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Abstract. We introduce a new device in the study of abstract
elementary classes (AECs): Galois Morleyization, which consists in
expanding the models of the class with a relation for every Galois
(orbital) type of length less than a fixed cardinal κ. We show:

Theorem 0.1 (The semantic-syntactic correspondence). An AEC
K is fully (< κ)-tame and type short if and only if Galois types
are syntactic in the Galois Morleyization.

This exhibits a correspondence between AECs and the syntactic
framework of stability theory inside a model. We use the corre-
spondence to make progress on the stability theory of tame and
type short AECs. The main theorems are:

Theorem 0.2. Let K be a LS(K)-tame AEC with amalgamation.
The following are equivalent:

(1) K is Galois stable in some λ ≥ LS(K).
(2) K does not have the order property (defined in terms of Ga-

lois types).
(3) There exist cardinals µ and λ0 with µ ≤ λ0 < i(2LS(K))+ such

that K is Galois stable in any λ ≥ λ0 with λ = λ<µ.

Theorem 0.3. Let K be a fully (< κ)-tame and type short AEC
with amalgamation, κ = iκ > LS(K). If K is Galois stable, then
the class of κ-Galois saturated models of K admits an indepen-
dence notion ((< κ)-coheir) which, except perhaps for extension,
has the properties of forking in a first-order stable theory.
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1. Introduction

Abstract elementary classes (AECs) are sometimes described as a purely
semantic framework for model theory. It has been shown, however, that
AECs are closely connected with more syntactic objects. See for ex-
ample Shelah’s presentation theorem [She87a, Lemma 1.8], or Kueker’s
[Kue08, Theorem 7.2] showing that an AEC with Löwenheim-Skolem
number λ is closed under L∞,λ+-elementary equivalence.

Another framework for non-elementary model theory is stability theory
inside a model (introduced in Rami Grossberg’s 1981 master thesis and
studied for example1 in [Gro91a, Gro91b] or [She87b, Chapter I], see
[She09b, Chapter V.A] for a more recent version). There the methods
are very syntactic but it is believed (see for example the remark on p.
116 of [Gro91a]) that they can help the resolution of more semantic
questions, such as Shelah’s categoricity conjecture for Lω1,ω.

In this paper, we establish a correspondence between these two frame-
works. We show that results from stability theory inside a model di-
rectly translate to results about tame abstract elementary classes. Re-
call that an AEC is (< κ)-tame if its Galois (i.e. orbital) types are de-
termined by their restrictions to domains of size less than κ. Tameness
as a property of AEC was first isolated (from an argument in [She99])
by Grossberg and VanDieren [GV06b] and used to prove an upward cat-
egoricity transfer [GV06a, GV06c]. Boney [Bon14] showed that tame-
ness follows from the existence of large cardinals. Combined with the
categoricity transfers of Grossberg-VanDieren and Shelah [She99], this
showed assuming a large cardinal axiom that Shelah’s eventual cate-
goricity conjecture holds if the categoricity cardinal is a successor.

The basic idea of the translation is the observation (appearing for ex-
ample in [Bon14, p. 15] or [Lie11, p. 206]) that in a (< κ)-tame abstract
elementary class, Galois types over domains of size less than κ play a
role analogous to first-order formulas. We make this observation precise

1The definition of a model being stable appears already in [She78, Definition
I.2.2] but (as Shelah notes in the introduction to [She87b, Chapter I]) this concept
was not pursued further there.
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by expanding the language of such an AEC with a relation symbol for
each Galois type over the empty set of a sequence of length than κ, and
looking at Lκ,κ-formulas in the expanded language. We call this expan-
sion the Galois Morleyization2 of the AEC. Thinking of a type as the
set of its small restrictions, we can then prove the semantic-syntactic
correspondence (Theorem 3.16): Galois types in the AEC correspond
to quantifier-free syntactic types in its Galois Morleyization.

The correspondence gives us a new method to prove results in tame
abstract elementary classes:

(1) Prove a syntactic result in the Galois Morleyization of the AEC
(e.g. using tools from stability theory inside a model).

(2) Translate to a semantic result in the AEC using the semantic-
syntactic correspondence.

(3) Push the semantic result further using known (semantic) facts
about AECs, maybe combined with more hypotheses on the
AEC (e.g. amalgamation).

As an application, we prove Theorem 0.2 in the abstract (see The-
orem 4.13), which gives the equivalence between no order property
and stability in tame AECs and generalizes one direction of the stabil-
ity spectrum theorem of homogeneous model theory ([She70, Theorem
4.4], see also [GL02, Corollary 3.11]). The syntactic part of the proof
is not new (it is a straightforward generalization of Shelah’s first-order
proof [She90, Theorem 2.10]) and we are told by Rami Grossberg that
proving such results was one of the reason tameness was introduced (in
fact theorems with the same spirit appear in [GV06b]). However we
believe it is challenging to give a transparent proof of the result using
Galois types only. The reason is that the classical proof uses local types
and it is not clear how to naturally define them semantically.

The method has other applications: Theorem 5.15 (formalizing Theo-
rem 0.3 from the abstract) shows that in stable fully tame and short
AECs, the coheir independence relation has some of the properties of
a well-behaved independence notion. This is used in [Vas] to build a
global independence notion from superstability. In [BV], we also use
syntactic methods to investigate chains of Galois-saturated models.

Precursors to this work include Makkai and Shelah’s study of classes
of models of an Lκ,ω theory for κ a strongly compact cardinal [MS90]:
there they prove [MS90, Proposition 2.10] that Galois and syntactic

2We thank Rami Grossberg for suggesting the name.
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Σ1(Lκ,κ)-types are the same (so in particular those classes are (< κ)-
tame). One can see the results of this paper as a generalization to
tame AECs. Also, the construction of the Galois Morleyization when
κ = ℵ0 (so the language remains finitary) appears in [Kan, Section
2.4]. Moreover it has been pointed out to us3 that a device similar
to Galois Morleyization is used in [Ros81, Section 3] to present any
concrete category as a class of models of an infinitary theory. However
the use of Galois Morleyization to translate results of stability theory
inside a model to AECs is new.

This paper is organized as follows. In section 2, we review some prelim-
inaries. In section 3, we introduce functorial expansions4 of AECs and
the main example: Galois Morleyization. We then prove the semantic-
syntactic correspondence. In section 4, we investigate various order
properties and prove Theorem 0.2. In section 5, we study the coheir
independence relation. Several of these sections have global hypotheses
which hold until the end of the section: see Hypotheses 3.10, 4.1, and
5.1.

We end with a note on how AECs compare to some other non first-
order framework like homogeneous model theory (see [She70]). There
is an example (due to Marcus, see [Mar72]) of an Lω1,ω-axiomatizable
class which is categorical in all uncountable cardinals but does not have
an ℵ1-sequentially-homogeneous model. For n < ω, an example due to
Hart and Shelah (see [HS90, BK09]) has amalgamation, no maximal
models, and is categorical in all ℵk with k ≤ n, but no higher. By
[GV06c], the example cannot be ℵk-tame for k < n. However if κ is a
strongly compact cardinal, the example will be fully (< κ)-tame and
type short by the main result of [Bon14]. The discussion on p. 74 of
[Bal09] gives more non-homogeneous examples.

In general, classes from homogeneous model theory or quasiminimal
pregeometry classes (see [Kir10]) are special cases of AECs that are al-
ways fully (< ℵ0)-tame and type short. In this paper we work with the
much more general assumption of (< κ)-tameness and type shortness
for a possibly uncountable κ.

This paper was written while working on a Ph.D. thesis under the
direction of Rami Grossberg at Carnegie Mellon University and I would
like to thank Professor Grossberg for his guidance and assistance in my
research in general and in this work specifically. I thank Will Boney

3By Jonathan Kirby.
4These were called “abstract Morleyizations” in an early version of this paper.

We thank John Baldwin for suggesting the new name.
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for thoroughly reading this paper and providing invaluable feedback.
I also thank Alexei Kolesnikov for valuable discussions on the idea of
thinking of Galois types as formulas. I thank John Baldwin, Jonathan
Kirby, and a referee for valuable comments.

2. Preliminaries

We review some of the basics of abstract elementary classes and fix
some notation. The reader is advised to skim through this section
quickly and go back to it as needed.

2.1. Set theoretic terminology.

Definition 2.1. Let κ be an infinite cardinal.

(1) Let κr be the least regular cardinal greater than or equal to κ.
That is, κr is κ+ if κ is singular and κ if κ is regular.

(2) Let κ− be κ if κ is limit or the unique κ0 such that κ+
0 = κ if κ

is a successor.

We will often use the following function:

Definition 2.2 (Hanf function). For λ an infinite cardinal, define
h(λ) := i(2λ)+ . Also define h∗(λ) := h(λ−).

Note that for λ infinite, λ = iλ if and only if for all µ < λ, h(µ) < λ.

2.2. Syntax. The notation of this paper is standard, but since we
will work with infinitary objects and need to be precise, we review
the basics. We will often work with the logic Lκ,κ, see [Dic75] for the
definition and basic results.

