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Abstract. Working in the context of µ-abstract elementary classes (µ-AECs)—
or, equivalently, accessible categories with all morphisms monomorphisms—we

examine the two natural notions of size that occur, namely cardinality of un-

derlying sets and internal size. The latter, purely category-theoretic, notion
generalizes e.g. density character in complete metric spaces and cardinality of

orthogonal bases in Hilbert spaces. We consider the relationship between these

notions under mild set-theoretic hypotheses, including weakenings of the singu-
lar cardinal hypothesis. We also establish preliminary results on the existence

and categoricity spectra of µ-AECs, including specific examples showing dra-
matic failures of the eventual categoricity conjecture (with categoricity defined

using cardinality) in µ-AECs.

1. Introduction

There are a number of known connections between accessible categories and ab-
stract model theory. Per [LR17], for example, abstract elementary classes (AECs)
and their metric analogues (mAECs) can be characterized as accessible categories
with directed colimits, with a faithful functor to the category of sets satisfying
certain natural properties. More recently, [BGL+16] develops the notion of a µ-
AEC—a generalization of AECs in which closure under unions of chains is replaced
with closure under µ-directed colimits—and shows that they are, up to equiva-
lence of categories, precisely the accessible categories all of whose morphisms are
monomorphisms. The model-theoretic motivations for this generalization are man-
ifold: for example, the class of µ-saturated models of a given elementary class
need not be an AEC, but is a µ-AEC. The equivalence between µ-AECs and ac-
cessible categories with monomorphisms, moreover, allows the easy application of
model-theoretic methods to accessible categories, and vice versa, and serves as the
foundation in [LRV19] for an emerging set of correspondences between µ-AECs with
natural additional properties (universal µ-AECs, µ-AECs admitting intersections)
and accessible categories with added structure (locally multipresentable categories,
locally polypresentable categories).

The aim of the present paper is to analyze the existence spectrum of a general µ-
AEC K and, to a lesser extent, those satisfying the additional closure conditions
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of the form described above. By the existence spectrum, we mean the class of
cardinals λ such that K contains at least one object of size λ. We will also mention
the categoricity spectrum of K: the class of cardinals λ such that K contains exactly
one object of size λ, up to isomorphism.

At this point it is essential to note that a µ-AEC K comes equipped with two natural
notions of size: first, and most obviously, the cardinality |UM | of the underlying set
UM of an object M , but also the internal size |M |K of M , which is derived from
the purely category-theoretic presentability rank, rK(M), of M . Recall that the
presentability rank of M is the least regular cardinal λ such that for any morphism
f : M → N and any λ-directed system 〈Ni : i ∈ I〉 whose colimit is N , the map
f factors essentially uniquely through some Ni. Assuming that |UM | > LS(K), as
we will throughout the text (even in AECs, the behavior of internal sizes below
LS(K) seems hard to control, see Examples 6.1 or 6.2), if K has directed colimits
([BR12, 4.2]) or if we assume GCH ([BR12, 2.3(5)]) then the presentability rank
of M is always a successor cardinal, say rK(M) = λ+. In this case, we define
|M |K = λ. This notion of internal size matches nicely with the intuitive ones in
familiar categories: if K is an AEC, then |M |K = |UM |, [Lie11, 4.3]; if K is the
category of Hilbert spaces and isometries, |M |K is the size of an orthonormal basis
of M , Example 6.3 below; if K is a mAEC, |M |K = dc(UM), the density character
of the underlying complete metric space of M , [LR17, 3.1]; and so on. The case of
mAECs—which are ℵ1-AECs—is instructive: cardinalities and internal sizes will
usually disagree when the latter is of countable cofinality.

The crux of this article consists of the analysis of the delicate relationship between
these two notions of size, and the differences in the existence and categoricity spec-
tra depending on the particular notion of size that we adopt. Broadly speaking, we
observe that the spectra are much smoother in the case of internal sizes, while gaps
and even meaningful failures of eventual categoricity are easily constructed when
we work instead with simple cardinality of models.

Let us make a bolder statement. In [She], Shelah discusses whether there is a
real model theory for infinitary quantification, i.e. going beyond AECs. We argue
that the answer is positive but we should replace cardinalities of underlying sets
by category-theoretic internal sizes. We note that this shift has already occurred—
naturally, with no input from category theory—in continuous model theory. For
example, the classes of complete metric structures considered in [SU11] satisfy a
Morley-like eventual categoricity result phrased in terms of the notion of internal
size particular to that context, i.e. density character ([SU11, 8.2]).

Going back to the present paper, we consider the following questions concerning
the existence spectrum:

(1) Under what conditions is the presentability rank a successor?
(2) When does a µ-AEC (or, more generally, an accessible category) have an

object in all sufficiently large internal sizes?
(3) Given an object M of a µ-AEC K, when can one give a simple description

of the internal size of M? For example, when does |UM | coincide with
|M |K?
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Regarding the first question, we have already mentioned that the presentability rank
is a successor in any accessible category provided that GCH holds. In this paper,
we weaken the assumption of GCH to SCH (the singular cardinal hypothesis).
Since SCH is known to hold above a strongly compact cardinal [Sol74] (and indeed
above an ω1-strongly compact [BM14]), we obtain from a large cardinal axiom that
any sufficiently large presentability rank is a successor. Interestingly, the strongly
compact cardinals have been used several times before in the classification theory
for AECs [MS90, Bon14, BG17, Vas18] and the study of µ-AECs [BGL+16]. More
generally, we give a category-theoretic condition implying that limit presentability
rank cannot exist (Theorem 3.10). We show that this condition holds (in ZFC)
in any µ-AEC admitting intersections (Corollary 5.5). We do not know of any
examples of an accessible category where sufficiently large presentability ranks are
not successors.

The second question above was originally asked by Beke and the second author
[BR12]. As there, let us call an accessible category K LS-accessible if there is a
cardinal λ such that K has objects of every internal size λ′ ≥ λ. It is open whether a
large accessible category is always LS-accessible. Several conditions suffice to guar-
antee that this holds. For example it is true if the category has products ([BR12,
4.7(2)]) or coproducts ([BR12, 4.7(3)]), and true in any µ-AEC provided it has
directed colimits ([LR16, 2.7]). We show here that, under the assumption of a suit-
able instance of SCH, any µ-AEC admitting intersections and with arbitrarily large
models is LS-accessible (Theorem 5.8). Put another way, under this set-theoretic
assumption any large accessible category with wide pullbacks (i.e. a large locally
polypresentable category) and all morphisms monomorphisms is LS-accessible (see
[LRV19, 5.7]). We show, moreover, that even without assuming any instance of
SCH, such µ-AECs are weakly LS-accessible: they contain an object of internal
size λ for any sufficiently large regular cardinal λ. In fact, we can show this purely
category-theoretically for the locally multipresentable categories (without assuming
that all morphisms are monomorphisms), see Theorem A.2 in the Appendix.

The third question, namely the relationship between internal size and cardinality, is
studied in Section 4. We show there that in a µ-AEC K we have |M |K = |UM | (so in
particular the presentability rank is a successor) whenever λ = |UM | is µ-closed—
θ<µ < λ for all θ < λ—but that the sizes may disagree otherwise. Under GCH (or,
indeed, appropriate instances of SCH), this inequality simplifies drastically, yielding
Theorem 4.13: If λ = |UM | is not λ+

0 with cf(λ0) < µ, then |M |K = |UM |, else
|M |K is either λ0 or λ. In the case of µ-AECs admitting intersections, one can give
an even simpler description of the internal size: it is the minimum cardinality of a
subset A of UM such that M is minimal over A (Theorem 5.7).

In Section 6 we give several examples, primarily concerning the following two gen-
eralizations of Shelah’s eventual categoricity conjecture to µ-AECS given in Section
6 of [BGL+16]:

Question 1.1 (Eventual categoricity, cardinality). If a µ-AEC is categorical in
some sufficiently large cardinal λ with λ = λ<µ, is it categorical in all sufficiently
large λ′ such that λ′ = (λ′)<µ?
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Question 1.2 (Eventual categoricity, internal size). If a µ-AEC is categorical in
internal size λ for some sufficiently large λ, is it categorical in every sufficiently
large internal size?

Shelah’s eventual categoricity conjecture for (ℵ0-)AECs is one of the main open
questions of classification theory for non-elementary classes and it is natural to ask
about broader frameworks than AECs where it may fail. This was the motivation
for the two questions above.

In Section 6.1, we carefully analyze an example of Shelah (see the introduction of
[She]) in the hope of obtaining a counterexample to Question 1.2. The particular
ℵ1-AEC involved consists of the class of well-founded models of Kripke-Platek set
theory isomorphic to (Lα,∈) such that for all β < α, [Lβ ]≤ℵ0 ∩ L ⊆ Lα. This ex-
ample fails to contradict Question 1.2, but in an instructive way: while—assuming
V = L—it is categorical in power in any cardinal of countable cofinality and has
many models in all other powers (see Theorem 6.14), it is nowhere categorical in
the sense of internal sizes (Corollary 6.19). This is because, roughly speaking, some
of the abundance of models of cardinality λ+ with cf(λ) = ℵ0 drop down to internal
size λ—a concrete illustration of the pathology captured in Theorem 4.13, and a
suggestion of the smoothing effect that comes with the passage to internal sizes.
This example doubles, incidentally, as an example of the drastic extent to which
the spectrum for categoricity in power of a µ-AEC may depend on the ambient set
theory, e.g. on the existence or nonexistence of 0].

