of the problem. @ens rocket initially at position;; > 0 that needs
to land at positionz = 0. The rocket has initial velocity, and acceleratiomy'2. The rocket is subject to a
gravitational acceleration < 0, supposed constant. The rocket’s booster can produce aardiagceleration
of up toG > 0 13, but can also produce lower accelerations. If the boostaiymes an acceleratiar during a
time AT, it is assumed’ AT units of fuel will be used.

The problem is to land while spending the least amount of ftiel
5.3.2 Approximation as a synthesis problem

Continuous time equations Formally, one wants to find fuel use distribution{ D(¢) | ¢t € R} and a timeT’
minimizing fOT D(t)dt under the constraints:

0<T
0< D) <G

© 0 N o Ok~ wDNRE
S

=
©
=

11. v

| do not know of an analytic solution to those equations. T¢ey however be approximated in discrete time:

Finite discrete time equations Suppose one knows that< T,,... Then one can sample the time axis ifo
pointsty = 0,t1,....,tN—1 = Tinaz, Wheret; = ij\}%“f Using the appropriate units, one can rewrite the problem
above as follows: find> € R", andm € Z minimizing >>7"," D; under the constraints

1.1<m<N
2.0<D<(G,G,...)T
3.x;=v;+ziqforie{l,...N —1}.
4.v;=a; +v;—1forie{l,..,N —1}.
5.a;,=D;+gforie{l,...N —1}.

12The initial acceleration does not influence the rocket imtixchowever it may influence the results given by the disetiehe model.
133 is assumed to stay constant throughout the fall.
14This is essentially what a human player must do in “Lunar leafwtike video games [Edwards 2009].

24 2011/6/10

6.2>0
7. Cm_1=0
8. vy_1=0

Notice that ifm is fixed, the constraints describe a bounded linear progifam.is unknown, one can solve for
the disjunction of the constraints fetr = 1, m = 2,...,m = N. In practice,m is not known, but sincé,,,. is
an approximate bound on the landing time, one knewshould be close tdV, so only the constraints for the
last M values ofm will be synthesized.

In conclusion, the problem is a synthesis problem of lineaf arithmetic. In an implementation, the variables
can of course be approximated by rationals. The constreanmtseasily be simplified so that the only variable is
the vectorD, and the parameters are the initial conditions £ievg, ag, G andg).

5.3.3 The controller algorithm

Suppose code for the above problem has been synthesizetiXed mumber of time samples. N denotes the
number of variables in the problem, and should typicallyipalsto make the synthesized code fast (the rocket
is still falling down while the onboard controller is workjr). Thus the approximation to the continuous-time
problem may be very poor. To compensate for this fact, the isléo solve the problem repeatedly as the rocket
is falling down, updating the fuel use distribution on theywa

For example, suppose at time z&ro= 20,9 = —10,v9 = ag = 0,9 = 100. Call the synthesized code for
those values and obtain a first fuel use distributian The synthesized code took some time to run, so the time
is nowtg > 0. One could use this distribution for the rest of the flightt \mhhat one will do instead is to call
the synthesized code again with paramet@rg, v(to), a(to), z(to). Only while the code is executing wilDy

be used as fuel use distribution. Then the new fuel disiohuwill be used, while the synthesized code will be
called again, and so on.

Typically, the discrete time equations become more aceuwaatthe time before impact gets smaller, so one
expects to have more and more accurate solution as the flagg gn. Moreover, even if there was no
approximation error in the discrete to continuous appratiam, there could still be measurement errors or
other unforeseen factors outside the continuous-time hibdethe method can take into account.

The default fuel use distribution What initial fuel use distribution should be used when thetlsgsized code
is run for thefirst time ? A simple idea is to séd(¢t) = 0 for ¢t < t., andD(t) = G for t > t., wheret, is the
critical time at which the rocket must brake to land with zeetocity. It turns out:. can be computed directly
by solving a quadratic equation (the derivation is givengpendix C).

Guessing an impact time The only remaining problem is to find an upper estimate fotahding timeT,,,,.:
even though the synthesis problem itself does not depefigl,on its value is needed to convert the parameters
to the right units. Finding a good estimate is important;if,.. is too small, the problem will become unfeasible.
If it is too large fuel will be wasted to keep the rocket in thefar longer than necessary.

A lower estimate is easy to obtain: for example, one can ta&dime at which the rocket would crash if the
boosters stayed unused, or the time at which it will land uride default fuel use distribution. Both of those
estimates can be computed by solving a quadratic equatiofariunately, | have not found a clever way of
finding a good upper estimate. | ended up implementing aatier algorithm that starts from a lower estimate
and increase it progressively until the problem becomesitita

In the full controller algorithm (Algorithm 2)K and A are constant that have to be fine-tuned. | K5e= 10
and\ = 1.1. In practice, it takes time to find a first estimate, but it dantbe re-used by the next calls, so very
few iterations of the while loop are run.