Definition 2.3. An infinitary vocabulary is a vocabulary where we also
allow relation and function symbols of infinite arity. For simplicity, we
require the arity to be an ordinal. An infinitary vocabulary is (< κ)-ary
if all its symbols have arity strictly less than κ. A finitary vocabulary
is a (< ℵ0)-ary vocabulary.

For τ an infinitary vocabulary, φ an Lκ,κ(τ)-formula and x̄ a sequence
of variables, we write φ = φ(x̄) to emphasize that the free variables
of φ appear among x̄ (recall that a Lκ,κ-formula must have fewer than
κ-many free variables, but not all elements of x̄ need to appear as free
variables in φ, so we allow `(x̄) ≥ κ). We use a similar notation for
sets of formulas. When ā is an element in some τ -structure and φ(x̄, ȳ)
is a formula, we often abuse notation and say that ψ(x̄) = φ(x̄, ā) is a
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formula (again, we allow `(ā) ≥ κ). We say φ(x̄, ā) is a formula over
A if ā ∈ <∞A.

Definition 2.4. For φ a formula over a set, let FV(φ) denote an enu-
meration of the free variables of φ (according to some canonical ordering
on all variables). That is, fixing such an ordering, FV(φ) is the smallest
sequence x̄ such that φ = φ(x̄). Let `(φ) := `(FV(φ)) (it is an ordinal,
but by permutting the variables we can usually assume without loss
of generality that it is a cardinal), and dom(φ) be the smallest set A
such that φ is over A. Define similarly the meaning of FV(p), `(p), and
dom(p) on a set p of formulas.

Definition 2.5. For τ an infinitary vocabulary, M a τ -structure, A ⊆
|M |, b̄ ∈ <∞|M |, and ∆ a set of τ -formulas (in some logic), let5:

tp∆(b̄/A;M) := {φ(x̄; ā) | φ(x̄, ȳ) ∈ ∆, ā ∈ `(ȳ)A, and M |= φ[b̄, ā]}

We will most often work with ∆ = qf-Lκ,κ, the set of quantifier-free
Lκ,κ-formulas.

Definition 2.6. For M a τ -structure, ∆ a set of τ -formulas, A ⊆ |M |,
α an ordinal or ∞, let

S<α∆ (A;M) := {tp∆(b̄/A;M) | b̄ ∈ <α|M |}

Define similarly the variations for ≤ α, α, etc. We write S∆(A;M)
instead of S1

∆(A;M).

2.3. Abstract classes. We review the definition of an abstract ele-
mentary class. Abstract elementary classes (AECs) were introduced
by Shelah in [She87a]. The reader unfamiliar with AECs can consult
[Gro02] for an introduction.

We first review more general objects that we will sometimes use. Ab-
stract classes are already defined in [Gro], while µ-abstract elementary
classes are introduced in [BGL+]. We will mostly use them to deal with
functorial expansions and classes of saturated models of an AEC.

Definition 2.7. An abstract class (AC for short) is a pair (K,≤),
where:

5Of course, we have in mind a canonical sequence of variables x̄ of order type
`(b̄) that should really be part of the notation but (as is customary) we always omit
this detail.
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(1) K is a class of τ -structure, for some fixed infinitary vocabulary
τ (that we will denote by τ(K)). We say (K,≤) is (< µ)-ary if
τ is (< µ)-ary.

(2) ≤ is a partial order (that is, a reflexive and transitive relation)
on K.

(3) If M ≤ N are in K and f : N ∼= N ′, then f [M ] ≤ N ′ and both
are in K.

(4) If M ≤ N , then M ⊆ N .

Remark 2.8. We do not always strictly distinguish between K and
(K,≤).

Notation 2.9. For K an abstract class, M,N ∈ K, we write M < N
when M ≤ N and M 6= N .

Definition 2.10. Let K be an abstract class. A sequence 〈Mi : i < δ〉
of elements of K is increasing if for all i < j < δ, Mi ≤ Mj. Strictly
increasing means Mi < Mj for i < j. 〈Mi : i < δ〉 is continuous if for
all limit i < δ, Mi =

⋃
j<iMj.

Notation 2.11. For K an abstract class, we use notations such as Kλ,
K≥λ, K<λ for the models in K of size λ, ≥ λ, < λ, respectively.

Definition 2.12. Let (I,≤) be a partially-ordered set.

(1) We say that I is µ-directed provided for every J ⊆ I if |J | < µ
then there exists r ∈ I such that r ≥ s for all s ∈ J (thus
ℵ0-directed is the usual notion of directed set)

(2) Let (K,≤) be an abstract class. An indexed system 〈Mi : i ∈ I〉
of models in K is µ-directed if I is a µ-directed set and i < j
implies Mi ≤Mj.

Definition 2.13. Let µ be a regular cardinal and let (K,≤) be a (< µ)-
ary abstract class. We say that (K,≤) is a µ-abstract elementary class
(µ-AEC for short) if:

(1) Coherence: If M0,M1,M2 ∈ K satisfy M0 ≤ M2, M1 ≤ M2,
and M0 ⊆M1, then M0 ≤M1;

(2) Tarski-Vaught axioms: Suppose 〈Mi ∈ K : i ∈ I〉 is a µ-directed
system. Then:
(a)

⋃
i∈IMi ∈ K and, for all j ∈ I, we have Mj ≤

⋃
i∈IMi.

(b) If there is some N ∈ K so that for all i ∈ I we have
Mi ≤ N , then we also have

⋃
i∈IMi ≤ N .

(3) Löwenheim-Skolem-Tarski axiom: There exists a cardinal λ =
λ<µ ≥ |L(K)|+µ such that for any M ∈ K and A ⊆ |M |, there
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is some M0 ≤ M such that A ⊆ |M0| and ‖M0‖ ≤ |A|<µ + λ.
We write LS(K) for the minimal such cardinal6.

When µ = ℵ0, we omit it and simply call K an abstract elementary
class (AEC for short).

In any abstract class, we can define a notion of embedding:

Definition 2.14. Let K be an abstract class. We say a function f :
M → N is a K-embedding if M,N ∈ K and f : M ∼= f [M ] ≤ N .
For A ⊆ |M |, we write f : M −→

A
N to mean that f fixes A pointwise.

Unless otherwise stated, when we write f : M → N we mean that f is
an embedding.

Here are three key structural properties an abstract class can have:

Definition 2.15. Let K be an abstract class.

(1) K has amalgamation if for any M0 ≤ M` in K, ` = 1, 2, there
exists N ∈ K and f` : M` −−→

M0

N .

(2) K has joint embedding if for any M` in K, ` = 1, 2, there exists
N ∈ K and f` : M` → N .

(3) K has no maximal models if for any M ∈ K there exists N ∈ K
with M < N .

2.4. Galois types. Let K be an abstract class. There is a well-known
a semantic notion of types for K, Galois types, that was first introduced
by Shelah in [She87b, Definition II.1.9]. While Galois types are usually
only defined over models, here we allow them to be over any set. This
is not harder and is often notationally convenient7. Note however that
Galois types over sets are in general not too well-behaved. For example,
they can sometimes fail to have an extension (in the sense that if we
have N,N ′ ∈ K, A ⊆ |N | ∩ |N ′| and p a Galois type over A realized
in N , then we may not be able to extend p to a type over N ′) if their
domain is not an amalgamation base.

Definition 2.16.

(1) Let K3 be the set of triples of the form (b̄, A,N), where N ∈ K,
A ⊆ |N |, and b̄ is a sequence of elements from N .

6Pedantically, LS(K) really depends on µ but µ will always be clear from context.
7For example, types over the empty sets are used here in the definition of the

Galois Morleyization. They appear implicitly in the definition of the order property
in [She99, Definition 4.3] and explicitly in [GV06b, Notation 1.9]. They are also
used in [HK06].
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(2) For (b̄1, A1, N1), (b̄2, A2, N2) ∈ K3, we say (b̄1, A1, N1)Eat(b̄2, A2, N2)
if A := A1 = A2, and there exists f` : N` −→

A
N such that

f1(b̄1) = f2(b̄2).
(3) Note that Eat is a symmetric and reflexive relation on K3. We

let E be the transitive closure of Eat.
(4) For (b̄, A,N) ∈ K3, let gtp(b̄/A;N) := [(b̄, A,N)]E. We call

such an equivalence class a Galois type. We write gtpK(b̄/A;N)
when K is not clear from context.

(5) For p = gtp(b̄/A;N) a Galois type, define8 `(p) := `(b̄) and
dom(p) := A.

We can go on to define the restriction of a type (if A0 ⊆ dom(p),
I ⊆ `(p), we will write pI � A0 when the realizing sequence is restricted
to I and the domain is restricted to A0), the image of a type under an
isomorphism, or what it means for a type to be realized. Just as in
[She09a, Observation II.1.11.4], we have:

Fact 2.17. If K has amalgamation, then E = Eat.

Note that the proof goes through, even though we only have amalga-
mation over models, not over all sets.