Note that this example does not contradict Question 1.1 either, as categoricity
occurs only in cardinals of countable cofinality. We can, however, give a very simple
and mathematically natural counterexample to Question 1.1, namely the ℵ1-AEC K
of Hilbert spaces and isometries (Example 6.3). Here the internal sizes correspond,
as mentioned above, to the cardinality of orthonormal bases, meaning that K is
everywhere categorical in the sense of internal sizes. In terms of cardinalities,
though, K has (assuming GCH for simplicity) exactly two models of cardinality λ+

for each λ with cf(λ) = ℵ0—one of internal size λ and one of internal size λ+—
with exactly one model of cardinality λ for all other λ of uncountable cofinality.
There is, perhaps, a broader lesson to be drawn: the case of Hilbert spaces strongly
suggests that the formulation of eventual categoricity in terms of internal size is, in
a sense, the more mathematically honest : it is a mere quirk of fate that, depending
on our ambient set theory, there may be literally as many models as we like of a
particular cardinal of uncountable cofinality (GCH limits this number to two), but
the essential character of each such model is determined by its internal size, i.e. the
size of its basis, which can be pinned down in ZFC.

We assume a knowledge of the basic concepts related to accessible categories and
µ-AECs (we still briefly give the relevant background definitions at the beginning
of each section). Comprehensive accounts of the former can be found in [AR94] and
[MP89], while the current state of knowledge concerning the latter is summarized
in [BGL+16] and [LRV19].

We thank Will Boney, Rami Grossberg, and the referee, for comments that helped
improve this paper.
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2. Set-theoretic preliminaries

For an infinite cardinal λ, let λr denote the least regular cardinal greater than or
equal to λ. That is, λr is λ+ if λ is singular or λ otherwise. We also define:

Definition 2.1.

λ∗ :=

{
λ+ if λ is a successor cardinal

λ if λ is a limit cardinal

The notion of a µ-closed cardinal will be used often:

Definition 2.2. Let µ ≤ λ be infinite cardinals.

(1) We say that λ is µ-closed if θ<µ < λ for all θ < λ.
(2) We say that λ is almost µ-closed if θ<µ ≤ λ for all θ < λ.
(3) For S a class of infinite cardinals greater than or equal to µ, we write

SCHµ,S for the statement “every λ ∈ S is almost µ-closed”. SCHµ,≥λ has
the obvious meaning.

(4) We write SCHµ,λ for the statement “There exists a set S ⊆ λ of cardinals
that is unbounded in λ and such that SCHµ,S holds”.

Remark 2.3. Assuming the generalized continuum hypothesis (GCH), an infinite
cardinal λ is µ-closed (for µ regular) if and only if λ ≥ µ and λ is not the successor of
a cardinal of cofinality less than µ. Therefore in this case all cardinals greater than
or equal to µ = 2<µ are almost µ-closed. In fact the singular cardinal hypothesis1 is
equivalent to SCHµ,≥2<µ for all regular cardinals µ: see [Jec03, 5.22] and Lemma 2.6
below. Further if κ is a strongly compact cardinal, then by a result of Solovay [Jec03,
20.8], SCHµ,≥(2<µ+κ) holds for all regular cardinals µ. In fact, this holds even if
κ is only ω1-strongly compact [BM14, 4.2]. However, it is consistent (assuming a
large cardinal axiom) that there is no θ so that SCHℵ1,≥θ, see [FW91]. In fact, for
a fixed sufficiently high λ, even the failure of SCHℵ1,λ is consistent [GM92, 1.13].

The following ordering between cardinals is introduced in [MP89, 2.3.1]. The reason
for its appearance is that for µ ≤ λ regular, µ E λ if and only if any µ-accessible
category is also λ-accessible.

Definition 2.4. Let µ ≤ λ be regular cardinals. We write µ / λ if µ < λ and for
any θ < λ, cf([θ]<µ,⊆) < λ. Here, [θ]<µ denotes the set of all subsets of θ of size
less than µ. Write µ E λ if µ = λ or µ / λ.

We will use the following characterization of E. One direction appears in [MP89,
2.3.4] and the other in [LR17, 4.11]. We sketch a short proof here for the convenience
of the reader.

Fact 2.5. Let µ < λ be regular cardinals. If λ is µ-closed, then µ / λ. Conversely,
if λ > 2<µ and µ / λ then λ is µ-closed.

Proof. It is well-known that for µ ≤ θ with µ regular, we have the following identity,
from which the result follows easily:

1That is, for every infinite singular cardinal λ, λcf(λ) = 2cf(λ) + λ+.
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θ<µ = cf([θ]<µ,⊆) · 2<µ

To see the identity, first observe that cf([θ]<µ,⊆) · 2<µ ≤ θ<µ · 2<µ = θ<µ. Con-
versely, fix a cofinal family F ⊆ [θ]<µ of cardinality cf([θ]<µ,⊆) and build an
injection f : [θ]<µ → F × <µ2 (where <µ2 is the set of functions from an ordi-
nal α < µ to 2 = {0, 1}) as follows: given S ∈ [θ]<µ, pick F = FS ∈ F such
that S ⊆ F and enumerate F in increasing order as 〈αi : i < otp(F )〉. Then let
ηS,F : otp(F ) → 2 be defined by ηS,F (i) = 1 if αi ∈ S and ηS,F (i) = 0 otherwise.
Set f(S) = (FS , ηS,F ). It is clear that from FS and ηS,F one can recover S, hence
f is indeed and injection witnessing that θ<µ ≤ cf([θ]<µ,⊆) · 2<µ. �

We end this section with some easy lemmas on computing cardinal exponentiation
assuming instances of SCH.

Lemma 2.6. Let µ ≤ λ be cardinals with µ regular.

(1) If cf(λ) ≥ µ, then λ<µ is the least almost µ-closed λ′ ≥ λ.
(2) If cf(λ) < µ, then λ<µ is the least almost µ-closed λ′ > λ.

In particular, if SCHµ,{λ,λ+}, then

λ<µ =

{
λ if cf(λ) ≥ µ
λ+ if cf(λ) < µ

Proof.

(1) Given that cf(λ) ≥ µ, it is easy to check that λ<µ = supθ<λ θ
<µ. If λ is

almost µ-closed then it follows that λ = λ<µ. If λ is not almost µ-closed,
there exists θ < λ such that λ < θ<µ. Since (θ<µ)

<µ
= θ<µ, it is easy

to check that θ<µ must be the least almost µ-closed cardinal above λ and
moreover λ<µ = θ<µ.

(2) Check that λ<µ is almost µ-closed.

�

Lemma 2.7. Let µ ≤ λ be cardinals with µ regular. The following are equivalent:

(1) λ is µ-closed.
(2) SCHµ,λ and λ is not the successor of a cardinal of cofinality less than µ.

Proof. If λ is µ-closed, then (in ZFC), λ cannot be the successor of a cardinal of
cofinality less than µ. Moreover, given θ < λ, then θ<µ < λ and θ<µ is almost
µ-closed. Therefore SCHµ,λ.

Conversely, assume that λ is not the successor of a cardinal of cofinality less than
µ and SCHµ,λ holds. Let θ < λ be arbitrary. If cf(θ) ≥ µ, then by Lemma 2.6 and
the definition of SCHµ,λ, θ<µ < λ. If cf(θ) < µ, then since λ 6= θ+ by assumption
we have that θ+ < λ. Thus again by Lemma 2.6 and SCHµ,λ, θ<µ < λ. Thus λ is
µ-closed, as desired. �
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3. Presentability in accessible categories

For a cardinal µ, a partially ordered set is called µ-directed if each of its subsets of
cardinality strictly less than µ has an upper bound. Note that any non-empty poset
is 2-directed, ℵ0-directed is equivalent to 3-directed, and µ-directed is equivalent to
µr-directed. Thus we will usually assume that µ is a regular cardinal.

For λ a regular cardinal, we call an object M of a category K λ-presentable if
its hom-functor K(M,−) : K → Set preserves λ-directed colimits, i.e. colimits
indexed by λ-directed sets. Put another way, M is λ-presentable if for any morphism
f : M → N with N a λ-directed colimit 〈φα : Nα → N〉 with diagram maps
φβα : Nα → Nβ , f factors essentially uniquely through one of the Nα. That is,
f = φαfα for some fα : M → Nα, and if f = φβfβ as well, there is γ > α, β such
that φγαfα = φγβfβ .

For λ an infinite cardinal, we call an object M of a category K (< λ)-presentable
if it is λ0-presentable for some regular λ0 < λ + ℵ1. Note that, for λ regular,
(< λ+)-presentable is the same as λ-presentable. We will use the following key
parameterized notions:

Definition 3.1. Let K be a category and let µ, λ be infinite cardinals with µ
regular. A (µ,< λ)-system is a µ-directed system consisting of (< λ)-presentable
objects. Similarly, define (µ, λ)-system (for λ regular).