25 2011/6/10

Algorithm 2 Controller algorithm
1: Find a lower estimaté&j, or use the estimate made by a previous call to the controller
Tinaz = To
while The problem is not feasible fdr,,., and less thaik tries have been madio
Tnaz = Nmag
end while
Return the fuel use distribution given by the synthesizatkecor the default distribution if the problem is
still unfeasible after thé(tries.

Figure 1. Screenshot of the graphical interface for the rocket sitiaria

As a sanity check, it is also checked at each iteration whéltieerocket would crash if one todR(¢) = G for
all ¢. If this is the case, no more computations are done and tiishiition is used.

5.3.4 Implementation and practical results

To test the above algorithm, | implemented a simple simuldisplaying the current state of the rocket in a
graphical interface (Figure 1). The initial conditions dangiven on the command line, as well as the synthesis
parameters: the synthesis method, the num¥eof sample to take, and the numb&f of conjunctions to
consider. | did most of my tests witN = 10, M = 1, synthesizing code that runs a solver at runtime.

The simulation is made such that the rocket still falls dowhilevthe the fuel use distribution is computed.
The timeT one simulated second takes in the “real world” can be varieatder to simulate a slower or faster
onboard computer. For example/7if= 0.5 and it takes one second (on the computer running the sirao)ati
to compute the fuel use distribution, the rocket would haker for2 (simulated) seconds in the meantime.

The variables in the simulation all have the Scala typeble, but they are converted to rationals with small
denominator (see Section 5.1.4) when calling the syntedsinde.

26 2011/6/10

Table 1. Performance of thecchoosec LP solver on selected Netlib problems (times are in seconds)

Problem | Time (phase 1) # of iterations (phase 1) Time (phase 2) # of iterations (phase 2)) Total time
itest?2 0.1 2 - - 0.1
galenet 0.2 2 - - 0.2
itest6 0.2 2 - - 0.2
afiro 14 23 1.0 18 2.4
kb2 5.4 100 4.9 100 10.3
boeing?2 298.0 440 347.0 894 645.0

My tests have shown that a rocket controlled by Algorithm Zhages to land successfully. However, | have
also compared what is spent in that case with the fuel spentibnly uses the default fuel distribution. In most
of the simulations using the default distribution lead ighdly less or the same amount of fuel being used in
the end. Thus it seems too many approximations are done te thakmethod useful in practice. However the
simulation is still a good benchmark to test code synthedmedifferent methods in a “real use” scenario.

5.4 Performance measurement

In this Section, | describe the tests | have run to measurpeatfermance of the synthesis methods described in
this report and of the synthesized code.

5.4.1 Performance of the simplex solver

To measure the performance of my simplex solver, | used ebalimgar programs publicly-available from the
Netlib repository®. The Netlib collection contains linear programs of praaitior theoretical interest donated
by industrial companies or academi®s The size of the constraint matrices for the problems avkilsaange

from 10 x 4 t0 6331 x 22275. Most problems have more than 100 variables.

My exact solver takes a reasonable time only on the smaht@stples, so | decided to use the probleimsst2
(10 x4), galenet (9 x8), itest6 (12 x 8), afiro (28 x 32), kb2 (44 x 41), andboeing?2 (167 x 143). The first
three are unfeasible problems (I did not find feasible proklef similar size), and the last three are feasible and
bounded. To test my solver, | converted the problem inpus filtheRChoose language, and rafrchoosec to
synthesize code without parameters.

The time spent by the solver and the number of pivot steps fasezhch problem is summarized in table 1. |
separate the time spent for phase 1 (making the constrainixridl rank and finding an initial roof) and phase

2 (calling Algorithm 1). The roof LP is the auxiliary linearggram one needs to solve to find an initial roof.
It turns out the first three problems can be seen to be unfeadileady at that point, so the solver never enters
phase 2. All the times in this report were measured on a GNlU#LBystem with an Athlon 5000+ processor
and 2 Gb of RAM. Note that since | use some datastructuresdthabt behave exactly the same from one run
of the program to another, the number of simplex iteratioms abtains can vary from run to run (a different
ordering of the matrix line can lead to a different numbertefations).

One sees that phase 1 takes about half the total solving limfact, row-reducing a matrix is slow in my
implementation, whereas one simplex iteration is donetivelst quickly. The performance of synthesizing
code calling a solver versus calling a solver directly aseased in Section 5.4.3. Based on the data above,

Bhttp://www.netlib.org/
18For example, th@oeing2 problem used for my benchmark “has to do with flap settings iotradt for economical operations”
according to the NetliREADME.