Remark 2.18. To gain further insight into the difference between E
and Eat, consider the following situation. Let K be an AEC that does
not have amalgamation and assume we are given M ≤ N , a1, a2 ∈ |M |,
and A ⊆ |M |. Suppose we know that (a1, A,M)Eat(a2, A,M). Then
because (a`, A,N)Eat(a`, A,M) for ` = 1, 2, we have that (a1, A,N)E(a2, A,N),
but we may not have that (a1, A,N)Eat(a2, A,N).

We also have the basic monotonicity and invariance properties [She09a,
Observation II.1.11], which follow directly from the definition:

Proposition 2.19. Let K be an abstract class. Let N ∈ K, A ⊆ |N |,
and b̄ ∈ <∞|N |.

(1) Invariance: If f : N ∼=A N
′, then gtp(b̄/A;N) = gtp(f(b̄)/A;N ′).

(2) Monotonicity: If N ≤ N ′, then gtp(b̄/A;N) = gtp(b̄/A;N ′).

Monotonicity says that when N ≤ N ′, the set of Galois types (over a
fixed set A) realized in N ′ is at least as big as the set of Galois types
over A realized in N (using the notation below, gS(A;N) ⊆ gS(A;N ′)).
When A = M for M ≤ N (or A = ∅), we can further define the class
gS(A) of all Galois types over A in the natural way. Assuming the

8It is easy to check that this does not depend on the choice of representatives.
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existence of a monster model C containing A, this is the same as the
usual definition: all types over A realized in C.

Definition 2.20.

(1) Let N ∈ K, A ⊆ |N |, and α be an ordinal. Define:

gSα(A;N) := {gtp(b̄/A;N) | b̄ ∈ α|N |}
(2) For M ∈ K and α an ordinal, let:

gSα(M) := {p | ∃N ∈ K : M ≤ N and p ∈ gSα(M ;N)}

(3) For α an ordinal, let:

gSα(∅) :=
⋃
N∈K

gSα(∅;N)

When α = 1, we omit it. Similarly define gS<α, where α is allowed to
be ∞.

Remark 2.21. When α is an ordinal, gSα(M) and gSα(∅) could a
priori be proper classes. However in reasonable cases (e.g. when K is
a µ-AEC) they are sets. For example when K is a µ-AEC, an upper

bound for |gSα(M)| is 2(‖M‖+α+LS(K))<µ .

Next, we recall the definition of tameness), a locality property of types.
Tameness was introduced by Grossberg and VanDieren in [GV06b] and
used to get an upward stability transfer (and an upward categoricity
transfer in [GV06c]). Later on, Boney showed in [Bon14] that it fol-
lowed from large cardinals and also introduced a dual property he called
type shortness.

Definition 2.22 (Definitions 3.1 and 3.3 in [Bon14]). Let K be an
abstract class and let Γ be a class (possibly proper) of Galois types in
K. Let κ be an infinite cardinal.

(1) K is (< κ)-tame for Γ if for any p 6= q in Γ, if A := dom(p) =
dom(q), then there exists A0 ⊆ A such that |A0| < κ and
p � A0 6= q � A0.

(2) K is (< κ)-type short for Γ if for any p 6= q in Γ, if α := `(p) =
`(q), then there exists I ⊆ α such that |I| < κ and pI 6= qI .

(3) κ-tame means (< κ+)-tame, similarly for type short.
(4) We usually just say “short” instead of “type short”.
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(5) Usually, Γ will be a class of types over models only, and we
often specify it in words. For example, (< κ)-short for types of
length α means (< κ)-short for

⋃
M∈K gSα(M).

(6) We say K is (< κ)-tame if it is (< κ)-tame for types of length
one.

(7) We sayK is fully (< κ)-tame if it is (< κ)-tame for
⋃
M∈K gS<∞(M),

similarly for short.

We review the natural notion of stability in this context. The definition
here is slightly unusual compared to the rest of the litterature: we define
what it means for a model to be stable in a given cardinal, and get a
local notion of stability that is equivalent (in AECs) to the usual notion
if amalgamation holds, but behaves better if amalgamation fails. Note
that we count the number of types over an arbitrary set, not (as is
common in AECs) only over models. In case the abstract class has a
Löwenheim-Skolem number and we work above it this is equivalent, as
any type in gS<α(A;N) can be extended9 to gS<α(B;N) when A ⊆ B,
so |gS<α(A;N)| ≤ |gS<α(B;N)|.

Definition 2.23 (Stability). Let K be an abstract class. Let α be a
cardinal, µ be a cardinal. A model N ∈ K is (< α)-stable in µ if for
all A ⊆ |N | of size ≤ µ, |gS<α(A;N)| ≤ µ. Here and below, α-stable
means (< (α+))-stable. We say “stable” instead of “1-stable”.

K is (< α)-stable in µ if every N ∈ K is (< α)-stable in µ. K is
(< α)-stable if it is (< α)-stable in unboundedly many cardinals.

Define similarly syntactically stable for syntactic types (in this paper
the quantifier-free Lκ,κ-types, where κ is clear from context).

The next fact spells out the connection between stability for types of
different lengths and tameness.

Fact 2.24. Let K be an AEC and let µ ≥ LS(K).

(1) [Bon, Theorem 3.1]: If K is stable in µ, Kµ has amalgamation,
and µα = µ, then K is α-stable in µ.

(2) [GV06b, Corollary 6.4]10: If K has amalgamation, is µ-tame,
and stable in µ, then K is stable in all λ such that λµ = λ.

(3) If K has amalgamation, is µ-tame, and is stable in µ, then K is
α-stable (in unboundedly many cardinals), for all cardinals α.

9Note that this does not use any amalgamation because we work inside the same
model N .

10The result we want can easily be seen to follow from the proof there: see
[Bal09, Theorem 12.10].
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Proof of (3). Given cardinals λ0 ≥ LS(K) and α, let λ := (λ0)α+µ.
Combining the first two statements gives us that K is α-stable in λ. �

Finally, we review the natural definition of saturation using Galois
types. Note that we again give the local definitions (but they are
equivalent to the usual ones assuming amalgamation).

Definition 2.25. Let K be an abstract class, M ∈ K and µ be an
infinite cardinal.

(1) For N ≥M , M is µ-saturated11 in N if for any A ⊆ |M | of size
less than µ, any p ∈ gS<µ(A;N) is realized in M .

(2) M is µ-saturated if it is µ-saturated in N for all N ≥M . When
µ = ‖M‖, we omit it.

(3) We write Kµ-sat for the class of µ-saturated models of K≥µ (or-
dered by the ordering of K).

Remark 2.26.

(1) We defined saturation also when µ ≤ LS(K). This is why we
look at types over sets and not only over models. In an AEC,
when µ > LS(K), this is equivalent to the usual definition (see
also the remark before Definition 2.23).

(2) We could similarly define what it means for a set to be saturated
in a model (this is useful in [BV]).

(3) It is easy to check that if K is an AEC with amalgamation and
µ > LS(K), then Kµ-sat is a µr-AEC (recall Definitions 2.1 and
2.13) with LS(Kµ-sat) ≤ LS(K)<µr .

3. The semantic-syntactic correspondence

3.1. Functorial expansions and the Galois Morleyization.

Definition 3.1. Let K be an abstract class. A functorial expansion

of K is a class K̂ satisfying the following properties:

(1) K̂ is a class of τ̂ -structures, where τ̂ is a fixed (possibly infini-
tary) vocabulary extending τ(K).

(2) The map M̂ 7→ M̂ � τ(K) is a bijection from K̂ onto K. For

M ∈ K, we will write M̂ for the unique element of K̂ whose

reduct is M . When we write “M̂ ∈ K̂”, it is understood that

M = M̂ � τ(K).

11Pedantically, we should really say “Galois-saturated” to differentiate this from
being syntactically saturated. In this paper, we will only discuss Galois saturation.
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(3) Invariance: For M,N ∈ K, if f : M ∼= N , then f : M̂ ∼= N̂ .

(4) Monotonicity: If M ≤ N are in K, then M̂ ⊆ N̂ .

We say a functorial expansion K̂ is (< κ)-ary if τ(K̂) is (< κ)-ary.

Example 3.2.

(1) For K an abstract class, K is a functorial expansion of K itself.
This is because ≤ must extend ⊆.

(2) Let K be an abstract class with τ := τ(K) and let κ be an
infinite cardinal. Add a (< κ)-ary predicate P to τ , forming a

language τ̂ . Expand each M ∈ K to a L̂-structure by defining

P M̂(ā) (where P M̂ is the interpretation of P inside M̂) to hold
if and only if ā is the universe of a ≤-submodel of M (this is
more or less what Shelah does in [She09a, Definition IV.1.9.1]).

Then the resulting class K̂ is a functorial expansion of K.
(3) Let T be a complete first-order theory in a vocabulary τ . Let

K := (Mod(T ),�). It is common to expand τ to τ̂ by adding a
relation symbol for every first-order τ -formula. We then expand

T (to T̂ ) and every model M of T in the expected way (to some

M̂) and obtain a new theory in which every formula is equivalent
to an atomic one (this is commonly called the Morleyization of

the theory). Then K̂ := Mod(T̂ ) is a functorial expansion of
K.