Definition 3.2. Let K be a category and let µ, λ be infinite cardinals with µ
regular. We say an object M of K is (µ,< λ)-resolvable if it is the colimit of a
(µ,< λ)-system. We say that K is (µ,< λ)-resolvable if all its object are (µ,< λ)-
resolvable. Similarly, define (µ, λ)-resolvable (for λ regular).

To investigate presentability, the following notion is useful:

Definition 3.3. A (µ,< λ)-system with colimit M is proper if the identity map on
M does not factor essentially uniquely through an element of the system. That is,
if the system has diagram maps φβα : Mα →Mβ and colimit maps φα : Mα →M ,
then the following does not occur: there exists α and fα : M → Mα such that
idM = φαfα and whenever idM = φβfβ for fβ : M → Mβ , then there is γ > α, β
such that φγαfα = φγβfβ .

We can see when a system is proper by looking at the presentability of its colimit.
This is is well known and goes back to the fact that split subobjects of λ-presentables
are λ-presentable (see for example [AR94, 1.3]). The proof is included for the
convenience of the reader unacquainted with presentability.

Lemma 3.4. Let µ, λ be infinite cardinals with µ regular and let K be a category.
Let M ∈ K be the colimit of some (µ,< λ)-system I. Then:

(1) If I is proper, then M is not µ-presentable.
(2) If M is not (< λ)-presentable, then I is proper.

Proof.

(1) If M is µ-presentable, then since I is µ-directed, idM must factor essentially
uniquely through an element of I, so I is not proper by definition.
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(2) Say I has diagram maps 〈φβα : Mα → Mβ , α, β ∈ I〉 and colimit maps
φα : Mα → M . Assume that I is not proper and let fα : M → Mα be
such that φαfα = idM . By hypothesis, Mα is (< λ)-presentable, hence
λ0-presentable for some regular λ0 < λ + ℵ1. We show that M is λ0-
presentable. Let g : M → N , where N is the directed colimit of a λ0-
directed system with diagram maps ψβα : Nα → Nβ and colimit maps
ψβ : Nβ → N . Since Mα is λ0-presentable, the map gφα must factor
essentially uniquely through some Nβ , i.e. there exists an essentially unique
gβα : Mα → Nβ so that ψβgβα = gφα. Now let gβ := gβαfα. Then
ψβgβ = ψβgβαfα = gφαfα = gidM = g, so g factors through Nβ . Let us
now see that gβ is essentially unique. Suppose that g = ψβ′hβ′ for some
hβ′ : M → Nβ′ . Let hβ′α := hβφα. By essential uniqueness of gβα, we know
that there is γ above both β and β′ such that ψγβgβα = ψγβ′hβ′α. We then
have that ψγβgβ = ψγβgβαfα = ψγβ′hβ′αfα = ψγβ′hβ′φαfα = ψγβ′hβ′ , as
desired.

�

We can give the following bounds on the presentability of the colimit of a (µ,< λ)-
system:

Lemma 3.5. Let µ, λ be cardinals with µ regular. Let K be a category with µ-
directed colimits. Let I be a (µ,< λ)-system with diagram maps φβα : Mα →Mβ ,
α, β ∈ I, and let M be its colimit. Suppose that for α ∈ I, Mα is λα-presentable,
λα < λ+ ℵ1. Then:

(1) If I is proper, then M is not µ-presentable.
(2) M is (|I|+ + supα∈I λα)r-presentable. In particular, M is (|I|+ + λr)-

presentable.
(3) If cf(λ) > |I| and λ is not the successor of a singular cardinal, then M is

(< (|I|++ + λ))-presentable.

Proof. The first part is by Lemma 3.4. For the second part, let λ′ := (|I|+ + supα∈I λα)r.

Pick a λ′-directed system J with objects 〈Nγ : γ ∈ J〉 and with colimit N . Let
g : M → N be a morphism. For each α ∈ I, Mα is λα-presentable, hence λ′-
presentable, g factors essentially uniquely through some Nγα . Let γ be an upper
bound to all the γα’s (exists since |I| < λ′ and J is λ′-directed). Then g factors
essentially uniquely through Nγ , as desired.

The third part follows directly from the second. �

Using the terminology above, a λ-accessible category is a category which has λ-
directed colimits, is (λ, λ)-resolvable, and has a set of λ-presentable objects, up to
isomorphism. We will consider the following parameterized generalization:

Definition 3.6. Let κ ≤ µ ≤ λ be cardinals with κ and µ regular. A category K
is (κ, µ,< λ)-accessible if:

(1) It has κ-directed colimits.
(2) It is (µ,< λ)-resolvable.
(3) It has only a set (up to isomorphism) of (< λ)-presentable objects.
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Define (κ, µ, λ)-accessible similarly. We say that K is (µ,< λ)-accessible if it is
(µ, µ,< λ)-accessible. As noted above, a category K is µ-accessible just in case it
is (µ,< µ+)-accessible. We say that K is accessible if it is µ-accessible for some
regular cardinal µ.

Remark 3.7. Assume that K is (κ, µ,< λ)-accessible. We have the following
monotonicity properties:

(1) If κ′ ∈ [κ, µ] is regular, then K is (κ′, µ,< λ)-accessible.
(2) If µ′ ∈ [κ, µ] is regular, then K is (κ, µ′, < λ)-accessible.
(3) If λ′ ≥ λ, then K is (κ, µ,< λ′)-accessible.

The proof of [MP89, 2.3.10] gives the following way of raising the index µ in the
definition of a (κ, µ,< λ)-accessible category. We sketch a proof for the convenience
of the reader:

Fact 3.8. Let κ < µ ≤ λ be cardinals with κ and µ regular and cf(λ) ≥ µ. Let K
be a category with κ-directed colimits. If M ∈ K is (κ,< λ)-resolvable and κ / µ
(see Definition 2.4), then M is the colimit of a µ-directed system where each object
is a κ-directed colimit of strictly less than µ-many (< λ)-presentable objects. In
particular, M is (µ,< (λ+ µ∗))-resolvable (see Definition 2.1).

Proof sketch. Suppose that the (κ,< λ)-system is indexed by I and has colimit
M . Since κ E µ, any subset of I of cardinality strictly less than µ is contained
inside a κ-directed subset of I of cardinality strictly less than µ. Thus the set of all
κ-directed subsets of I of cardinality strictly less than µ is µ-directed. It is easy to
check that it induces the desired (µ,< (λ+ µ∗))-system whose colimit is M . �

Note that this implies in particular that any (κ, µ,< λ)-accessible category is θ-

accessible for some θ (for example, θ =
(

2λ
+
)+

suffices).

By Lemma 3.5, any object of an accessible category is λ-presentable for some regular
cardinal λ. Therefore it makes sense to define:

Definition 3.9. Let K be an accessible category.

(1) For any M ∈ K, the presentability rank of M , denoted rK(M), is the least
regular cardinal λ such that M is λ-presentable.

(2) We denote by |M |K the internal size of M . It is defined by:

|M |K =

{
µ if rK(M) = µ+

rK(M) if rK(M) is limit

The following gives a criteria for when the presentability rank is a successor:

Theorem 3.10. Let λ be a regular cardinal and let K be a (λ,< λ)-accessible
category. If M ∈ K is λ-presentable, then M is (< λ)-presentable.

Proof. Otherwise, M would be (λ,< λ)-resolvable (by definition of accessibility) but
not (< λ)-presentable. Therefore there is a proper (λ,< λ)-system whose colimit is
M by Lemma 3.4. By Lemma 3.5, rK(M) > λ, contradicting λ-presentability. �
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Note that (ℵ0, < ℵ0)-accessible is the same as ℵ0-accessible. In addition, if a cat-
egory is (λ+, < λ+)-accessible then it is quite pathological (for example Theorem
3.10 says that it cannot have an object of presentability rank λ+). Thus we will
use Theorem 3.10 only when λ is weakly inaccessible and uncountable.

Assuming that every weakly inaccessible cardinal is sufficiently closed, we obtain
that the presentability rank is always a successor. This weakens the GCH hypothesis
in [BR12, 2.3(5)] and also shows (Remark 2.3) that sufficiently large presentability
ranks are always successors if there is an ω1-strongly compact cardinal. Note that
we could have obtained the result directly by carefully examining the proof in
[BR12], but Theorem 3.10 is new and can be used even in situations where SCH
does not hold (see Corollary 5.5).

Corollary 3.11. Let K be a (µ,< λ)-accessible category and let θ ≥ λ be weakly
inaccessible. If θ is µ-closed, then the presentability rank of an object in K cannot
be equal to θ.

Proof. By Fact 2.5, µ/θ. Note that K is in particular (µ,< θ)-accessible so by Fact
3.8 also (θ,< θ)-accessible. Now apply Theorem 3.10. �

Note that a weakly inaccessible θ > µ is µ-closed if and only if SCHµ,θ holds (see
Lemma 2.7). This is quite a weak assumption, although its failure is still consistent
(assuming quite large cardinals, see Remark 2.3). Note also that when µ = ℵ0, θ is
always µ-closed so we recover [BR12, 4.2]: sufficiently large presentability ranks are
successors in any accessible category with directed colimits. Indeed, a λ-accessible
category with directed colimits is, in particular, an (ℵ0, < λ+)-accessible category.

