
FORKING AND SUPERSTABILITY IN TAME AECS

SEBASTIEN VASEY

Abstract. We prove that any tame abstract elementary class categorical in
a suitable cardinal has an eventually global good frame: a forking-like notion
defined on all types of single elements. This gives the first known general con-
struction of a good frame in ZFC. We show that we already obtain a well-behaved
independence relation assuming only a superstability-like hypothesis instead of
categoricity. These methods are applied to obtain an upward stability transfer
theorem from categoricity and tameness, as well as new conditions for uniqueness
of limit models.
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1. Introduction

In 2009, Shelah published a two volume book [She09a, She09b] on classification
theory for abstract elementary classes. The central new structural notion is that of
a good λ-frame (for a given abstract elementary class (AEC) K): a generalization
of first-order forking to types over models of size λ in K (see Section 2.4 below for
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the precise definition). The existence of a good frame shows that K is very well-
behaved at λ and the aim was to use this frame to deduce more on the structure of
K above λ. Part of this program has already been accomplished through several
hundreds of pages of hard work (see for example [She01], [She09a, Chapter 2 and
3], [JS12, JS13, JS, Jar]). Among many other results, Shelah shows that good
frames exist under strong categoricity assumptions and additional set-theoretic
hypotheses:

Fact 1.1 (Theorem II.3.7 in [She09a]). Assume 2λ < 2λ
+
< 2λ

++
and the weak

diamond ideal in λ+ is not λ++-saturated.

Let K be an abstract elementary class with LS(K) ≤ λ. Assume:

(1) K is categorical in λ and λ+.
(2) 0 < I(λ++, K) < µunif(λ

++, 2λ
+

)

Then K has a good λ+-frame.

It is a major open problem whether the set-theoretic hypotheses in Fact 1.1 are
necessary. In this paper, we show that if the class already has some global structure,
then good frames are much easier to build. For example we prove, in ZFC (see
Theorem 7.4):

Theorem 1.2. Let K be an abstract elementary class with amalgamation and no
maximal models. Assume K is categorical in a high-enough1 successor λ+. Then
K has a type-full good λ-frame.

By the main theorem of [She99], the hypotheses of Theorem 1.2 imply K is cat-
egorical in λ. On the other hand, we do not need any set-theoretic hypothesis
and we do not need to know anything about the number of models in λ++. More-
over, the frame Shelah constructs typically defines a notion of forking only for a
restricted class of basic types (the minimal types). With a lot of effort, he then
manages to show [She09a, Section III.9] that under some set-theoretic hypotheses
one can always extend a frame to be type-full. In our frame, forking is directly
defined for every type. This is technically very convenient and closer to the first-
order intuition. Of course, we pay for this luxury by assuming amalgamation and
no maximal models2.

Our proof relies on two key properties of AECs. The first one is tameness (a
locality property of Galois types, see Definition 2.4), and assuming it lets us relax
the “high-enough successor” assumption in Theorem 1.2, see Theorem 7.3:

1In fact, λ can be taken to be above h(h(h(LS(K)))+), where h(µ) = i(2µ)+ .
2After submitting this paper, we discovered that Shelah claims to build a good frame in ZFC

from categoricity in a high-enough cardinal in Chapter IV of [She09a]. We were unable to fully
check Shelah’s proof. At the very least, our construction using tameness is simpler and gives
much lower Hanf numbers.
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Theorem 1.3. Let K be an abstract elementary class with amalgamation and no
maximal models. Assume K is µ-tame and categorical in some cardinal λ such
that cf(λ) > µ. Then K has a type-full good ≥ λ-frame.