(4) Let T be a first-order complete theory. Expanding each model
M of T to its canonical model M eq of T eq (see [She90, III.6])
also describes a functorial expansion.

(5) The canonical structures of [CHL85] also induce a functorial
expansion.

The main example of functorial expansion used in this paper is the
Galois Morleyization:

Definition 3.3. Let K be an abstract class and let κ be an infinite
cardinal. Define an expansion τ̂ of τ(K) by adding a relation symbol
Rp of arity `(p) for each p ∈ gS<κ(∅). Expand each N ∈ K to a τ̂ -

structure N̂ by specifying that for each ā ∈ <κ|N̂ |, RN̂
p (ā) (where RN̂

p is

the interpretation of Rp inside N̂) holds exactly when gtp(ā/∅;N) = p.

We call K̂ the (< κ)-Galois Morleyization of K.

Remark 3.4. LetK be an AEC and κ be an infinite cardinal. Let K̂ be
the (< κ)-Galois Morleyization of K. Then |τ(K̂)| ≤ |gS<κ(∅)|+ |τ | ≤
2<(κ+LS(K)+).
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It is straightforward to check that the Galois Morleyization is a func-
torial expansion. We include a proof here for completeness.

Proposition 3.5. Let K be an abstract class and let κ be an infinite

cardinal. Let K̂ be the (< κ)-Galois Morleyization of K. Then K̂ is a
functorial expansion of K.

Proof. Let τ := τ(K) be the vocabulary of K. Looking at Definition
3.1, there are four properties to check:

(1) By definition of the Galois Morleyization, K̂ is a class of τ̂ -
structure, for a fixed vocabulary τ̂ .

(2) The map M̂ 7→ M̂ � τ is a bijection: It is a surjection by def-
inition of the Galois Morleyization. It is an injection: Assume

that M ′ := M̂ � τ = N̂ � τ but M̂ 6= N̂ . Then there must exist
a p ∈ gS(∅) and an ā ∈ <κ|M ′| such that gtp(ā/∅;M ′) = p but
gtp(ā/∅;M ′) 6= p. Thus p 6= p, a contradiction.

(3) Let M,N ∈ K and f : M ∼= N . We have to see that f : M̂ ∼= N̂ .

Let p ∈ gS(∅) and let ā ∈ <κ|M |. Assume that M̂ |= Rp(ā).
Then by definition p = gtp(ā/∅;M). Therefore by Proposition

2.19.(1), p = gtp(f(ā)/∅;N). Hence N̂ |= Rp(f(ā)). The steps
can be reversed to obtain the converse.

(4) Let M ≤ N be in K. We want to see that M̂ ⊆ N̂ . So

let p ∈ gS(∅), ā ∈ <κ|M |. Assume first that M̂ |= Rp(ā).
Then p = gtp(ā/∅;M). Therefore by Proposition 2.19.(2), p =

gtp(ā/∅;N). Therefore N̂ |= Rp(ā). The steps can be reversed
to obtain the converse.

�

Note that a functorial expansion can naturally be seen as an abstract
class:

Definition 3.6. Let (K,≤) be an abstract class and let K̂ be a func-

torial expansion of K. Define an ordering ≤̂ on K̂ by M̂≤̂N̂ if and
only if M ≤ N .

Remark 3.7. For simplicity, we will abuse notation and write (K̂,≤)

rather than (K̂, ≤̂). As usual, when the ordering is clear from context
we omit it.

The next propositions are easy but conceptually interesting.
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Proposition 3.8. Let (K,≤) be an abstract class with τ := τ(K).

Let K̂ be a functorial expansion of K and let τ̂ := τ(K̂).

(1) (K̂,≤) is an abstract class.

(2) If every chain in K has an upper bound, then every chain in K̂
has an upper bound.

(3) Galois types are the same in K and K̂: gtpK(ā1/A;N1) =

gtpK(ā2/A;N2) if and only if gtpK̂(ā1/A; N̂1) = gtpK̂(ā2/A; N̂2).

(4) Assume K is a µ-AEC and K̂ is a (< µ)-ary Morleyization of

K. Then (K̂,≤) is a µ-AEC with LS(K̂) = LS(K) + |τ̂ |<µ.

(5) Let τ ⊆ τ̂ ′ ⊆ τ̂ . Then K̂ � τ̂ ′ := {M̂ � τ̂ ′ | M̂ ∈ K̂} is a
functorial expansion of K.

(6) If
̂̂
K is a functorial expansion12 of K̂, then

̂̂
K is a functorial

expansion of K.

Proof. All are straightforward. As an example, we show that if K is a

µ-AEC, K̂ is a (< µ)-ary functorial expansion of K, and 〈M̂i : i ∈ I〉
is a µ-directed system in K̂, then letting M :=

⋃
i∈IMi, we have that⋃

i∈I M̂i = M̂ (so in particular
⋃
i∈I M̂i ∈ K̂). Let R be a relation

symbol in τ̂ of arity α. Let ā ∈ α|M̂ |. Assume M̂ |= R[ā]. We show⋃
i∈I M̂i |= R[ā]. The converse is done by replacing R by ¬R, and the

proof with function symbols is similar. Since τ̂ is (< µ)-ary, α < µ.
Since I is µ-directed, ā ∈ α|Mj| for some j ∈ I. Since Mj ≤ M , the

monotonicity axiom implies M̂j ⊆ M̂ . Thus M̂j |= R[ā], and this holds

for all j′ ≥ j. Thus by definition of the union,
⋃
i∈I M̂i |= R[ā]. �

Remark 3.9. A word of warning: if K is an AEC and K̂ is a func-

torial expansion of K, then K and K̂ are isomorphic as categories. In

particular, any directed system in K̂ has a colimit. However, if τ(K̂)

is not finitary the colimit of a directed system in K̂ may not be the
union: relations may need to contain more elements.

3.2. Formulas and syntactic types. From now on until the end of
the section, we assume:

Hypothesis 3.10. K is an abstract class with τ := τ(K), κ is an

infinite cardinal, K̂ is an arbitrary (< κ)-ary functorial expansion of

K with vocabulary τ̂ := τ(K̂).

12Where of course we think of K̂ as an abstract class with the ordering induced
from K.
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At the end of this section, we will specialize to the case when K̂ is the
(< κ)-Galois Morleyization of K. Recall from Section 2.2 that the set
qf-Lκ,κ(τ̂) denotes the quantifier-free Lκ,κ(τ̂) formulas.

Proposition 3.11. Let φ(x̄) be a quantifier-free Lκ,κ(τ̂) formula, M ∈
K, and ā ∈ M . If f : M → N , then M̂ |= φ[ā] if and only if N̂ |=
φ[f(ā)].

Proof. Directly from the invariance and monotonicity properties of
functorial expansions. �

In general, Galois types (computed in K) and syntactic types (com-

puted in K̂) are different. However, Galois types are always at least
as fine as quantifier-free syntactic types (this is a direct consequence of
Proposition 3.11 but we include a proof for completeness).

Lemma 3.12. Let N1, N2 ∈ K, A ⊆ |N`| for ` = 1, 2. Let b̄` ∈
N`. If gtp(b̄1/A;N1) = gtp(b̄2/A;N2), then tpqf-Lκ,κ(τ̂)(b̄1/A; N̂1) =

tpqf-Lκ,κ(τ̂)(b̄2/A; N̂2).

Proof. By transitivity of equality, it is enough to show that if (b̄1, A,N1)Eat(b̄2, A,N2),

then tpqf-Lκ,κ(τ̂)(b̄1/A; N̂1) = tpqf-Lκ,κ(τ̂)(b̄2/A; N̂2). So assume (b̄1, A,N1)Eat(b̄2, A,N2).

Then there exists N ∈ K and f` : N` −→
A
N such that f1(b̄1) = f2(b̄2).

Let φ(x̄) be a quantifier-free Lκ,κ(τ̂) formula over A. Assume N̂1 |=
φ[b̄1]. By Proposition 3.11, N̂ |= φ[f1(b̄1)], so N̂ |= φ[f2(b̄2)], so by

Proposition 3.11 again, N̂2 |= φ[b̄2]. Replacing φ by ¬φ, we get the

converse, so tpqf-Lκ,κ(τ̂)(b̄1/A; N̂1) = tpqf-Lκ,κ(τ̂)(b̄2/A; N̂2). �

Note that this used that the types were quantifier-free. We have justi-
fied the following definition:

Definition 3.13. For a Galois type p, let ps be the corresponding
quantifier-free syntactic type in the functorial expansion. That is, if

p = gtp(b̄/A;N), then ps := tpqf-Lκ,κ(τ̂)(b̄/A; N̂).

Proposition 3.14. Let N ∈ K, A ⊆ |N |. Let α be an ordinal. The

map p 7→ ps from gSα(A;N) to Sαqf-Lκ,κ(τ̂)(A; N̂) (recall Definition 2.6)
is a surjection.