We now move to the study of accessible categories whose morphisms are monomor-
phisms. Recall (Fact 4.2) that these are the same as µ-AECs. The following gives
a criteria for when an object of a certain presentability rank exists:

Theorem 3.12. Let µ < λ be cardinals with µ regular, cf(λ) > µ, and λ not the
successor of a singular cardinal. Let K be a category with µ-directed colimits and
all morphisms monomorphisms.

(1) If K has a proper (µ,< λ)-system, then there exists an object M ∈ K such
that µ < rK(M) < λ+ µ++.

(2) If K is (µ,< λ)-accessible and has an object that is not µ-presentable, then
there exists M ∈ K with µ < rK(M) < λ+ µ++.

Proof.

(1) Fix a proper (µ,< λ)-system. Using that all morphisms are monomor-
phisms, one can fix a subsystem of it indexed by a chain of length µ which
is also proper. Now its colimit is as desired by Lemma 3.5.

(2) Pick M ∈ K that is not µ-presentable. By definition of accessibility, M is
(µ,< λ)-resolvable. If M is (< λ)-presentable, we are done so assume that
M is not (< λ)-presentable. By Lemma 3.4, there is a proper (µ,< λ)-
system whose colimit is M . By the previous part, K has an object of
presentability rank strictly between µ and λ+ µ++, as desired.

�
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Note the following special case:

Corollary 3.13. LetK be a (λ, λ+)-accessible category with all morphisms monomor-
phisms. If K has an object that is not λ-presentable, then K has an object of
presentability rank λ+.

Proof. Apply the second part of Theorem 3.12 with (λ, λ++) in place of (µ, λ). �

We deduce that, when all morphisms are monomorphisms and the category is
large, the accessibility spectrum (the set of cardinals λ such that the category is λ-
accessible) is contained in the existence spectrum. In particular, if such a category
is well-accessible (in the sense that its accessibility spectrum is a tail, see [BR12,
2.1]) then it is weakly LS-accessible: it has an object of every regular internal size
(Definition A.1).

Corollary 3.14. A large λ-accessible category all of whose morphisms are monomor-
phisms has an object of internal size λ.

Proof. Immediate from Corollary 3.13. �

We deduce a general result on the existence spectrum of a large accessible category
whose morphisms are monomorphisms.

Corollary 3.15. Let µ ≤ λ both be regular cardinals and let K be a (µ, λ+)-
accessible category with all morphisms monomorphisms. If K has an object that is
not λ-presentable, then there is M ∈ K such that λ ≤ |M |K ≤ λ<µ.

Proof. Let θ := (λ<µ)
+

. Note that θ is µ-closed, so by Fact 2.5, µ/θ. By Fact 3.8 ,
K is (µ, θ, θ)-accessible, hence (λ, θ)-accessible. By the second part of Theorem 3.12
(where (µ, λ) there stands for (λ, θ+) here), there exists M ∈ K with λ < rK(M) <
θ+ + λ++ = θ+. Thus λ ≤ |M |K < θ, i.e. λ ≤ |M |K ≤ λ<µ, as desired. �

We will see later (Corollary 4.15) that the assumption of regularity of λ can be
relaxed assuming SCH.

4. Presentability in µ-AECs

Recall from [BGL+16, §2] that a (µ-ary) abstract class is a pair K = (K,≤K) such
that K is a class of structures is a fixed µ-ary vocabulary τ = τ(K), and ≤K is
a partial order on K that respects isomorphisms and extends the τ -substructure
relation. In any abstract class K, there is a natural notion of morphism: we say
that f : M → N is a K-embedding if f is an isomorphism from f onto f [M ] and
f [M ] ≤K N . We see an abstract class and its K-embeddings as a category (but
we still use boldface, i.e. denote it by K and not K, to emphasize the concreteness
of the category). In fact (see [BGL+16, §2]), an abstract class is a replete and
iso-full subcategory of the category of τ -structures and τ -structure embeddings. It
is moreover a concrete category: we will write UM for the universe of a member
M of K.

We now recall the definition of a µ-AEC from [BGL+16, 2.2]:
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Definition 4.1. Let µ be a regular cardinal. An abstract class K is a µ-abstract
elementary class (or µ-AEC for short) if it satisfies the following three axioms:

(1) Coherence: for any M0,M1,M2 ∈ K, if M0 ⊆M1 ≤K M2 and M0 ≤K M2,
then M0 ≤K M1.

(2) Chain axioms: if 〈Mi : i ∈ I〉 is a µ-directed system in K, then:
(a) M :=

⋃
i∈IMi is in K.

(b) Mi ≤K M for all i ∈ I.
(c) If Mi ≤K N for all i ∈ I, then M ≤K N .

(3) Löwenheim-Skolem-Tarski (LST) axiom: there exists a cardinal λ = λ<µ ≥
|τ(K)|+µ such that for any M ∈ K and any A ⊆ UM , there exists M0 ∈ K
with M0 ≤K M , A ⊆ UM0, and |UM0| ≤ |A|<µ + λ. We write LS(K) for
the least such λ.

Note that when µ = ℵ0, we recover Shelah’s definition of an AEC from [She87].
The connection of µ-AECs to accessible categories is given by [BGL+16, §4]:

Fact 4.2. If K is a µ-AEC, then it is a (µ,LS(K)+)-accessible category whose
morphisms are monomorphisms. Conversely, any µ-accessible category whose mor-
phisms are monomorphisms is equivalent to a µ-AEC.

Thus applying Corollary 3.15, we immediately get that for any µ-AEC K with
arbitrarily large models and any λ ≥ LS(K) regular, there exists M ∈ K with
λ ≤ |M |K ≤ λ<µ. The aim of this section is to investigate the relationship between
internal sizes and cardinalities in µ-AECs. The main result is that assuming GCH,
or weakening of the form described in Definition 2.2, internal size and cardinality
agree on any sufficiently large model whose cardinality is not the successor of a
cardinal of cofinality less than µ. From this we can conclude further results on the
existence spectrum.

First note that the definition of presentability simplifies in µ-AECs:

Lemma 4.3. Let K be a µ-AEC, let λ ≥ µ be a regular cardinal, and let M ∈ K.
Then M is λ-presentable if and only if for any λ-directed system 〈Mi : i ∈ I〉, if
M ≤K

⋃
i∈IMi, then there exists i ∈ I such that M ≤K Mi.

Proof. (⇒) Let M be λ-presentable, and let 〈Mi : i ∈ I〉 be a λ-directed system,
with M ≤K

⋃
i∈IMi. By λ-presentability, there exists i ∈ I such that M ≤K Mi.

(⇐) Say we have M → N , N = colimi∈INi with I λ-directed. Then N is a λ-
directed union of the images of the Ni under the colimit coprojections, and so by
hypothesis, the image of M in N must land in one of them. Coherence does the
rest. �

Toward bounding how big the presentability of an object can be, we look at what
it means for a model to be minimal over a set:

Definition 4.4. Let K be a µ-AEC, let M ∈ K, and let A ⊆ UM . We say that M
is minimal over A if for any M0, N ∈ K, if M ≤K N , M0 ≤K N , and A ⊆ UM0,
then M ≤K M0.
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Lemma 4.5. Let K be a µ-AEC and let λ ≥ µ be a regular cardinal. Let M ∈ K
and let A ⊆ UM be such that M is minimal over A. If |A| < λ, then M is
λ-presentable.

In particular (taking A := UM), if |UM | < λ, then M is λ-presentable.

Proof. We use Lemma 4.3. Let 〈Mi : i ∈ I〉 be a λ-directed system such that
M ≤K

⋃
i∈IMi. Since the system is λ-directed, there exists i ∈ I such that

A ⊆ UMi. By definition of minimality, this means that M ≤K Mi, as desired. �

Remark 4.6. The assumption that λ ≥ µ cannot in general be removed, see
Example 6.1.

Assuming a certain closure condition, we obtain a converse to Lemma 4.5:

Definition 4.7. Let K be a µ-AEC, let λ be a regular cardinal, and let M ∈ K.
M is λ-closed if for any A ⊆ UM of cardinality less than λ there exists M0 ∈ K
with M0 ≤K M of cardinality less than λ and containing A.

Lemma 4.8. Let K be a µ-AEC and let λ ≥ µ be a regular cardinal. If M is
λ-closed and λ-presentable, then |UM | < λ.

Proof. Let S := {M0 ≤K M | |UM0| < λ}. Then S is λ-directed and (because M
is λ-closed), M is the colimit of the system induced by S. Since M is λ-presentable,
there exists M0 ∈ S such that M ≤K M0, hence M has size less than λ. �

Note that if λ is a sufficiently-nice cardinal, then any member of K will be λ-closed:

Lemma 4.9. Let K be a µ-AEC and let λ > LS(K). If λ is µ-closed and λ >
LS(K), then any element of K is λ-closed.

Proof. By the Löwenheim-Skolem-Tarski axiom of µ-AECs. �

By [BGL+16, 4.2], the behavior of |M |K around LS(K) is well-understood. We
give a proof here again for completeness:

Fact 4.10. Let K be a µ-AEC and let M ∈ K. The following are equivalent:

(1) |UM | ≤ LS(K).
(2) M is LS(K)+-presentable.
(3) |M |K ≤ LS(K).