27 2011/6/10

Table 2. Description of synthesis problems

Problem m | n|r | R| s
itest2 5 1 {31]3]00
galenet 8 6 | 21| 2107
itest6 9 711 1108
afiro-feas 28 | 71251 9 |0.6
afiro 28 712519 0.6
kb2-feas 44 | 11|30 |16 | 0.0
kb2 44 |11 |30 |16 | 0.0
Rocket N =5 | 15 | 4 | 5 | 4 | 0.3
Rocket N =10 30 | 9 | 5 | 4 | 0.7
Rocket,N =40 {120 |39 | 5 | 4 | 0.9

one can conjecture that the synthesized code will take ahbace less time, since phase 1 (and computing the
inverse ofAp in phase 2) is done at synthesis time.

Another observation is that solving LPs exactly is not felesin practice, except for “small” sizes: theeing?2
problem with about 100 variables shows the limit of my sqleit nowadays LPs with “only” a few thousands
of variables and constraints are considered small [Fol080P. Moreover, my implementation is slow even
compared to otheexactsolvers. For example the solvexlp 1/ solvesboeing2 almost instantly on the test
machine.

Another difficulty that arises is that rational numbers magvwgin size as the problem gets solved. The final
solution ofkb2 has rationals with about 30 decimal digits in their numeratod numerator. Surprisingly,
the solution ofboeing2 has rationals of reasonable size (less than 10 digits fdn Hw numerator and
denominator).

5.4.2 Performance of the synthesis methods

To measure how fast the various methods presented in thostregn synthesize code, | parametrized the first
five Netlib problems presented in the previous Section bysicieming some of their variables as parameters,
and removing some constraints from the unfeasible one tavékasibility. When an objective function was
specified, both the problem without objective function ahd briginal problem were synthesized. | also
synthesized the rocket controller synthesis problem dmsttrin Section 5.3.2 with different numbené of
samples (withV/ = 1 as the number of disjunction).

The synthesized problems are described in table 2, and shéig@re given in table 3. A problem name with
suffix “-feas” means its objective function has been removdtdhve calledm, n,r the number of constraint,
variables, and parameters respectiv&lylenotes the column rank of the matfixwhen one writes the problem
as a multiparametric LR is defined as the number of zero entries of the constraintixn@titer the change

of coordinate to make it full rank) divided by the total numloé elements. This gives an indication of how
sparse the resulting matrix is. Whenever four numbers agggaby commas appear, they refer to the result
for each of the synthesis methods: the first number is thdtrisuthe “pure” Fourier-Motzkin method as
described in Section 3.4, the second to the Fourier-Motai@thod for optimization (Section 4.3), the third to
the method of calling a solver at runtime (Section 4.4), dadlast to the multiparametric LP method (Section
4.5). The indicated compiled code size is for code compiléd the Scala compilewithout optimization. The
column “# of regions” gives the number of critical region fberameter space was split into when applying the
multiparametric LP algorithm.

Yhttp://members. jcom.home.ne. jp/masashi777/exlp.html

28 2011/6/10

Table 3. Performance of synthesis methods (times are in seconds, isikilobytes)

Problem Synthesis timg Source code siz¢ Compiled code size # of regions

itest2 2,3,2,3 2,2,2,2 8,8,10,7 1
galenet 2,3,3,3 2,2,3,3, 6,7,11,7 4
itest6 2,.3,3,3 2,2,4,2 6,7,13,7 1
afiro-feas 6,5,4,20 13,13,13,146 22,21,25,? 70
afiro ?5,4,14 -,15,13,76 -,27,25,53 30
kb2-feas 14,16,7,24 563, 386, 52, 533 ?2414*,100,7 10
kb2 ?,16,6,26 -,387,52,533 -,414* 101, 7 10
Rocket,N =5 | ?2,20,3,20 -,8,4,26 -,18,12,21 14

Rocket,N = 10 ?,?4,7? -9, - - 20, - > 3750

Rocket,N = 40 ?,?2,10,? -, -, 68, - - - 99, - > 3750

Whenever a time is indicated as “?”, this means the programabarted after it ran for more than 15 minutes.
A compiled code size of “?” indicates that the compiler ceastvhen compiling the code. This is due to a limit
in the size of a method in Javd. A workaround it to split the synthesized method into selvenaaller ones,

but I have not implemented it: it is not a priori obvious whemathod becomes too large or how to split it.
Likewise, a compiled code size followed by a stérfieans the code was correctly compiled, but cannot be run
because of gava.lang.ClassFormatError: Invalid method Code length exception.

Note that the multiparametric LP code uses a default maximézen for problems without objective function.
If this is not done, the number of regions becorh&s for apiro-feas, and1 for kb2-feas .

Observe that the “pure” Fourier-Motzkin method cannot iagtice be used for non-trivial optimization
problems, and the improved version must be preferred idstea

As should be expected, calling a solver at runtime produoeaier code for non-trivial problems than the
alternatives. The tradeoff in synthesized code performavitt be discussed in the next Section. Code size for
the two version of Fourier-Motzkin elimination are simil@ne only difference between the two methods when
there are no objective vector is that for the improved ondaage of coordinate is first done to make the matrix
A full rank). Notice that the change of coordinate reducedecide inkb2-feas. Despite theoretical advantages
(i.e better computational complexity), in practice it seaifmat multiparametric LP is more or less on par with
the Fourier-Motzkin method as far as compiled code sizensemed.