Proof. If tpqf-Lκ,κ(τ̂)(b̄/A; N̂) = q ∈ Sαqf-Lκ,κ(τ̂)(A; N̂), then by definition(
gtp(b̄/A;N)

)s
= q. �
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Remark 3.15. To investigate formulas with quantifiers, we could de-
fine a different version of Galois types using isomorphisms rather than
embeddings, and remove the monotonicity axiom from the definition
of a functorial expansion. As we have no use for it here, we do not
discuss this approach further.

3.3. On when Galois types are syntactic. We have seen in Propo-
sition 3.14 that p 7→ ps is a surjection, so Galois types are always at
least as fine as quantifier-free syntactic type in the expansion. It is
natural to ask when they are the same, i.e. when p 7→ ps is a bijection.

When K̂ is the (< κ)-Galois Morleyization of K (see Definition 3.3),
we answer this using shortness and tameness (Definition 2.22). Note
that we make no hypothesis on K. In particular, amalgamation is not
needed.

Theorem 3.16 (The semantic-syntactic correspondence). Assume K̂
is the (< κ)-Galois Morleyization of K.

Let Γ be a family of Galois types. The following are equivalent:

(1) K is (< κ)-tame and short for Γ.
(2) The map p 7→ ps is a bijection from Γ onto Γs := {ps | p ∈ Γ}.

Proof.

• (1) implies (2): By Lemma 3.12, the map p 7→ ps with domain Γ
is well-defined and it is clearly a surjection onto Γs. It remains
to see it is injective. Let p, q ∈ Γ be distinct. If they do not
have the same domain or the same length, then ps 6= qs, so
assume that A := dom(p) = dom(q) and α := `(p) = `(q).
Say p = gtp(b̄/A;N), q = gtp(b̄′/A;N ′). By the tameness and
shortness hypotheses, there exists A0 ⊆ A and I ⊆ α of size
less than κ such that p0 := pI � A0 6= qI � A0 =: q0. Let ā0

be an enumeration of A0, and let b̄0 := b̄ � I, b̄′0 := b̄′ � I.
Let p′0 := gtp(b̄0ā0/∅;N), and let φ := Rp′0

(x̄0, ā0), where x̄0

is a sequence of variables of type I. Since b̄0 realizes p0 in

N , N̂ |= φ[b̄0], and since b̄′0 realizes q0 in N ′ and q0 6= p0,

N̂ ′ |= ¬φ[b̄′0]. Thus φ(x̄0) ∈ ps, ¬φ(x̄0) ∈ qs. By definition,
φ(x̄0) /∈ q so ps 6= qs.
• (2) implies (1): Let p, q ∈ Γ be distinct with domain A and

length α. Say p = gtp(b̄/A;N), q = gtp(b̄′/A;N ′). By hypoth-
esis, ps 6= qs so there exists φ(x̄) over A such that (without
loss of generality) φ(x̄) ∈ p but ¬φ(x̄) ∈ q. Let A0 := dom(φ),
x̄0 := FV(φ) (note that A0 and x̄0 have size strictly less than
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κ). Let b̄0, b̄′0 be the corresponding subsequences of b̄ and b̄′ re-
spectively. Let p0 := gtp(b̄0/A0;N), q0 := gtp(b̄′0/A0;N ′). Then
it is straightforward to check that φ ∈ ps0, ¬φ ∈ qs0, so ps0 6= qs0
and hence (by Lemma 3.12) p0 6= q0. Thus A0 and I witness
tameness and shortness respectively.

�

Remark 3.17. The proof shows that (2) implies (1) is valid when K̂
is any functorial expansion of K.

Corollary 3.18. Assume K̂ is the (< κ)-Galois Morleyization of K.

(1) K is fully (< κ)-tame and short if and only if for any M ∈ K
the map p 7→ ps from gS<∞(M) to S<∞qf-Lκ,κ(τ̂)(M) is a bijection13.

(2) K is (< κ)-tame if and only if for any M ∈ K the map p 7→ ps

from gS(M) to Sqf-Lκ,κ(τ̂)(M) is a bijection.

Proof. By Theorem 3.16 applied to Γ :=
⋃
M∈K gS<∞(M) and Γ :=⋃

M∈K gS(M) respectively. �

Remark 3.19. For M ∈ K, p, q ∈ gS(M), say pE<κq if and only if
p � A0 = q � A0 for all A0 ⊆ |M | with |A0| < κ. Of course, if K is
(< κ)-tame, then E<κ is just equality. More generally, the proof of

Theorem 3.16 shows that if K̂ is the (< κ)-Galois Morleyization of K,
then pE<κq if and only if ps = qs. Thus in that case quantifier-free
syntactic types in the Morleyization can be seen as E<κ-equivalence
classes of Galois types. Note that E<κ appears in the work of Shelah,
see for example [She99, Definition 1.8].

4. Order properties and stability spectrum

In this section, we start applying the semantic-syntactic correspondence
(Theorem 3.16) to prove new structural results about AECs. In the
introduction, we described a three-step general method to prove a result
about AECs using syntactic methods. In the proof of Theorem 4.13,
Corollary 4.11 gives the first step, Theorem 3.16 gives the second, while
Facts 4.5 (AECs have a Hanf number for the order property) and 2.24
(In tame AECs with amalgamation, stability behaves reasonably well)
are keys for the third step.

Throughout this section, we work with the (< κ)-Galois Morleyization
of a fixed AEC K:

13We have set S<∞qf-Lκ,κ(τ̂)(M) :=
⋃
N≥M S<∞qf-Lκ,κ(τ̂)(M ; N̂). Similarly define

Sqf-Lκ,κ(τ̂)(M).



INFINITARY STABILITY THEORY 19

Hypothesis 4.1.

(1) K is an abstract elementary class.
(2) κ is an infinite cardinal.

(3) K̂ is the (< κ)-Galois Morleyization of K (recall Definition 3.3).

Set τ̂ := τ(K̂).

4.1. Several order properties. The next definition is a natural syn-
tactic extension of the first-order order property. A related definition
appears already in [She72] and has been well studied (see for example
[GS86, GS]).

Definition 4.2 (Syntactic order property). Let α and µ be cardinals

with α < κ. A model M̂ ∈ K̂ has the syntactic α-order property of

length µ if there exists 〈āi : i < µ〉 inside M̂ with `(āi) = α for all i < µ
and a quantifier-free Lκ,κ(τ̂)-formula φ(x̄, ȳ) such that for all i, j < µ,

M̂ |= φ[āi, āj] if and only if i < j.

Let β ≤ κ be a cardinal. M̂ has the syntactic (< β)-order property of
length µ if it has the syntactic α-order property of length µ for some

α < β. M̂ has the syntactic order property of length µ if it has the
syntactic (< κ)-order property of length µ.

K̂ has the syntactic α-order of length µ if some M̂ ∈ K̂ has it. K̂ has
the syntactic order property if it has the syntactic order property for
every length.

We emphasize that the syntactic order property is always considered in-

side the Galois Morleyization K̂ and must be witnessed by a quantifier-
free formula. Also, since any such formula has fewer than κ free vari-
ables, nothing would be gained by defining the (α)-syntactic order prop-
erty for α ≥ κ. Thus we talk of the syntactic order property instead of
the (< κ)-syntactic order property.

Arguably the most natural semantic definition of the order property
in AECs appears in [She99, Definition 4.3]. For simplicity, we have
removed one parameter from the definition.

Definition 4.3. Let α and µ be cardinals. A model M ∈ K has the
Galois α-order property of length µ if there exists 〈āi : i < µ〉 inside
M with `(āi) = α for all i < µ, such that for any i0 < j0 < µ and
i1 < j1 < µ, gtp(āi0 āj0/∅;N) 6= gtp(āj1 āi1/∅;N).

We usually drop the “Galois” and define variations such as “K has the
α-order property” as in Definition 4.2.
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Notice that the definition of the Galois α-order property is more general
than that of the syntactic α-order property, since α is not required to
be less than κ. However the next result shows that the two properties
are equivalent when α < κ. Notice that this does not use any tameness.

Proposition 4.4. Let α, µ, and λ be cardinals with α < κ. Let
N ∈ K.

(1) If N̂ has the syntactic α-order property of length µ, then N has
the α-order property of length µ.

(2) Conversely, let χ := |gSα+α(∅)|, and assume that µ ≥
(
2λ+χ

)+
.

If N has the α-order property of length µ, then N̂ has the
syntactic α-order property of length λ.

In particular, K has the α-order property if and only if K̂ has the
syntactic α-order property.

Proof.

(1) This is a straightforward consequence of Proposition 3.1114.
(2) Let 〈āi : i < µ〉 witness that N has the Galois α-order property

of length µ. By the Erdős-Rado theorem used on the coloring
(i < j) 7→ gtp(āiāj/∅;N), we get that (without loss of general-
ity), 〈āi : i < λ〉 is such that whenever i < j, gtp(āiāj/∅;N) =
p ∈ gSα+α(∅). But then (since by assumption gtp(āiāj/∅;N) 6=
gtp(āj āi/∅;N)), φ(x̄, ȳ) := Rp(x̄, ȳ) witnesses that N̂ has the
syntactic α-order property of length λ.