Proof. By definition of internal size, (2) is equivalent to (3). Moreover, Lemma
4.5 says in particular that (1) implies (3). Conversely, assume that M is LS(K)+-
presentable. The axioms of µ-AECs imply that LS(K)<µ = LS(K). Therefore
by Lemma 4.9 (where λ there stands for LS(K)+ here), M is LS(K)+-closed. By
Lemma 4.8, |UM | < LS(K)+. Therefore (2) implies (1). �

We now attempt to compute |M |K when |UM | > LS(K).

Lemma 4.11. Let K be a µ-AEC and let M ∈ K. Let λ := |UM | and assume
that λ > LS(K). Then:

(1) |M |K ≤ λ (note: this also holds when λ+ ∈ [µ,LS(K)+]).
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(2) If λ0 ≤ λ is regular such that M is λ0-closed, then rK(M) > λ0, so in
particular |M |K ≥ λ0.

(3) If λ is µ-closed, then rK(M) = λ+, so |M |K = λ.

Proof.

(1) By Lemma 4.5, M is always λ+-presentable.
(2) We know that M is not LS(K)+-presentable (since we are assuming λ >

LS(K)). Thus we may assume without loss of generality that λ0 > LS(K)+.
By Lemma 4.8, M is not λ0-presentable, hence rK(M) > λ0, so |M |K ≥ λ0.

(3) If λ is regular, then by the previous part used with λ0 = λ, rK(M) ≥ λ+

and this is an equality by the first part. If λ is singular (hence limit), then
by Lemma 4.9 and the previous parts, it suffices to show that there are
unboundedly-many regular cardinals λ0 ≤ λ that are µ-closed. Let θ < λ
and let λ0 := (θ<µ)+. Then λ0 < λ (as λ is µ-closed and limit), λ0 is
regular, and λ0 is µ-closed, as needed.

�

We obtain the following inequality:

Theorem 4.12. Let K be a µ-AEC and let M ∈ K. Then:

|M |K ≤ |UM |+ LS(K) ≤ |M |<µK + LS(K)

Proof. By Fact 4.10, |UM | ≤ LS(K) if and only if M is LS(K)+-presentable. This
together with the first part of Lemma 4.11 gives the first inequality. For the second,
assume for a contradiction that |UM |+LS(K) > (|M |K + LS(K))

<µ
. In particular,

|UM | > LS(K). Let λ := |UM | and let λ0 :=
(
(|M |K + LS(K))

<µ)+
. Then

λ0 ≤ λ, λ0 is regular, and λ0 is µ-closed. By Lemma 4.9 and the second part of
Lemma 4.11, |M |K ≥ λ0. This contradicts the definition of λ0. �

This gives a less desirable relationship between internal size and cardinality than
one might like:

Theorem 4.13. Let K be a µ-AEC, let M ∈ K, and let λ := |UM |. Assume that
λ > LS(K) and assume GCH (or just SCHµ,λ, see Definition 2.2).

(1) If λ is not the successor of a cardinal of cofinality less than µ, then rK(M) =
λ+ so |M |K = λ.

(2) If λ = λ+
0 for some λ0 with cf(λ0) < µ, then |M |K is either λ0 or λ.

Proof.

(1) By Lemma 4.11, it is enough to show that λ is µ-closed. This follows from
Lemma 2.7.

(2) Since SCHµ,λ holds, we must have that λ0 is almost µ-closed. Since cf(λ0) <

µ, we cannot have that λ<µ0 = λ0, so we must have that λ0 is µ-closed. Since
λ0 is limit, there must be unboundedly-many regular λ′0 < λ0 that are µ-

closed (namely the cardinals of the form (θ<µ)
+

for θ < λ0), and hence so
that (Lemma 4.9) M is λ′0-closed. By Lemma 4.11, λ0 ≤ |M |K ≤ λ.



INTERNAL SIZES IN µ-ABSTRACT ELEMENTARY CLASSES 15

�

Assuming GCH (or merely a suitable instance of SCH), we can use this to relax
the regularity assumption on λ in Corollary 3.15:

Corollary 4.14. Let K be a µ-AEC and let λ > LS(K). Assume GCH (or just
SCHµ,λ). If λ = λ<µ and K has a model of cardinality at least λ+, then there
exists M ∈ K such that |UM | = |M |K = λ.

Proof. If λ is regular, then Corollary 3.15 gives the result (recalling Fact 4.2), so
assume that λ is singular. By the Löwenheim-Skolem-Tarski axiom, there exists a
model M ∈ K of cardinality λ. By Theorem 4.13 (note that λ is not a successor,
so the first part there must apply), we get that |M |K = λ. �

Corollary 4.15. LetK be a large µ-accessible category with all morphisms monomor-
phisms. Assuming GCH (or just SCHµ,≥θ for some θ), K has an object of all
high-enough internal sizes of cofinality at least µ.

Proof. By Fact 4.2, K is equivalent to a µ-AEC K. Fix θ > LS(K) such that
SCHµ,≥θ and let λ > θ have cofinality at least µ. By Lemma 2.6, λ = λ<µ. Now
apply Corollary 4.14. �

We can also give a condition under which there is no model of a given internal size
(although we do not know whether it can ever hold):

Theorem 4.16. Let K be a µ-AEC and let λ > LS(K) be such that λ < λ<µ.
If K has no model with cardinality in [λ, λ<µ) and K is categorical in cardinality
λ<µ, then K has no model of internal size λ.

Proof. Assume for a contradiction that there is M ∈ K with |M |K = λ. By
Theorem 4.12, λ ≤ |UM | ≤ λ<µ, and since there are no models of cardinality in
[λ, λ<µ), we must have that |UM | = λ<µ. By Corollary 3.15 (where λ there stands

for λ+ here), there is N ∈ K with λ+ ≤ |N |K ≤ (λ+)
<µ

= λ<µ. Again since there
are no models in [λ, λ<µ) we must have that |UN | = λ<µ. By construction M and
N are not isomorphic, contradicting categoricity in λ<µ. �

Question 4.17. Does there exist a µ-AEC K such that for any big-enough cardinal
λ with λ < λ<µ, K has no model in [λ, λ<µ) but is categorical in λ<µ?

By Theorem 4.16, such an example cannot be LS-accessible.

5. µ-AECs admitting intersections and LS-accessibility

We recall the definition of a µ-AEC admitting intersections. For µ = ℵ0, the
definition first appears in [BS08, 1.2] and is studied in [Vas17, §2]. The definition for
uncountable µ is introduced in [LRV19]. We note, in connection with the appendix,
that a µ-AEC admitting intersections is the same, up to equivalence of categories,
as a locally µ-polypresentable category all of whose morphisms are monomorphisms
(see [LRV19, 5.7]):
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Definition 5.1. A µ-AEC K admits intersections if for any N ∈ K and any
A ⊆ UN , the set

clNK(A) = clN (A) :=
⋂
{M ∈ K |M ≤K N,A ⊆ UM}

is the universe of a ≤K-substructure of M . In this case, we abuse notation and
write clN (A) for this substructure as well.

Remark 5.2 (2.14(3) in [Vas17]). If K is a µ-AEC admitting intersections, M ≤K

N and A ⊆ UM , then clM (A) = clN (A). This will be used without comment.

Crucially, in a µ-AEC admitting intersections, the closure of a set is minimal over
the set (in the sense of Definition 4.4):

Lemma 5.3. Let K be a µ-AEC admitting intersections. Let M ∈ K and let
A ⊆ UM . If M = clM (A), then M is minimal over A.

Proof. Let M0, N ∈ K be such that M ≤K N , M0 ≤K N , and A ⊆ UM0. Then:

M = clM (A) = clN (A) = clM0(A)

Thus M ≤K M0, as desired. �

We get that µ-AECs admitting intersections behave very well with respect to the
accessibility rank. They are λ-accessible for every regular λ ≥ µ, and in fact even
(λ,< λ)-accessible when λ is weakly inaccessible. This generalizes [LRV19, 3.3].

Theorem 5.4. Let µ ≤ λ both be regular cardinals. If K is a µ-AEC admitting
intersections, then K is (µ, λ,< λ∗)-accessible (see Definition 2.1).

Proof. By definition, K has µ-directed colimits and a set of (< λ∗)-presentable
objects. It remains to see that it is (λ,< λ∗)-resolvable. Let M ∈ K. Consider the

set I := {A ⊆ UM | |A| < λ∗}. For A ∈ I, let MA := clM (A). Note that MA ≤K

M since K admits intersections. Moreover, MA is |A|+-presentable by Lemmas 5.3
and 4.5. In particular, MA is (< λ∗)-presentable. Therefore 〈MA : A ∈ I〉 is a
(λ,< λ∗)-system whose colimit is M , as desired. �

Applying the results of Section 3, we immediately obtain:

Corollary 5.5. Let K be a µ-AEC admitting intersections.

(1) In K, presentability ranks that are greater than or equal to µ are successors.
(2) If K has arbitrarily large models, then K has objects of all regular internal

sizes greater than or equal to µ. In particular, it is weakly LS-accessible.

Proof.

(1) By Theorem 5.4 and Theorem 3.10.
(2) By Theorem 5.4 and Corollary 3.13.

�
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We conclude that in a µ-AEC admitting intersections there is a natural way of
computing the internal size:

Definition 5.6. Let K be a µ-AEC admitting intersections. For any M ∈ K,
define:

|M |cl := min{|A| | A ⊆ UM,M = clM (A)}

Theorem 5.7. Let K be a µ-AEC admitting intersections. For any M ∈ K,
rK(M) + µ = |M |+cl + µ. In particular if |UM | > LS(K) then rK(M) = |M |+cl so
|M |K = |M |cl.