The parametrized version apiro andkb2 can be observed to have very few decision regions. This could
partially be explained by the fact that their parameter ixaft has a relatively low rank (compared to their
number of parameters).

On the other hand it seems the rocket synthesis problems ach harder than their Netlib counterpart for
a comparable size, as they can be synthesized only usingntipbe method as soon as their size becomes
reasonable. | have not found a satisfactory explanationthisrfact (sparsity does not seem to influence the
results much).

5.4.3 Performance of the generated code

Since the Netlib problems were not specifically tailoredsiamthesis, it is difficult to know how to meaningfully
test the resulting generated codes. Hence | chose to onlthtegenerated code for the Rocket problems. The
results are given in table 4.

18The exact exception ish.epfl.lamp.fjbg.JCode$0ffsetTooBigException: offset too big to fit in 16 bits. See
https://issues.scala-lang.org/browse/SI-1133 for a related bug.

29 2011/6/10

Table 4. Performance of synthesized code (times are in seconds)

Problem Time dilatation # of calls Avg solving time | Max solving time
Rocket,N = 5, FM 1 810 0.002 0.10
Rocket,N = 5, MPLP 1 880 0.001 0.07
Rocket,N = 5, simplex 1 154,347,661 | 0.03,0.003,0.002 | 0.41,0.06,0.12
Rocket,N = 10, simplex 2 130, 378,4227 | 0.09,0.02,0.002 | 0.23,0.66,0.32
Rocket,N = 40, simplex 8 6,23,4254 7.03,2.29,0.02 8.37,3.29,2.01

The code was tested in a rocket simulation with initial ctinds zq = 500,9 = —10,G = 20,v9 = ag = 0.
The “time dilatation” column indicates how many real secorthpsed during one simulated second. The “# of
calls” column indicates the number of times the code wagdaluring the simulation, and the next columns
give the average and maximum time it took to terminate. Agated in the previous Section, | could only use
the Fourier-Motzkin and multiparametric LP synthesis mdgwhen takingV = 5. For N = 10 and N = 40,
only calling a solver at runtime ended-up being feasiblee Fitee numbers in each column of “simplex” lines
indicate the result when, in order

1. A solver was called directly (i.e no synthesis was dondat a

2. Code calling a solver at runtime was synthesized, but éheeisdoes not remember the previous optimal
roof.

3. Code calling a solver at runtime was synthesized, andalversremembers the previous optimal roof.

The maximal solving times are not to be taken too literalgyt can vary quite a lot from one run to another.

According to the first two lines it seems the Multiparametii® method generated better code than the Fourier-
Motzkin method, but more results are needed to judge thaniace carefully. One can also see that calling a
solver at runtime (with all the proper optimizationshist slower on average than code synthesized using other
methods. The maximum solving time seems larger, however.

The results of the last three lines show that synthesiziagtiile calling the solver pays off: because phase 1 is
done at compile-time, one obtains a large improvement fsthall problems, and an improvement of about a
factor 3 for the large one. Remembering the last optimal leexds to dramatic improvements for that particular
synthesis problem. Indeed, the rocket’s position, vejaaitd acceleration do not change much from one call to
the next, hence the optimal basis will not vary much. One sgpsovements of one or two orders of magnitudes
in the average solving time. Still, this optimization cahdo anything to improve the maximal solving time.

6. Conclusion and possible extensions

As the content of this report shows, | have successfullyé@manted several synthesis methods for linear rational
arithmetic. It seems that calling an LP solver at runtimeobees the only viable solution as the constraint
formula gets larger. Some precomputations can be done thtesis-time, and it may still be possible to partially
evaluate the simplex algorithm more aggressively.

More testing is needed to really evaluate the relative perdmce of the various methods, in particular it is still
not clear how calling a solver at runtime compares to codéhegized via multiparametric linear programming
or Fourier-Motzkin elimination for large problems (whepethose methods terminate in a reasonable amount
of time).

Even though it must be considered only as a proof of condeptdcket controller example presented in Section
5.3 shows synthesis has applications to real world problems

30 2011/6/10

In the rest of this Section, | present some possible extaasmthe work presented in this report.

Better elimination of quantifiers and negations Because they do not occur often in practice, | did not give
much thought to the handling of quantifiers and negationsy @ire currently eliminated using the Fourier-
Motzkin method. However, the results of appendix D suggthsise may exist more efficient ways, at least for
some special cases. For example, one should keep a negétefarm—(a = b) as itis instead of introducing
disjunctions by rewritingitas < bV b < a.