�

We will see later (Theorem 4.13) that assuming some tameness, even
when α ≥ κ, the α-order property implies the syntactic order property.

In the next section, we heavily use the assumption of no syntactic order
property of length κ. We now look at how that assumption compares
to the order property (of arbitrary long length). Note that Proposition
4.4 already tells us that the (< κ)-order property implies the syntactic
order property of length κ. To get an equivalence, we will assume κ is
a fixed point of the Beth function. The key is:

Fact 4.5. Let α be a cardinal. If K has the α-order property of length
µ for all µ < h(α + LS(K)), then K has the α-order property.

14We are using that everything in sight is quantifier-free. Note that this part

works for any functorial expansion K̂ of K.
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Proof. By the same proof as [She99, Claim 4.5.3]. �

Corollary 4.6. Assume iκ = κ > LS(K). Then K̂ has the syntactic
order property of length κ if and only if K has the (< κ)-order property.

Proof. If K̂ has the syntactic order property of length κ, then for some

α < κ, K̂ has the syntactic α-order property of length κ, and thus
by Proposition 4.4 the α-order property of length κ. Since κ = iκ,
h(|α|+ LS(K)) < κ, so by Fact 4.5, K has the α-order property.

Conversely, if K has the (< κ)-order property, Proposition 4.4 implies

that K̂ has the syntactic order property, so in particular the syntactic
order property of length κ. �

For completeness, we also discuss the following semantic variation of
the syntactic order property of length κ that appears in [BG, Definition
4.2] (but is adapted from a previous definition of Shelah, see there for
more background):

Definition 4.7. For κ > LS(K), K has the weak κ-order property if
there are M ∈ K<κ, N ≥ M , types p 6= q ∈ gS<κ(M), and sequences
〈āi : i < κ〉, 〈b̄i : i < κ〉 from N so that for all i, j < κ:

(1) i ≤ j implies gtp(āib̄j/M ;N) = p.
(2) i > j implies gtp(āib̄j/M ;N) = q.

Lemma 4.8. Let κ > LS(K).

(1) If K has the (< κ)-order property, then K has the weak κ-order
property.

(2) If K has the weak κ-order property, then K̂ has the syntactic
order property of length κ.

In particular, if κ = iκ, then the weak κ-order property, the (< κ)-
order property of length κ, and the (< κ)-order property are equivalent.

Proof.

(1) Assume K has the (< κ)-order property. To see the weak order
property, let α < κ be such that K has the α-order property.
Fix an N ∈ K such that N has a long-enough α-order property.
Pick any M ∈ K<κ with M ≤ N . By using the Erdős-Rado
theorem twice, we can assume we are given 〈c̄i : i < κ〉 such that
whenever i < j < κ, gtp(c̄ic̄j/M ;N) = p, and gtp(c̄j c̄i/M ;N) =
q, for some p 6= q ∈ gS(M).
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For l < κ, let jl := 2l, and kl := 2l + 1. Then jl, kl < κ, and
l ≤ l′ implies jl < kl′ , whereas l > l′ implies jl > kl′ . Thus the
sequences defined by āl := c̄jl , b̄l := c̄kl are as required.

(2) AssumeK has the weak κ-order property and letM,N, p, q, 〈āi :
i < κ〉, 〈b̄i : i < κ〉 witness it. For i < κ, Let c̄i := āib̄i and
φ(x̄1x̄2; ȳ1ȳ2) := Rp(ȳ1, x̄2). This witnesses the syntactic order

property of length κ in K̂.

The last sentence follows from Proposition 4.4 and Corollary 4.6. �

4.2. Order property and stability. We now want to relate stabil-
ity in terms of the number of types (see Definition 2.23) to the order
property and use this to find many stability cardinals.

Note that stability in K (in terms of Galois types, see Definition 2.23)

coincides with syntactic stability in K̂ given enough tameness and
shortness (see Theorem 3.16). In general, they could be different, but
by Proposition 3.11, stability always implies syntactic stability (and so
syntactic unstability implies unstability). This contrasts with the situ-
ation with the order properties, where the syntactic and regular order
property are equivalent without tameness (see Proposition 4.4).

The basic relationship between the order property and stability is given
by:

Fact 4.9. If K has the α-order property and µ ≥ |α| + LS(K), then

K is not α-stable in µ. If in addition α < κ, then K̂ is not even
syntactically α-stable in µ.

Proof. [She99, Claim 4.8.2] is the first sentence. The proof (see [BGKV,
Fact 5.13]) generalizes (using the syntactic order property) to get the
second sentence. �

This shows that the order property implies unstability and we now work
towards a syntactic converse. The key is [She09b, Theorem V.A.1.19],
which shows that if a model does not have the (syntactic) order prop-
erty of a certain length, then it is (syntactically) stable in certain car-
dinals. Here, syntactic refers to Shelah’s very general context, where
any subset ∆ of formulas from any abstract logic is allowed. Shelah
assumes that the vocabulary is finitary but the proof goes through
just as well with an infinitary vocabulary (the proof only deals with
formulas, which are allowed to be infinitary). Thus specializing the
result to the context of this paper (working with the logic Lκ,κ(τ̂) and
∆ = qf-Lκ,κ(τ̂)), we obtain:
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Fact 4.10. Let N̂ ∈ K̂. Let α < κ. Let χ ≥ (|τ̂ |+ 2)<κ be a cardinal.

If N̂ does not have the syntactic order property of length χ+, then

whenever λ = λχ + i2(χ), N̂ is (syntactically) (< κ)-stable in λ.

The next corollary does not need any amalgamation or tameness. In-
tuitively, this is because every property involved ends up being checked

inside a single model (for example, K̂ syntactically stable in some cardi-
nal means that all of its models are syntactically stable in the cardinal).

Corollary 4.11. The following are equivalent:

(1) For every κ0 < κ and every α < κ, K̂ is syntactically α-stable
in some cardinal greater than or equal to LS(K) + κ0.

(2) K does not have the (< κ)-order property.
(3) There exist15 cardinals µ and λ0 with µ ≤ λ0 < h∗(κ+LS(K)+)

(recall Definition 2.2) such that K̂ is syntactically (< κ)-stable

in any λ ≥ λ0 with λ<µ = λ. In particular, K̂ is syntactically
(< κ)-stable.

Proof. (3) says in particular that K̂ is syntactically (< κ)-stable in a
proper class of cardinals, so it clearly implies (1). (1) implies (2): We
prove the contrapositive. Assume that K has the (< κ)-order property.
In particular, K has the (< κ)-order property of length h(κ+ LS(K)).
By definition, this means that for some α < κ, K has the α-order
property of length h(κ + LS(K)). By Fact 4.5, K has the α-order

property. By Fact 4.9, K̂ is not syntactically α-stable in any cardinal

above LS(K) + |α| (that is, for each λ ≥ LS(K) + |α|, there is N̂ ∈ K̂
such that N̂ is not syntactically α-stable in λ). Thus taking κ0 := |α|,
we get that (1) fails.

Finally (2) implies (3). Assume K does not have the (< κ)-order
property. By the contrapositive of Fact 4.5, for each α < κ, there exists
µα < h(|α|+ LS(K)) ≤ h∗(κ+ LS(K)+) such that K does not have the
α-order property of length µα. Since 2<(κ+LS(K)+) < h∗(κ+LS(K)+), we
can without loss of generality assume that 2<(κ+LS(K)+) ≤ µα for all α <
κ. Let χ := supα<κ µα. Then K does not have the (< κ)-order property
of length χ. Now if κ is a successor (say κ = κ+

0 ), then χ = µκ0 <
h(κ0) ≤ h∗(κ+ LS(K)+). Otherwise h∗(κ+ LS(K)+) = h(κ+ LS(K))
and cf(h(κ + LS(K))) = (2κ+LS(K))+ > κ, so χ < h∗(κ + LS(K)+).
Let µ := χ+ and λ0 := i2(χ). It is easy to check that µ ≤ λ0 <

15The cardinal µ is closely related to the local character cardinal κ̄ for nonsplit-
ting. See for example [GV06b, Theorem 4.13].
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h∗(κ+ LS(K)+). Finally, note that by Remark 3.4, |τ̂ | ≤ 2<(κ+LS(K)+),

so χ ≥ (|τ̂ |+ 2)<κ. Now apply Fact 4.10 to each N̂ ∈ K̂ (note that by
definition of λ0, if λ = λχ ≥ λ0, then λ = λχ + i2(χ)). �

Remark 4.12. Shelah [She, Theorem 3.3] claims (without proof) a
version of (1) implies (3).

Assuming (< κ)-tameness for types of length less than κ, we can of
course convert the above result to a statement about Galois types. To
replace “(< κ)-stable” by just “stable” (recall that this means stable
for types of length one) and also get away with only tameness for types
of length one, we will use amalgamation together with Fact 2.24.