Proof. Fix A realizing the minimum in the definition of |M |cl. By Lemma 5.3,
M is minimal over A. Therefore by Lemma 4.5, M is (|A|+ + µ)-presentable, so
rK(M) ≤ |A|+ + µ.

We now show that |A|+ + µ ≤ rK(M) + µ. If |A| < µ, then by what has just
been established rK(M) ≤ µ, so we are done. Assume now that |A| ≥ µ. Let
λ := |A| and let λ0 ∈ [µ, λ] be a regular cardinal. We show that M is not λ0-
presentable. Indeed consider the set I := {A0 ⊆ A | |A0| < λ0}. For A0 ∈ I, let

MA0
:= clM (A0). Note that MA0

<K M by definition of A. Now 〈MA0
: A0 ∈ I〉

is a λ0-directed system witnessing that M is not λ0-presentable (see Lemma 4.3).

Finally, note that if |UM | > LS(K) then by Fact 4.10 also rK(M) > LS(K) ≥ µ.
It follows directly that rK(M) = |M |+cl. �

In view of Corollary 5.5 and Theorem 5.7, is every µ-AEC which admits intersec-
tions and has arbitrarily large models LS-accessible? In general, we do not know
but we can show that this holds assuming GCH (compare with Corollary 4.15):

Theorem 5.8. Let K be a µ-AEC which admits intersections. Let λ > LS(K). As-
sume GCH (or at least SCHµ,λ, see Definition 2.2). If K has a model of cardinality
at least λ+, then K has a model of internal size λ.

Proof. If λ is a successor, then Corollary 5.5 gives the result so assume that λ is
a limit. Since λ is limit and SCHµ,λ holds, we must have by Lemma 2.7 that λ is
µ-closed.

Let N ∈ K have cardinality at least λ+ and let A ⊆ UN have cardinality exactly λ.
Let M := clN (A). We claim that |M |K = λ. By Theorem 5.7, |M |K ≤ λ. Assume
for a contradiction that |M |K < λ. By Theorem 4.12 and using that λ is µ-closed,

|UM | ≤ (|M |K + LS(K))
<µ

< λ. This is a contradiction since |UM | ≥ |A| = λ. �

Corollary 5.9. Let K be a µ-AEC which admits intersections and has arbitrarily
large models. If SCHµ,≥θ holds for some θ, then K is LS-accessible. In particular,
if there is an ω1-strongly compact cardinal then any µ-AEC admitting intersections
that has arbitrarily large models is LS-accessible.

Proof. Immediate from Theorem 5.8 and Remark 2.3. �
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6. Examples

The common thread linking the results so far is the analysis, often under GCH or a
suitable instance of SCH, of the relationship between internal size and cardinality in
µ-AECs, and the ways in which certain properties—the existence of models in each
size, say—change when we toggle between these notions. In this section, we study
a series of examples that nicely capture this phenomenon, focusing in particular,
on the ways in which the categoricity spectrum changes when we change our notion
of size.

Before we begin, though, two small cautionary examples illustrating that the be-
havior of small internal sizes can be quite wild:

Example 6.1. In the category of complete metric spaces with isometries, the one
point metric space {0} is ℵ1-presentable but not ℵ0-presentable (compare with
Lemma 4.5). Indeed, the set of reals A = 0 ∪ { 1

n | 1 ≤ n < ω} is the directed

colimit of the spaces Am = { 1
n | 1 ≤ n ≤ m} for m < ω but the inclusion of {0}

into A does not factor through any of the Am’s. A similar argument shows that
the empty space is the only ℵ0-presentable complete metric space.

Example 6.2. Let λ be an infinite cardinal and let K be the (ℵ0-)AEC of all
well-orderings of order type at most λ+, ordered by initial segment. Note that
LS(K) = λ and K admits intersections. Let α ≤ λ+. Then |(α,∈)|K = cf(α) + ℵ0.

To see this, note that for A ⊆ α, cl(α,∈)(A) = α if and only if A is cofinal in
(α,∈), and use Theorem 5.7. In particular, K has no objects of singular internal
size and when λ is uncountable there are objects M,N ∈ K such that M ≤K N
but |M |K > |N |K (take M := (ω1,∈) and N := (ω1 + ω,∈)).

Looking at the categoricity spectrum, we now give a negative answer to Question
1.1; that is, we give an example of the failure of eventual categoricity for µ-AECs
when categoricity is interpreted in terms of cardinality:

Example 6.3. We consider a modification of an example of Makkai and Paré
([MP89] 3.4.2): rather than consider Hilb, the category of (complex) Hilbert spaces
and contractions, we consider the subcategory Hilb0, consisting of Hilbert spaces
and their isometries. We note, as an aside, that the isometries are precisely the reg-
ular monomorphisms in Hilb. The analysis of [MP89] holds even in this case—the
only essential thing to note is that the norm on the colimit defined in their displayed
equation (7) ensures that the colimit coprojections are themselves isometries. We
may conclude, then, that Hilb0 is ℵ1-accessible and given that its morphisms are
monomorphisms, it is equivalent to an ℵ1-AEC ([BGL+16] 4.10). In fact, it is easy
to check directly that it is an ℵ1-AEC. Moreover, one can show (see [MP89, 3.4.4])
that in Hilb0, |M |Hilb0 corresponds to the size of an orthonormal basis for M .
Therefore Hilb0 is categorical in every internal size.

However, by [BDH+05, 2.7], any infinite-dimensional Banach (and therefore Hilbert)
space has cardinality λℵ0 , for some infinite cardinal λ. Thus if γ is such that
λℵ0 = ℵγ , α ≤ γ is least such that ℵℵ0α = ℵγ , and β is such that γ = α + β, then
there are (|β| + 1)-many Hilbert spaces of cardinality ℵγ . In particular if α < γ
then Hilb0 is not categorical in ℵγ (but note that ℵℵ0γ = ℵγ). Thus the ℵ1-AEC of
Hilbert spaces and isometries is indeed a counterexample to eventual categoricity
in power, and a negative answer to Question 1.1.
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Assuming GCH, the situation is particularly clear: there are no models in cardinal-
ity λ with cf(λ) = ℵ0, which is to be expected in an ℵ1-AEC: we explicitly exclude
such cardinals in the conjecture as formulated in Question 1.1. If λ is not the suc-
cessor of a cardinal of countable cofinality, there is a unique model of size λ—this
is meaningful categoricity. If, on the other hand, we consider λ+ where cf(λ) = ℵ0,
there are exactly two nonisomorphic models, one generated by a basis of size λ and
one by a basis of size λ+.

Example 6.4. In a general mAEC, one would expect to see similar failures of even-
tual categoricity in power: the requirement that the spaces underlying structures be
complete introduces the same problem of cardinal exponentiation. Eventual cate-
goricity in terms of internal size—density character—is very much an open question,
and there are few, if any, explicit computations of specific categoricity spectra. We
note, though, that eventual categoricity in density character has been shown to
hold in the more restrictive classes of metric structures treated in [SU11]. These
classes, which consist, roughly speaking, of complete approximately elementary (i.e.
elementary-up-to-ε) submodels of a fixed compact, homogeneous metric structure
C, are closely connected to a number of notions arising from continuous and homo-
geneous model theory. Specifically, they correspond to not-necessarily-Hausdorff
metric compact abstract classes (or metric cats, [BY05]), and, by extension, are
connected to the model theory of the logic of positive bounded formulas ([HI02])
and continuous first order logic ([BYU10], drawing on [CK66]).

6.1. Shelah’s example. In the rest of this section, we study an example mentioned
by Shelah in the introduction of [She], which exhibits striking behavior whether we
count isomorphism classes of models by cardinality or by internal size. The idea is
to code the class of sufficiently-closed models of constructible set theory to obtain
a µ-AEC Kµ that is categorical exactly in the cardinals of cofinality below µ. We
show, again, that the picture becomes quite different once one looks at internal
sizes. In particular, while the categoricity spectrum in cardinalities alternates, Kµ

will not be categorical in any internal size and in fact will have many models in
each internal size.

We work in the language of set theory (i.e. it has equality and a binary relation
∈). We will use the following definition of the constructible universe: let L0 = ∅,
Lα+1 = Def(Lα) (where Def(X) is the set of Y ⊆ X such that there is a formula
φ in the language of set theory and parameters ā ∈ <ωX such that Y = {x ∈ X |
(X,∈) |= φ[x, ā]), and Lβ =

⋃
α<β Lα for β limit. Finally let L :=

⋃
α∈OR Lα.

We work in Kripke-Platek (KP) set theory (see e.g. [Dev84, I.11]: note that it
includes the axiom of infinity). We will use the following facts about the theory of
constructibility2:

Fact 6.5 (II.1.1.(vii) in [Dev84]). For any infinite ordinal α, |Lα| = |α|.

Fact 6.6 (II.2.9 in [Dev84]). If M is a well-founded model of KP + V = L, then
there exists a unique ordinal α and a unique isomorphism π : M ∼= (Lα,∈)

Fact 6.7 (I.11.2, II.7.1 in [Dev84]). For any infinite cardinal λ, (Lλ,∈) is a model
of KP (and of V = L).