Better choice of default synthesis methodOne could modify rchoosec to try various synthesis method in
order, and return the result of the best one that succeededx&mple, it could first try the pure Fourier-Motzkin
method for one minute, then if it still hasn’t succeeded tbod try the improved Fourier-Motzkin method for
one minute, and so on. This could of course also be parateliz

Improving the simplex solver Writing a good simplex solver is hard: thousands of free one@rcial ones
have been written, and no “canonical” implementation hasrged®. Still, it would be interesting to know
how far one can go with an exact solver written in Scala. Ofseuone could try improving the solver so that
it is more or less numerically stable, i.e so that it can aksudhe floating point inputs. Another option would be
to make rchoosec simply call an external solver.

Integration into a compiler Currently, integrating synthesized code into a larger @ogis cumbersome: one
has to write th&Choose file, synthesize it, then add an import statement in the fgggggram. Thus it would be

a good idea to write a Scala compiler plugin to make the iatiign seamless, as was done in Comfusy [Kuncak
et al. 2010]. Given the trouble | had when compiling noni#digenerated code using the Scala compiler, one
may also consider generating code in other languages thatrhare robust compilers available, like C.

Improving the rocket controller As explained in Section 5.3, | have not found an elegant wagstonate a
good upper bound to the impact time. One idea is to try to geeesome smooth, increasing, fuel use distribution
and use the resulting landing time as an estimate. More giiyndt may be possible to solve the continuous
time equations given in 5.3.2, or at least to find some “goasftithution that works well in practical cases. For
example, it would be interesting to know how close to theroptn the “all or nothing” distribution used as
default in the current controller algorithm is.

On a different register, currently nothing special is ddrthere is not enough fuel to use a given distribution.
However, one could write a linear program to minimize theespen impact and add the additional fuel
constraint. This could then be integrated into the corgralgorithm.

Another fun improvement would be to implement the posgipilif taking manual control of the rocket at any
time during the simulation. This would make the experienceaiinteractive.

Mixed rational/integer synthesis A natural extension is to restrict some of the variables tinbegers. The
problem then becomes much harder (integer programming ik, but solvers still exists, and a quantifier
elimination procedure for the theory can probably also hméb

Extending the RChoose syntaxAs explained in appendix D, introducing disjunctions in tbanstraint
formula can make the synthesis problem much harder. Onergan tvoid that the user uses disjunctions
by introducing some commonly-used functions likex, min or abs in the RChoose language. Clearly, those
constructs do not add more power to the language, becauaes(g) can always be eliminated by replacing
it with a new variabley, adding the constrainty = =z vy = —x) Ay > 0. Similarly, one can write
max(z,y) = —min(—z, —y) = Z=UE2HY Moreover a variabler can still be restricted t¢0,1} with the

19[Fourer 2000] has more information on available LP solvers.

31 2011/6/10

constraint|2z — 1| = 1, so the corresponding decision problem stays NP-hard. Hewim a lot of practical
cases, one can rewrite the constraint as a linear programvjthout introducing any disjunction.

For example, the problems of finding the largest ball coethin a polyhedron, or the best fitting line according
to the 1-norm fall in this category [Matousek and Gartnéd&]0In the rocket controller example, one may want
to minimize the maximal acceleration rather than the amotifuel spent (although it is clear in that case that
the solution is simply a uniform fuel distribution), andutis out this can also be rewritten as a linear program.

Thus it would be interesting to integrate some re-writinggsuformax, min andabs to rchoosec, so that if
an equivalent linear program exists it is found (a simplengxa of such a rewriting rule is that the constraint
max(x,y) < U is equivalenttac < U Ay < U).

Acknowledgments

| would like to thank Viktor Kuncak for his helpful commentadiideas. | also thank Eva Darulova, Ali-Sinan
Koksal, and Philippe Suter for interesting discussion feedback.

Last but not least, | am most grateful to Friedrich Eisentrfam his very clear explanations on multiparametric
linear programming.

References

A. Bemporad, F. Borrelli, and M. Morari. Model predictiverteol based on linear programming — the explicit solution.
IEEE Transactions on Automatic Contrdl7(12):1974-1985, 2002.

D. Bertsimas and J. N. Tsitsikligntroduction to linear optimizationAthena Scientific, 1997.

F. Borelli, A. Bemporad, and M. Morari. Geometric algoritHor multiparametric linear programmingJournal of
optimization theory and application$18(3):512-540, 2003.

F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat. A hybridppach to traction control. Iilybrid Systemspages
162-174,2001.

E. Darulova and V. Kuncak. On the Design and Implementati@naoartFloat and AffineFloat. Technical report, 2011.

B. Edwards. Forty years of lunar lander, 2009. URittp://technologizer.com/2009/07/19/1lunar-lander/.
[Online; accessed 5-June-2011].

F. Eisenbrand. Course notes for the discrete optimizatorse. 2011. URLhttp://disopt.epfl.ch/files/
content/sites/disopt/files/shared/0Opt2011/lecture_115.pdf.