Theorem 4.13. Assume K has amalgamation and is (< κ)-tame. The
following are equivalent:

(1) K is stable in some cardinal greater than or equal to LS(K)+κ−

(recall Definition 2.1).
(2) K does not have the order property.
(3) K does not have the (< κ)-order property.
(4) There exist cardinals µ and λ0 with µ ≤ λ0 < h∗(κ+ LS(K)+)

(recall Definition 2.2) such that K is stable in any λ ≥ λ0 with
λ<µ = λ.

In particular, K is stable if and only if K does not have the order
property.

Proof. Clearly, (4) implies (1) and (2) implies (3). (1) implies (2): If
K has the α-order property, then by Fact 4.9 it cannot be α-stable in
any cardinal above LS(K) + |α|. By Fact 2.24.(3), K is not stable in
any cardinal greater than or equal to κ−+ LS(K), so (1) fails. Finally,
(3) implies (4) by combining Corollary 4.11 and Corollary 3.18. �

Proof of Theorem 0.2. Set κ := LS(K)+ in Theorem 4.13. Note that
in that case κ− = LS(K) (Definition 2.1) and h∗(κ + LS(K)+) =
h∗(LS(K)+) = h(LS(K)) by Definition 2.2. �

5. Coheir

We look at the natural generalization of coheir (introduced in [LP79]
for first-order logic) to the context of this paper. A definition of coheir
for classes of models of an Lκ,ω theory was first introduced in [MS90]
and later adapted to general AECs in [BG]. We give a slightly more
conceptual definition here and show that coheir has several of the basic
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properties of forking in a stable first-order theory. This improves on
[BG] which assumed that coheir had the extension property.

Hypothesis 5.1.

(1) K0 is an AEC with amalgamation.
(2) κ > LS(K0) is a fixed cardinal.

(3) K := (K0)
κ-sat

is the class of κ-saturated models of K0.

(4) K̂ is the (< κ)-Galois Morleyization of K. Set τ̂ := τ(K̂).

The reader can see K̂ as the class in which coheir is computed syntac-
tically, while K is the class in which it is used semantically.

For the sake of generality, we do not assume stability or tameness yet.
We will do so in parts (2) and (3) of Theorem 5.15, the main theorem
of this section. After the proof of Theorem 5.15, we give a proof of
Theorem 0.3 in the abstract.

Note that by Remark 2.26, K is a κr-AEC (see Definition 2.13). More-
over by saturation the ordering has some elementarity. More precisely,
let Σ1(Lκ,κ(τ̂)) denote the set of Lκ,κ(τ̂)-formulas of the form ∃x̄ψ(x̄; ȳ),
where ψ is quantifier-free. We then have:

Proposition 5.2. If M,N ∈ K and M ≤ N , then M̂ �Σ1(Lκ,κ(τ̂)) N̂ .

Proof. Assume that N̂ |= ∃x̄ψ(x̄; ā), where ā ∈ <κ|M | and ψ is a
quantifier-free Lκ,κ(τ̂)-formula. Let A be the range of ā. Let b̄ ∈ <κ|N |
be such that N̂ |= ψ[b̄, ā]. Since M is κ-saturated, there exists b̄′ ∈
<κ|M | such that gtp(b̄′/A;M) = gtp(b̄/A;N). Now it is easy to check

using Proposition 3.12 that M̂ |= ψ[b̄′; ā]. �

Also note that if κ is suitably chosen and K0 is stable, then we have a

strong failure of the order property in K̂:

Proposition 5.3. If κ = iκ and K0 is stable (in unboundedly many

cardinals, see Definition 2.23), then K̂ does not have the syntactic order
property of length κ.

Proof. By Fact 2.24, K0 is (< κ)-stable in unboundedly many cardinals.
By Fact 4.9, K0 does not have the (< κ)-order property.

Let K̂0 be the (< κ)-Galois Morleyization of K0. By Corollary 4.6, K̂0

does not have the syntactic order property of length κ.

Now note that Galois types are the same in K and K0: for N ∈ K,
A ⊆ |N |, and b̄, b̄′ ∈ <∞|N |, gtpK0(b̄/A;N) = gtpK0(b̄′/A;N) if and
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only if gtpK(b̄/A;N) = gtpK(b̄′/A;N)16. To see this, use amalgamation
together with the fact that every model in K0 can be ≤-extended to a
model in K.

It follows that K̂ ⊆ K̂0. By definition of the syntactic order property,

this means that also K̂ does not have the syntactic order property of
length κ, as desired. �

Definition 5.4. Let N̂ ∈ K̂, A ⊆ |N̂ |, and p be a set of formulas (in

some logic) over N̂ .

(1) p is a (< κ)-heir over A if for any formula φ(x̄; b̄) ∈ p over A,
there exists ā ∈ <κA such that φ(x̄; ā) ∈ p � A.

(2) p is a (< κ)-coheir over A in N̂ if for any φ(x̄) ∈ p there exists

ā ∈ <κA such that N̂ |= φ[ā]. When N̂ is clear from context,
we drop it.

Remark 5.5. Here, κ is fixed (Hypothesis 5.1), so we will just remove
it from the notation and simply say that p is a (co)heir over A.

Remark 5.6. In this section, p will be tpqf-Lκ,κ(τ̂)(c̄/B; N̂) for a fixed

B such that A ⊆ B ⊆ |N̂ |.

Remark 5.7. Working in N̂ ∈ K̂, let c̄ be a permutation of c̄′, and

A,B be sets. Then tpqf-Lκ,κ(τ̂)(c̄/B; N̂) is a coheir over A if and only

if tpqf-Lκ,κ(τ̂)(c̄
′/B; N̂) is a coheir over A. Similarly for heir. Thus we

can talk about tpqf-Lκ,κ(τ̂)(C/B; N̂) being a heir/coheir over A without
worrying about the enumeration of C.

We will mostly look at coheir, but the next proposition tells us how to
express one in terms of the other.

Proposition 5.8. tpqf-Lκ,κ(τ̂)(ā/Ab̄; N̂) is a heir over A if and only if

tpqf-Lκ,κ(τ̂)(b̄/Aā; N̂) is a coheir over A.

Proof. Straightforward. �

It is convenient to see coheir as an independence relation:

16Recall that gtpK denotes Galois types as computed in K and gtpK0 Galois
types computed in K0 (see Definition 2.16).
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Notation 5.9. WriteA
N

^
M
B ifM,N ∈ K, M ≤ N , and tpqf-Lκ,κ(τ̂)(A/|M |∪

B; N̂) is a coheir over |M | in N̂ . We also say17 that gtp(A/B;N) is a
coheir over M .

Remark 5.10. The definition of ^ depends on κ but we hide this
detail.

Interestingly, Definition 5.4 is equivalent to the semantic definition of
Boney and Grossberg [BG, Definition 3.2]:

Proposition 5.11. Let N ∈ K. Then p ∈ gS<∞(B;N) is a coheir
over M ≤ N if and only if for any I ⊆ `(p) and any B0 ⊆ B, if
|I0|+ |B0| < κ, pI � B0 is realized in M .

Proof. Straightforward �

For completeness, we show that the definition of heir also agrees with
the semantic definition of Boney and Grossberg [BG, Definition 6.1].

Proposition 5.12. Let M0 ≤M ≤ N be in K, ā ∈ <∞|N̂ |.

Then tpqf-Lκ,κ(τ̂)(ā/M ; N̂) is a heir over M0 if and only if for all (< κ)-

sized I ⊆ `(ā) and (< κ)-sized M−
0 ≤ M0, M−

0 ≤ M− ≤ M (where
we also allow M−

0 to be empty), there is f : M− −−→
M−0

M0 such that

gtp(ā/M ;N) extends f(gtp((ā � I)/M−;N)).

Proof. Assume first tpqf-Lκ,κ(τ̂)(ā/M ; N̂) is a heir over M0 and let I ⊆
`(ā), M−

0 ≤ M− ≤ M be (< κ)-sized, with M−
0 possibly empty. Let

p := gtp((ā � I)/M−;N). Let b̄0 be an enumeration of M−
0 and let b̄ be

an enumeration of |M−|\|M−
0 |. Let q := gtp((ā � I)b̄0b̄/∅;N). Consider

the formula φ(x̄; b̄; b̄0) := Rq(x̄; b̄; b̄0), where x̄ are the free variables

in tpqf-Lκ,κ(τ̂)(ā/M ; N̂) and we assume for notational simplicity that

the I-indiced variables are picked out by Rq(x̄, b̄, b̄0). Then φ is in

tpqf-Lκ,κ(τ̂)(ā/M ; N̂). By the syntactic definition of heir, there is c̄ ∈
<κ|M0| such that φ(x̄; c̄; b̄0) is in tpqf-Lκ,κ(τ̂)(ā/M0; N̂). By definition of

the (< κ)-Galois Morleyization this means that gtp((ā � I)b̄b̄0/∅;N) =
gtp((ā � I)c̄b̄0/∅;N).