2The reader should be aware that there are some mistakes in Devlin’s book [Sta87]. However,
the results that we use in this paper are correct.
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Fact 6.8 (II.5.5 in [Dev84]). For any ordinal α, P(Lα) ∩ L ⊆ L|α|++ℵ0 . In partic-
ular, GCH holds in L.

Definition 6.9. Let K be the class of well-founded models of KP + V = L. Let
K := (K,�) (where � denotes the usual first-order elementary substructure).

Note that K is axiomatizable by an Lℵ1,ℵ1 -sentence (we only use an infinite quan-
tifier to say that the universe is well-founded). Moreover, denoting by I(K, λ) the
number of nonisomorphic models in Kλ we have:

Lemma 6.10. K is an ℵ1-AEC. Moreover, it has no finite models and I(K, λ) = λ+

for every infinite cardinal λ.

Proof of Lemma 6.10. We first check that K satisfies the axioms from the definition
of an ℵ1-AEC. The only non-trivial ones are:

• Löwenheim-Skolem-Tarski axiom: by the Lω,ω Löwenheim-Skolem-Tarski
axiom, using that a subset of a well-founded model is still well-founded.
• Tarski-Vaught axioms: it is enough to check that for any ℵ1-directed system
I and any 〈Mi : i ∈ I〉 increasing continuous in K, M :=

⋃
i∈IMi is in K.

Note that (M,∈M ) is well-founded. If not, there is a countable set X ⊆ |M |
witnessing it, and this countable set must be contained in Mi for some i ∈ I,
hence Mi is ill-founded which is impossible by definition of K. Now M is
a model of KP and V = L by elementarity and the result follows.

For the moreover part, note first that the definition of KP that we use includes
the axiom of infinity, so K has no finite models. Further, for any infinite cardinal
λ, (Lλ+ ,∈) is in K by Fact 6.7. By an easy argument using the Lω,ω Löwenheim-
Skolem-Tarski theorem, there is a club C of ordinals α < λ+ such that (Lα,∈) �
(Lλ+ ,∈). Since (for example by Fact 6.6) for α 6= β both in C, (Lα,∈) 6∼= (Lβ ,∈),
we obtain that I(K, λ) = |C| = λ+. �

We note that in K, internal size and cardinality coincide. Unfortunately, this will
fail when we pass to Kµ, which we will define presently.

Theorem 6.11. For any M ∈ K, |UM | = |M |K.

Proof. By Lemma 4.11, |M |K ≤ |UM |. It remains to see that |UM | ≤ |M |K. If
λ = ℵ0, note that the definition implies that |M |K is always infinite, so |M |K ≥ λ.
Now let λ be a regular uncountable cardinal and assume that |UM | ≥ λ. We show
that M is not λ-presentable.

We note that (by the Lω,ω Löwenheim-Skolem-Tarski theorem) M can be obtained
as a λ-directed union of elementary substructures of cardinality strictly less than
λ. Thus there is a λ-directed system 〈Mi : i ∈ I〉 whose union is M but for which
there is no i ∈ I with M ≤K Mi. Therefore M is not λ-presentable. �

Definition 6.12. Let µ be a regular cardinal. Let Kµ be the class of M ∈ K
isomorphic to (Lα,∈) that is such that for all β < α [Lβ ]<µ ∩ L ⊆ Lα. Let
Kµ := (Kµ,�).
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Notice that K = Kℵ0 and Kµ is an (ℵ1 + µ)-AEC. Moreover, when µ > ℵ0 the
behavior of its number of models is different from K. We will use the following
consequences of Jensen’s convering Lemma (see [Dev84, Chapter V]):

Fact 6.13. If 0] exists, then every uncountable cardinal is inaccessible in L. If 0]

does not exist, then:

(1) For any cardinal λ, cf(λ)L ≤ cf(λ) + ℵ1.
(2) For any singular cardinal λ, λ+ = (λ+)L.

Theorem 6.14. Let µ be a regular cardinal and let λ ≥ µ.

(1) If cf(λ)L < µ, then I(Kµ, λ) = 1.
(2) If cf(λ)L ≥ µ, then I(Kµ, λ) ≥ λ.
(3) If (¬∃λ0 < λ+.λ+ = λ+

0 ∧ cf(λ0) < µ)L, then I(Kµ, λ) = λ+.

Proof. We build an ordinal δ ≤ λ+ and an increasing continuous chain 〈αi : i ≤ δ〉,
as follows. Set α0 := λ. If i is limit, let αi := supj<i αj . Now given i < λ+, let

β > αi be least such that (Lβ ,∈) ∈ K and [Lαi ]
<µ ∩ L ⊆ Lβ . If β ≥ λ+, we set

δ := i and stop. If β < λ+, let αi+1 := β and continue the induction.

Now first assume that cf(λ)L < µ. Then by Fact 6.13 0] does not exist and (λ+)L =
λ+. Since in L, λ<µ = λ+, we must have that δ = 0. Moreover it is easy to check
that (Lλ,∈) ∈ Kµ. This proves that I(Kµ, λ) = 1.

Assume now that cf(λ)L ≥ µ. Then δ ≥ (λ+)L. Letting C be the set of limit
points of the sequence 〈αi : i < δ〉, we get that (Lα,∈) ∈ Kµ for any α ∈ C, and
|C| ≥ |(λ+)L| ≥ λ. Further if in L λ+ is not the successor of a cardinal of cofinality
µ, then δ = λ+ so |C| = λ+. �

We can conclude that the categoricity spectrum of Kµ alternates if V = L. Indeed,
the same is true if we merely assume that 0] does not exist and µ ≥ ℵ2; for µ < ℵ2,
the implications of the nonexistence of 0] are less clear. In contrast, if 0] exists,
then Kµ has many models in every cardinality.

Corollary 6.15. Let µ be a regular cardinal and let λ ≥ µ.

(1) If V = L, then:

I(Kµ, λ) =

{
1 if cf(λ) < µ

λ+ if cf(λ) ≥ µ

(2) If 0] exists, then I(Kµ, λ) = λ+.
(3) If 0] does not exist, then:

(a) If µ ≥ ℵ2 and cf(λ) < µ, then I(Kµ, λ) = 1.
(b) If cf(λ) ∈ [µ, λ), then I(Kµ, λ) = λ+.
(c) If λ is regular, then I(Kµ, λ) ≥ λ.

Proof. By Fact 6.13 and Theorem 6.14. �

We now show that cardinality and internal sizes no longer coincide in Kµ (compare
with Theorem 6.11). We will use that both K and Kµ admit intersections:

Fact 6.16. K and Kµ admit intersections.
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Proof sketch. We show that K admits intersections. That Kµ admits intersections
will then directly follow from its definition.

By [Dev84, II.3], there is a formula φWO(x, y) (in the language of set theory) such
that for any M ∈ K, φWO(x, y) well-orders the universe of M . Using φWO, one
can show that M has definable Skolem functions: for any formula φ(x, ȳ) there is
a formula ψφ(x, ȳ) such that for any M ∈ K and b̄ ∈ <ωUM :

M |= ∃xφ(x, b̄)→
(
∃!x(ψφ(x, b̄) ∧ φ(x, b̄))

)
The formula ψφ(x, ȳ) naturally induces a partial function hφ : `(ȳ)UM → UM
mapping ȳ to x whenever it exists. It is easy to see that for M0 ⊆M , M0 is closed
under the hφ’s if and only if M0 � M . Similarly, for any A ⊆ UM , clM (A) is

nothing but the closure of A under the hφ’s. Therefore clM (A) � M , as desired.
In fact, we have shown that K is isomorphic (as a concrete category) to a universal
ℵ1-AEC: the ℵ1-AEC obtained by adding the hφ’s to each structure in K. �

Theorem 6.17. Let µ be a regular cardinal and let λ ≥ µ. If λ is regular or
µ-closed, then there are at least λ+ non-isomorphic models in Kµ of internal size
λ.

Proof. Let θ := λ<µ and let N := (Lθ+ ,∈). Note that N ∈ K by Fact 6.7 and
N ∈ Kµ by Fact 6.8. We build an increasing chain of ordinals 〈αi : i < λ+〉 such
that:

(1) αi < θ+ for all i < λ+.

(2) αi /∈ clN (λ ∪ {αj : j < i}).

For i < λ+, write Mi := clN (λ ∪ {αj : j < i}).
This is possible: Fix i < λ+ and assume inductively that 〈αj : j < i〉 have been
constructed. By Theorems 4.12 and 5.7, |UMi| ≤ θ. Since |UN | > θ, we can choose
αi as desired.