F. Eisenbrand, N. Hahnle, A. Razborov, and T. Rothvossmitar of Polyhedra: Limits of AbstractiodMathematics of
Operations Resear¢l35(4):786—794, 2010. ISSN 1526-5471. doi: 10.1287/mMd60.0470.

R. Fourer. Linear programming frequently asked questid@80. URLhttp://www.neos-guide.org/NEOS/index.
php/Linear_Programming_ FAQ. [Online; accessed 6-June-2011].

T. Gal and J. Nedoma. Multiparametric linear programmivignagement Scienc&8(7):406-422, 1972.

N. D. Jones, C. K. Gomard, and P. SestoRartial Evaluation and Automatic Program GeneratiorPrenctice Hall
International, 1993.

S. C. Kleenelntroduction to Metamathematicdlew York: Van Nostrand, 1952.

V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete fumeti synthesis. [#LDI, 2010.
S. Lang.Algebra Addison-Wesley Pub. Co,, 3rd edition, 1993.

J. Matousek and B. Gartnddnderstanding and using linear programmingpringer, 2006.

D. Monniaux. The pitfalls of verifying floating-point comtations. ACM Transactions on Programming Languages and
Systems30:1-41, 2007. doi: 10.1145/1353445.1353446.

J. Robinson. Definability and decision problems in aritiméthe Journal of Symbolic Logi@4(2):98—-114, 1949.
A. Schrijver. Theory of linear and integer programminiViley, 1986.
M. I. Schwartzbach. Lecture Notes on Static Analysis. 2QL http://www.brics.dk/~mis/static/static.pdf.

32 2011/6/10

D. A. Spielman and S.-H. Teng. Smoothed analysis of algmsthwhy the simplex algorithm usually takes polynomial
time. InACM Symposium on Theory of Computipgges 296-305, 2001. doi: 10.1145/380752.380813.

W. A. Stein et al. Sage mathematics software, 2011. URtp: //www.sagemath.org.
A. Tarski. A decision method for elementary algebra and gggtoyonRAND Corporation, 1951.

P. Tagndel, T. Johansen, and A. Bemporad. Computation ambxpation of piecewise affine control laws via binary
search trees. IDecision and Contrglvolume 3, pages 3144-3149, 2002.

L. A. Zadeh and L. Walen. On optimal control and linear prognsing. IEEE Transactions on Automatic Contyat:
45-46, 1962.

Appendices
A. Grammar for the RChoose language

Goal — RChoose(<IDENTIFIER> (, <IDENTIFIER>)*)([AExpr])?{ BExpr} <EOF>
BExpr — BExpr|| BExpr
BExpr — BEXxpr&& BExpr
BExpr — ! BExpr
BExpr — AExpr(< | <= | ==) AExpr
BExpr — (forall | exists)(<IDENTIFIER> , BEXpr)
BExpr — (BExpr)
BExpr — true | false
AExpr — AExpr(+| — |/ |%) AExpr
AExpr — (AExpr)
AEXpr — <IDENTIFIER>
AEXpr — <INTEGER>

e <IDENTIFIER> represents a sequence of letters, digits and undersctagdmgwith a letter and which is
not a keyword. Identifiers are case-sensitive.

e <INTEGER> represents asequence of decimal digits, with no leadingsZére sequence can have arbitrary
length).
e <EOF> represents the special end-of-file character.

Note that a file respecting this grammar may still not be adv&thoose file, e.g because it has an expression
of the formxx*y: the AExprnodes should be linear arithmetic expressions.

B. Bounds on the denominator of a rational midpoint

Lemma 7. Letz,y € R, and suppose <y — 1. Then[z]| < |y].

Proof. Clearly, [z] < y. Becausg] is an integer, the result follows. O

33 2011/6/10

Theorem 4. Let p1,p2 € Z>0,q1,92 € Z~o, such thaiged(p1, ¢1) = ged(p2, q2) = 1 and% < ’q’—j. Letq be
the smallest integer for which there i9 & Z-(such that

pr _p_ P2 (27)
q1 q q2
Theng satisfies
[q1 + q2 w <q< [Q1Q2+Q1+Q2w (28)
P2g1 — P192 b2q1 — P1G2

Proof. Notice first that the two bounds are always well defineo%as Z_; implies thatpaq1 — p1g2 > 0.
Moreover, it has already been explained in Section 5.1 ¥4(#73 holds if and only ify satisfies

22«)

Thus

-1 1 -1
0> [PlCH-ﬂ B {qu J s a1l pag
q1 q2 q1 q2
_P@qt+@e—pagt+a _ q(pi1g2 —peqi) + @1+ @2

q142 q192

Rearranging terms, one obtains the lower bound in (28). Teckhhe upper bound, observe that, as a
consequence of Lemma 7safficientcondition for (29) to hold is

pg+l _pg—1 _
Q@

1

Rearranging terms, one obtains

S 1192 +q1+q
T p2g1 — P1g2

Any ¢ satisfying this bound satisfies (27). Thus the smallest guslat most{%w . This completes the
proof.