By definition of Galois types and amalgamation (see Fact 2.17), there
exists N ′ ≥ N and g : N → N ′ such that g((ā � I)b̄b̄0) = (ā � I)c̄b̄0.
Let f := g � M−. Then from the definitions of b̄0, b̄, and c̄, we have

17It is easy to check this does not depend on the choice of representatives.
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that f : M− −−→
M−0

M0. Moreover, f(gtp((ā � I)/M−;N)) = gtp(ā �

I/f [M−];N), which is clearly extended by gtp(ā/M ;N).

The converse is similar. �

Remark 5.13. The notational difficulties encountered in the above
proof and the complexity of the semantic definition of heir show the
convenience of using a syntactic notation rather than working purely
semantically.

We now investigate the properties of coheir. For the convenience of the
reader, we explicitly prove the uniqueness property (we have to slightly
adapt the proof of (U) from [MS90, Proposition 4.8]). For the others,
they are either straightforward or we can just quote.

Lemma 5.14. Let M,N,N ′ ∈ K with M ≤ N , M ≤ N ′. Assume M̂
does not have the syntactic order property of length κ. Let ā ∈ <∞|N |,
ā′ ∈ <∞|N ′|, b̄ ∈ <∞|M | be given such that:

(1) tpqf-Lκ,κ(τ̂)(ā/M ; N̂) = tpqf-Lκ,κ(τ̂)(ā
′/M ; N̂ ′)

(2) tpqf-Lκ,κ(τ̂)(ā/Mb̄; N̂) is a coheir over M .

(3) tpqf-Lκ,κ(τ̂)(b̄/Mā′; N̂ ′) is a coheir over M .

Then tpqf-Lκ,κ(τ̂)(ā/Mb̄; N̂) = tpqf-Lκ,κ(τ̂)(ā
′/Mb̄; N̂ ′).

Proof. We suppose not and prove that M̂ has the syntactic order prop-

erty of length κ. Assume that tpqf-Lκ,κ(τ̂)(ā/Mb̄; N̂) 6= tpqf-Lκ,κ(τ̂)(ā
′/Mb̄; N̂ ′)

and pick φ(x̄, ȳ) a formula over M witnessing it:

(1) N̂ |= φ[ā; b̄] but N̂ ′ |= ¬φ[ā′; b̄]

(note that we can assume without loss of generality that `(ā) + `(b̄) <
κ).

Define by induction on i < κ āi, b̄i in M such that for all i, j < κ:

(1) M̂ |= φ[āi, b̄].

(2) M̂ |= φ[āi, b̄j] if and only if i ≤ j.

(3) N̂ |= ¬φ[ā, b̄i].

Note that since b̄i ∈ <κ|M |, (3) is equivalent to N̂ ′ |= ¬φ[ā′, b̄i].
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This is enough: Then χ(x̄1, ȳ1, x̄2, ȳ2) := φ(x̄1, ȳ2) ∧ x̄1ȳ1 6= x̄2ȳ2 to-

gether with the sequence 〈āib̄i : i < κ〉 witness the syntactic order
property of length κ.

This is possible: Suppose that āj, b̄j have been defined for all j < i.
Note that by the induction hypothesis and (1) we have:

N̂ |=
∧
j<i

φ[āj, b̄] ∧
∧
j<i

¬φ[ā, b̄j] ∧ φ[ā, b̄]

Since tpqf-Lκ,κ(τ̂)(ā/Ab̄; N̂) is a coheir over M , there is ā′′ ∈ <κ|M | such
that:

N̂ |=
∧
j<i

φ[āj, b̄] ∧
∧
j<i

¬φ[ā′′, b̄j] ∧ φ[ā′′, b̄]

Note that all the data in the equation above is in M , so as M ≤ N ,

the monotonicity axiom of functorial expansions implies M̂ ⊆ N̂ , so M̂

also models the above. By monotonicity again, N̂ ′ models the above.

We also know that N̂ ′ |= ¬φ[ā′, b̄]. Thus we have:

N̂ ′ |=
∧
j<i

φ[āj, b̄] ∧
∧
j<i

¬φ[ā′′, b̄j] ∧ φ[ā′′, b̄] ∧ ¬φ[ā′, b̄]

Since tpqf-Lκ,κ(τ̂)(b̄/Mā′; N̂) is a coheir over M , there is b̄′′ ∈ <κ|M | such
that:

N̂ ′ |=
∧
j<i

φ[āj, b̄
′′] ∧

∧
j<i

¬φ[ā′′, b̄j] ∧ φ[ā′′, b̄′′] ∧ ¬φ[ā′, b̄′′]

Let āi := ā′′, b̄i := b̄′′. It is easy to check that this works. �

Theorem 5.15 (Properties of coheir).

(1) (a) Invariance: If f : N ∼= N ′ and A
N

^
M
B, then f [A]

N ′

^
f [M ]

f [B].

(b) Monotonicity: If A
N

^
M
B and M ≤M ′ ≤ N0 ≤ N , A0 ⊆ A,

B0 ⊆ B, |M ′| ⊆ B, A0 ∪B0 ⊆ |N0|, then A0

N0

^
M ′
B0.

(c) Normality: If A
N

^
M
B, then A ∪ |M |

N

^
M
B ∪ |M |.
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(d) Disjointness: If A
N

^
M
B, then A ∩B ⊆ |M |.

(e) Left and right existence: A
N

^
M
M and M

N

^
M
B.

(f) Left and right (< κ)-set-witness: A
N

^
M
B if and only if for

all A0 ⊆ A and B0 ⊆ B of size less than κ, A0

N

^
M
B0.

(g) Strong left transitivity: IfM1

N

^
M0

B andA
N

^
M1

B, thenA
N

^
M0

B.

(2) If K̂ does not have the syntactic order property of length κ,
then18:

(a) Symmetry: A
N

^
M
B if and only if B

N

^
M
A.

(b) Strong right transitivity: IfA
N

^
M0

M1 andA
N

^
M1

B, thenA
N

^
M0

B.

(c) Set local character: For all cardinals α, all p ∈ gSα(M),
there exists M0 ≤ M with ‖M0‖ ≤ µα := (α + 2)<κr such
that p is a coheir over M0.

(d) Syntactic uniqueness: If M0 ≤M ≤ N` for ` = 1, 2, |M0| ⊆
B ⊆ |M |. q` ∈ S<∞qf-Lκ,κ(τ̂)(B; N̂`), q1 � M0 = q2 � M0 and q`

is a coheir over M0 in N̂` for ` = 1, 2, then q1 = q2.

(e) Syntactic stability: For α a cardinal, K̂ is syntactically
α-stable in all λ ≥ LS(K0) such that λµα = λ.

(3) If K̂ does not have the syntactic order property of length κ and
K0 is (< κ)-tame and short for types of length less than α,
then:
(a) Uniqueness: If p, q ∈ gS<α(M) are coheir over M0 ≤ M

and p �M0 = q �M0, then p = q.
(b) Stability: For all β < α, K0 is β-stable in all λ ≥ LS(K0)

such that λµβ = λ.

Proof. Observe that (except for part (3)), one can work in K̂ and prove
the properties there using purely syntactic methods (so amalgamation
is never needed for example). More specifically, (1) is straightforward.
As for (2), symmetry is exactly as in19 [Pil82, Proposition 3.1] (Lemma
5.14 is not needed here), strong right transitivity follows from strong

18Note that (by Proposition 5.3) this holds in particular if κ = iκ and K0 is
stable.

19Note that a proof of symmetry of nonforking from no order property already
appears in [She78], but Pillay’s proof for coheir is the one we use here.
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left transitivity and symmetry, syntactic uniqueness is by symmetry
and Lemma 5.14, and set local character is as in the proof of (B)µ in
[MS90, Proposition 4.8]. Note that the proofs in [MS90] and [Pil82]
use that the ordering has some elementarity. In our case, this is given
by Proposition 5.2.

The proof of stability is as in the first-order case. To get part (3), use
the translation between Galois and syntactic types (Theorem 3.16). �

Proof of Theorem 0.3. If the hypotheses of Theorem 0.3 in the abstract
hold for the AEC K0, then the hypothesis of each parts of Theorem
5.15 hold (see Proposition 5.3). �

Remark 5.16. We can give more localized version of some of the above
results. For example in the statement of the symmetry property it is

enough to assume that M̂ does not have the syntactic order property of
length κ. We could also have been more precise and state the unique-
ness property in terms of being (< κ)-tame and short for {q1, q2}, where
q1, q2 are the two Galois types we are comparing.

Remark 5.17. We can use Theorem 5.15.(2e) to get another proof of
the equivalence between (syntactic) stability and no order property in
AECs.

Remark 5.18. The extension property (given p ∈ gS<∞(M), N ≥M ,
p has an extension to N which is a coheir over M) seems more prob-
lematic. In [BG], Boney and Grossberg simply assumed it (they also
showed that it followed from κ being strongly compact [BG, Theorem
8.2.1]). Here we do not need to assume it but are still unable to prove
it. In [Vas], we prove it assuming a superstability-like hypothesis and
more locality20.
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