This is enough: We have that for i < j < λ+, Mi 6∼= Mj because Mj has “more

ordinals” than Mj (see e.g. Fact 6.6). If λ is regular, let C be the set of i < λ+ such
that cf(i) = λ, otherwise let C := λ+. We show that for i ∈ C, |Mi|Kµ = λ. By
definition, |Mi|cl ≤ λ (see Definition 5.6). Thus by Theorem 5.7, rKµ(Mi)+µ ≤ λ+,
hence |Mi|Kµ ≤ λ. If λ is regular, then cf(i) = λ so Mi =

⋃
j<iMj and Mj <K Mi,

so Mi is not λ-presentable, i.e. |Mi|Kµ ≥ λ. Assume now that λ is µ-closed. If

|Mi|Kµ < λ, then by the proof of Theorem 4.12, |UMi| ≤ (|Mi|Kµ + µ))
<µ

< λ.
Because λ ⊆ UMi, we must have that |UMi| ≥ λ, a contradiction. �

Question 6.18. In Theorem 6.17, can we conclude that Kµ has exactly λ+ non-
isomorphic model of internal size λ? More generally, do we have that in any µ-AEC
K and any λ > LS(K) there can be at most 2λ non-isomorphic models of internal
size λ?

Recalling Theorem 6.14, we see that the internal sizes behave very differently from
cardinalities:
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Corollary 6.19. Let µ be a regular cardinal and let λ ≥ µ. Assume SCHµ,λ. Then
Kµ has at least λ+ non-isomorphic models of internal size λ.

Proof. If λ is a successor, this is Theorem 6.17. If λ is a limit, then by SCHµ,λ, λ
is µ-closed so Theorem 6.17 also applies. �

Question 6.20. Can we prove in ZFC that Kµ is LS-accessible?

Appendix A. Locally multipresentable and polypresentable
categories

We include a category-theoretic aside, concerning approximations of LS-accessibility
in large locally multipresentable and locally polypresentable categories. While these
categories are not original to the authors (see [Die80] and [Lam88], respectively), the
basic definitions and essential model-theoretic motivation can be found in [LRV19].
In short, a locally multipresentable category K is an accessible category with all
connected limits and, provided all of its morphisms are monomorphisms, it is, up
to equivalence of categories, a universal µ-AEC ([LRV19, 5.9]). Put another way,
a locally multipresentable category is an accessible category with all multicolimits:
rather than having a initial—colimit—cocone over each diagram D in K, there is
a family of multiinitial cocones, with the property that any compatible cocone ad-
mits a unique map from a unique member of the family. Locally polypresentable
categories are accessible categories with wide pullbacks and, provided all of their
morphisms are monomorphisms, are, up to equivalence, µ-AECs admitting inter-
sections ([LRV19, 5.7]). They can also be characterized as accessible categories
with polycolimits, where the induced maps from the family of cocones described
above are unique only up to isomorphism.

We are interested in the following version of the Löwenheim-Skolem theorem. The
notion of LS-accessibility is introduced in [BR12, 2.4] but weak LS-accessibility is
new.

Definition A.1. A category K is called LS-accessible if there exists a cardinal λ
such that for all λ′ ≥ λ, K contains an object of internal size exactly λ′. We call K
weakly LS-accessible if this holds only for all regular λ′ ≥ λ.

Beke and the second author [BR12, 4.6] have shown that every large locally pre-
sentable category is LS-accessible. A modification of the argument shows:

Theorem A.2. Each large locally multipresentable category is weakly LS-accessible.

Proof. LetK be a large locally λ-multipresentable category. There is a λ-presentable
object A such that the functor K(A,−) : K → Set takes arbitrarily large values be-
cause, otherwise, K would be small. The functor U = K(A,−) preserves connected
limits and λ-directed colimits. For every set X, the category X ↓ U is λ-accessible
(see [AR94] 2.43) and has connected limits. Therefore, it has a multiinitial set of
objects fXi : X → UKXi, i ∈ IX . At first, we show that |KXi|K ≤ |X| for each
i ∈ IX and λ ≤ |X|. Consider an |X|+-directed colimit lj : Lj → L, j ∈ J and a
morphism h : KXi → L. Since U preserves |X|+-directed colimits, there is j ∈ J
such that U(h)fXi = U(lj)g for some g : X → ULj . Thus g = U(ḡ)fXi′ for some
i′ ∈ IX and ḡ : KXi′ → Lj . Since lj ḡ : KXi′ → L, we have i′ = i. Then lj ḡ = h
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and, since this factorization is essentially unique, KXi is |X|+-presentable. Hence
|KXi| ≤ |X|.
Let λ, |Kλ| < |X|, where Kλ is the set of morphisms between λ-presentable objects.
We will show that |KXi|K = |X| for some i ∈ IX , which proves that K is LS-
accessible. Assume that |KXi|K < |X| for i ∈ IX . Let µ = max{λ, |KXi|K}+.
Since µ ≤ |X|, X is a µ-directed colimit of subsets Xk of X of cardinality |Xk| < µ;
uk : Xk → X are the inclusions. For any k, there is a unique ik ∈ IXk with a
morphism U(ūk) : KXk,ik → KXi such that U(ūk)fXkik = fXiuk. Analogously, for
each inclusion ukk′ : Xk → Xk′ there is a morphism ūkk′ : KXkik → KXk′ ik′ such
that U(ūkk′)fXkik = fXk′ ik′ukk′ . Morphisms ūkk′ form a µ-directed diagram and
ūk : KXkik → KXi a cocone from it. Let t : colimKXkik → KXi be the induced
morphism. Let f : X → U colimKXkik be a unique mapping such that fuk =
U(dk)fXkik where dk are components of the colimit cocone. We have U(t)f = fXi
because

U(t)fuk = U(t)U(dk)fXkik = U(ūk)fXkik = fXiuk

for each k. There is a unique j ∈ IX and a unique morphism q : KXj → colimKXkik

such that U(q)fXj = f . Since U(tq)fXj = U(t)f = fXi, we have j = i and
tq = idKXi . Since

U(q)U(ūk)fXkik = U(q)fXiuk = fuk = U(dk)fXkik

we have qūk = dk and thus qtdk = qūk = dk. Hence qt = idcolimKXkik
and t

is an isomorphism with the inverse morphism q. Hence ūk : KXkik → KXi is a
colimit cocone. Thus U(ūk) : UKXkik → UKXi is a colimit cocone. Since KXi is
µ-presentable, there is k and a morphism r : KXi → KXkik such that ūkr = idKXi .

Let δ = |IX | and κ = iλ(δ). Let |Z| = κ. Since cf(κ) = λ, we have |ZX | = κλ > κ.
Choose j ∈ IZ . For each p : X → Z, there is ip ∈ IX and p̄ : KXip → KZj such

that U(p̄)fXip = fZjp. Since δ < κ, there is a subset P ⊆ ZX of cardinality |P| > κ
such that ip = iq for each p, q ∈ P. Denote this common value of ip by i. As shown
above, there is a subset Xk of X of cardinality ν < λ such that ūk : KXkik → KXi

is a split epimorphism. Since κν = κ, there is a subset Q ⊂ P such that puk = quk
for each p, q ∈ Q. For p, q ∈ Q, we have

U(p̄)U(ūk)fXkik = U(p̄)fXiuk = fZjpuk = fZjquk = U(q̄)fXiuk = U(q̄)U(ūk)fXkik

and thus p̄ūk = q̄ūk. Hence p̄ = q̄. Since

fZjp = U(p̄)fXi = U(q̄)fXi = fZjq

fZj is not a monomorphism.

Since the sets UM are arbitrarily large, there is a monomorphism v : Z → UM .
Since v factorizes through UfZj for some j ∈ IZ , this fXZj is a monomorphism.
Thus |KXi|K = |X|. �

Assuming that all morphisms are monomorphisms, we can generalize the argument
further to locally polypresentable categories:

Theorem A.3. Each large locally polypresentable category with all morphisms
monomorphisms is weakly LS-accessible.
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Proof. We will follow the proof of A.2. The first paragraph is unchanged, only the
essential unicity at the end follows from the fact that morphisms in K are monomor-
phisms. In the second paragraph, we do not know that ūk′ ūkk′ = ūk. But we know
that there is an isomorphism hkk′ : KXkik → KXkik such that ūk′ ūkk′hkk′ = ūk.
Since K-morphisms are monomorphisms, ũkk′ = ūkk′hkk′ form a µ-directed dia-
gram and ūk : KXkik → KXi a cocone from it. Let t : colimKXkik → KXi be
the induced morphism and f : X → U colimKXkik the induced mapping. We have
U(t)f = fXi because

U(t)fuk = U(t)U(dk)fXkik = U(ūk)fXkik = fXiuk

for each k. Let q : KXi → colimKXkik be a morphism such that U(q)fXi = f . We
have U(tq)fXi = fXi. Thus there is an isomorphism h : KXi → KXi such that
tq = h · idKXi = h. Thus t is a split epimorphism and, since it is a monomorphism,
it is an isomorphism. Hence ūk : KXkik → KXi is a colimit cocone. Since KXi is
µ-presentable, there is k and a morphism r : KXi → KXkik such that ūkr = idKXi .
As a split epimorphism, ūk is an isomorphism.

As in the proof of A.2, let α = |X| be regular. Let ιi be the number of isomorphisms
of KXkik , i ∈ IX . Now, δ will be the maximum of |IX | and supi∈IX ιi. For p, q ∈ Q,
we do not get p̄ūk = q̄ūk, but we get an isomorphism hq : KXkik → KXkik such
that p̄ = hq q̄. Since Q > ιi, there is a subset Qo of Q such that hq1 = hq2 for
q,q2 ∈ Q0. Hence p̄ = q̄ for p, q ∈ Q0. �

We note that this amounts to an alternative—purely category-theoretic—proof of
Corollary 5.5.
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