O

C. Finding the critical braking time
C.1 Description of the problem

A rocket is falling from positionzy > 0 with initial velocity vy, at constant accelerationg. One wants to brake
with acceleratiorG > ¢, starting at some critical timg > 0, until landing, such that one arrives at positidon
with velocity 0. One wants to find. and the time of arrivat, at whichz(¢,) = 0 andwv(t,) = 0.

34 2011/6/10

C.2 Solution

Whent < t., the rocket’s position is described by the equation

1
x(t) = —§gt2 + vot + T (30)

Similarly, whent > t., the position is given by

2(t) = g(t) 4 (t— t)or, + @, (31)

Wherea := G — g, andzy, := z(t.), v, := v(t.) = —gt. + vy can be obtained directly from (30). Deriving
(31), one obtains that far> ¢,

v(t) = alt —te) + vy, (32)

Henceu(t,) = 0 impliesa(ty — t) + (—gte +vo) = 0, i.et, = 2otdle — wHCEo)la plugging this expression

for t. into (31) and setting = t,, one obtains a quadratic polynomia(t,) := at2 + Bt, + v in t,. To avoid
dying of boredom, | computed the coefficientss, v using SAGE [Stein et al. 2011], and obtained

g 9
2G 2
guo
B = G+Uo
—U—g—i-x
Y °0 0

Solving the quadratic equation(t,) = 0, and taking the positive solution, one can obtain a value fpand
thus a value fot,..

As a sanity check, supposg = 0,G = 2g. Then one obtaina: = g — 2 =-49,8=0,7 = x. Solving
the equations, it turns out(t.) = %2, which confirms the intuition that the braking should occxaatly in the
geometric middle of the fall.

D. Efficiency of decision for linear rational arithmetic

In this appendix, | discuss the computational efficiencyeafiding various versions of linear rational arithmetic.

Most of the results can be generalized to other ordered fidlaisthe fact that there is a polynomial time
algorithm to solve linear programs is specific to the ratisnso Theorem 7 may not hold for other fields.

Theorem 5. Deciding a formula of linear rational arithmetic is NP-Hard

Proof. 0-1 integer programming (where the variables are congtaia be either zero or one) is well known to
be NP-Hard [Schrijver 1986]. Any problem of 0-1 integer praygming with variables;, ..., x,, and constraint
Az < b can be expressed in rational linear arithmetic with the fdam

Jz13xe.. Az < DA (21 =0) V(1 =) A A (2, =0V, =1))

Therefore deciding a formula of linear rational arithmésiat least as hard as 0-1 integer programming, which
is NP-Hard. O

35 2011/6/10

Disallowing disjunctions does not fully solve the problem:

Theorem 6. Deciding a formula of linear rational arithmetic withousglinctions is NP-Hard.

Proof. The constraints of the forrw; = 0 V z; = 1) in the proof of Theorem 5 can be equivalently expressed
without disjunction as

O

The problem was that negating a conjunction still resuls disjunction. What is needed is to force the formula
to have anegation-normal formwvithout disjunctions. One can then suppose the formuiabe of the form

¢ =Q1x1, ..., Qrrnt

with

P = (Y1 Ao Ahpy)

WhereQ); € {V,3}, and each);[z1, ..., z,,] is in one of the three following forms:

Y = f(x1,.20) < Cj
’l/)i = f(.%'l, ,.%'n) < CZ'
’L/}i = f(.%'l, ,.%'n) 7é Ci

with f a linear function(; € Q.

The next Theorem shows that imposing this restriction isigho

Theorem 7. Deciding a formula¢ of linear rational arithmetic that has a negation-normahfovithout
disjunctions can be done in polynomial time.

To prove the Theorem, | first need several lemmas.

Lemma 8. If Q,, = V, then eithery is equivalent toQ x1,...,Qn_17,_1% Or ¢ is false. Which of these
alternatives is true can be decided in polynomial time.

Proof. If z,, does not appear in any;, the first alternative is true. Otherwise, once all the \@€ész, ..., z, 1
are fixed, it is clearly always possible to find ap that violates one of the;s in which it appears, so is
false. O

Lemma 9. SupposeQy, = V, Qr+1 = ... = @, = 3. Then eithevzx;..VarrIxgy1...3x,1 IS true, ¢ is
equivalent toQz1...Qk—12k—1Qk+12k+1---Qnrn[0/xk], OF ¢ is false. Which of these alternatives is true can
be decided in polynomial time.

Proof. Let U[zy, ..., x| := Jzk1q... 32,00 If the first alternative is not true, this means there exjsts.., yi. €
Q such that¥ [y, /x4, ..., yx/xk] is false. Apply Fourier-Motzkin elimination t@ to eliminate the variables
Zkt1, .- Tn. The result is a formula)[z, ..., xx] such thatl = . If x;, does not appear i, the second

36 2011/6/10

alternative is true. Otherwise,is equivalent taQ;z1...Qx_1z_1Vz,Y , andz, appears in). By the proof of
Lemma 8,¢ must be false.

An efficient way to test whether,, appear ing is to first find values, ..., z_1, 2k 1, -y 2 SUCH that

¢[21/ZC1, cey yk‘/xka Zk‘-l—l/xk‘-i-la ceey Zn/ﬂ?n]

is true (if no such values exists, this meahs, ..., 3z, _1VapIzrg ... Jz,00 IS fglse, so definitely is false as
well), then check whetherz V(21 /x4, ..., zx—1/zk—1] IS true. If it is false, then) must containey. If it is true,
it cannot contain it. The proof of Theorem 7 explains how tdltese operations in polynomial time. O

Proof sketch for Theorem Temmas 8 and 9 show one can assume without loss of genefait@)t = ... =
Qr =V,andQ, 1 = ... = @, = 3 for somer.

| will describe only what happens in two special cases:

1. All the quantifiers are existential, and the only relasioised are< and#

2. Both types of quantifiers are used, but the only relatiadus<.

All throughout the proofs | will use the fact that feasihiliof a linear program can be decided in polynomial
time [Schrijver 1986]. The ideas presented for those casesld carry over to the general case. Notice for
example that if the only quantifiers are existential, ang4aappear, then the problem is equivalent to deciding
whether a LPWS has a solution. As shown in Section 4.4.2 ishéssentially equivalent to solving a linear

program, which can be done in polynomial time.

Finally, Corollary 1 suggests it should not be too difficudt adapt the methods presented below if one
additionally wants to maximize some objective function.

D.1 Solving a LP with negations

The first case is equivalent to deciding the feasibility ofn@dr programdx < b with additional constraints
cix # di A ...c;px # d, for some matrixC' and vectord. Let Hy, ..., H,, be the hyperplanes defined as
H; :={z | c;x = d;}, and letP := {z | Az < b}. Then one wants to find a point in P — |J" ;| H;. Such a
point exists if and only itP ¢ (J;", H; i.e ifand only if P N (U, H;) # P.

To find z* (if it exists), first definex} to be a point in? — H;. Such a point exists if and only if one of the sets
{z | Az < bAcx < d;},{z| Az < b A ¢x > d;} is non-empty, which can be checked by solving the two
corresponding LPWS. | claim* exists if and only ifx7, ..., x, exists. To see this, define inductively := x7,
and

" {%—1 if ckyk—1 # d
k= M (1N -
TP otherwise

Where0 < A < 1 must be chosen sufficiently small, so thaj, # d; foralli € {1,...,k — 1}. This is always
possible, as there are only finitely many hyperplanes, Hirtitaely many choices fon\. | show by induction
thaty, € P — (¥, H; from which it will follow that 2* = y,, is a solution. The base case follows from the
definition of z]. For the induction step, observe first that becalise convex,y;_; € P (by induction), and
xy € P (by construction)y, € P. The fact thaty,, ¢ U*_, H; also follows from its construction.

To find out whether each; exists, one needs to solve at mast LPWS, each of which can be solved in
polynomial time, so the initial constraint can also be dedith polynomial time.

37 2011/6/10

D.2 Solving a quantified LP

The second case is equivalent to deciding when a multiparantisear programdz < w+ FO (x € Q™ A €
QM F e Q™" 0 cQ",we QM) is feasible forall values of©. This is the case if and only if the dual

min{(w 4+ FO)Ty : ATy =0,y > 0} (33)

is feasible and bounded for all parameter value® ofeasibility of the dual does not depend®nand can be
checked in polynomial time by solving a linear program. B ttual is feasible, the only thing that can happen
is that it is unbounded. This is the case if and only if therigstex € Q™ such that

ATd=0,d>0 (34)

and for somed*, (w + FO*)Td < 0 (because if such d exists,\d is also feasible for arbitrarily large
values of)). Thus for (33) to always be bounded, one needs that fad @hd alld satisfying (34),Ce 4 :=
(w + FO)Td > 0. From the special case whee= 0, it follows thatw”d > 0.

Moreover, suppose that for son@ (FO)'d > 0. Then for some\ > 0 sufficiently large, one has that
(w+ F(=))©)Td < 0. This implies tha{ F©)”d = 0, for all ©, i.e d is in the orthogonal complemet" of
F. By the fundamental theorem of linear algebra, this is eajaivt to saying thaf € ker F'T.

From the above discussion, it follows that (33) is unbounidedome®* if and only if there exists & € Q™
that does not satisfy the conditions above, i.e such that

ATd=0Ad>0A(dTw <OV EFLd#40VEId#0V ..V ELd+#0) (35)

The existence of suchdcan be checked by solving one LPWS and_Ps with negations, which can be done
in polynomial time by the result of the previous Section. O

38 2011/6/10