That is, not only do we obtain a good λ-frame, but we can also extend this frame
to any model of size ≥ λ (this last step essentially follows from earlier work of
Boney [Bon14a]). Hence we obtain a global forking notion above λ, although
only defined for 1-types. A forking notion for types of all lengths is obtained
in [BG] (using stronger tameness hypotheses than ours) but the authors assume
the extension property for coheir, and it is unclear when this holds, even assuming
categoricity everywhere. Thus our result partially answers [BGKV, Question 7.1]
(which asked when categoricity together with tameness implies the existence of a
forking-like notion for types of all lengths satisfying uniqueness, local character,
and extension). We also obtain new theorems whose statements do not mention
frames:

Corollary 1.4. Let K be an abstract elementary class with amalgamation and
no maximal models. Assume K is µ-tame and categorical in some cardinal λ such
that cf(λ) > µ. Then K is stable everywhere.

Remark 1.5. Shelah already established in [She99] that categoricity in λ > LS(K)
implies stability below λ (assuming amalgamation and no maximal models). The
first upward stability transfer for tame AECs appeared in [GV06b]. Later, [BKV06]
gave some variations, showing for example ℵ0-stability and a strong form of tame-
ness implies stability everywhere. Our upward stability transfer improves on
[BKV06, Corollary 4.7] which showed that categoricity in a successor λ implies
stability in λ.

Corollary 1.6. Let K be an abstract elementary class with amalgamation and
no maximal models. Assume K is µ-tame and categorical in some cardinal λ such
that cf(λ) > µ. Then K has a unique limit model3 in every λ′ ≥ λ.

Remark 1.7. This is also new and complements the conditions for uniqueness of
limit models given in [She99], [Van06], and [GVV].

The second key property in our proof is a technical condition we call local character
of µ-splitting for C-chains (see Definition 3.10). This follows from categoricity in
a cardinal of cofinality larger than µ and we believe it is a good candidate for a
definition of superstability, at least in the tame context. Under this hypothesis, we
already obtain a forking notion that is well-behaved for µ+-saturated base models
and can prove the upward stability transfer given by Corollary 1.4. Local character
of splitting already played a key role in other papers such as [SV99], [Van06],
and [GVV].

3This holds even in the stronger sense of [SV99, Theorem 3.3.7], i.e. two limit models over the
same base are isomorphic over the base.
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Even if this notion of superstability fails to hold, we can still look at the length
of the chains for which µ-splitting has local character (analogous to the cardinal
κ(T ) in the first-order context). Using GCH, we can generalize one direction of
the first-order characterization of the stability spectrum (Theorem 7.6).

The paper is structured as follows: In Section 2, we review background in the
theory of AECs and give the definition of good frames. In Section 3, we fix
a cardinal µ and build a µ-frame-like object named a skeletal frame. This is
done using the weak extension and uniqueness properties of splitting isolated by
VanDieren [Van02], together with the assumption of local character of splitting.
In Section 4, we show that some of the properties of our skeletal frame in µ lift to
cardinals above µ (and in fact become better than they were in µ). This is done
using the same methods as in [She09a, Section II.2].

In Section 5, we show assuming tameness that the other properties of the skeletal
frame lift as well and similarly become better, so that we obtain (if we restrict our-
selves to µ+-saturated models and so, assuming categoricity in the right cardinal,
to all models) all the properties of a good frame except perhaps symmetry. This
uses the ideas from [Bon14a]. Next in Section 6 we show how to get symmetry by
using more tameness together with the order property (this is where we really use
that we have structure properties holding globally and not only at a few cardinals).
Finally, we put everything together in Section 7. In Section 8, we conclude.

At the beginning of Sections 3, 4, 5, and 6, we give hypotheses that are assumed to
hold everywhere in those sections. We made an effort to show clearly how much of
the structural properties (amalgamation, tameness, superstability, etc.) are used
at each step, but our construction is new even for the case of a totally categorical
AEC K with amalgamation, no maximal models, and LS(K)-tameness. It might
help the reader to keep this case in mind throughout.

This paper was written while working on a Ph.D. thesis under the direction of
Rami Grossberg at Carnegie Mellon University and I would like to thank Professor
Grossberg for his guidance and assistance in my research in general and in this
work specifically. I also thank John T. Baldwin, Will Boney, Adi Jarden, Alexei
Kolesnikov, and the anonymous referee for valuable comments that helped improve
the presentation of this paper.

2. Preliminaries

2.1. Abstract elementary classes. We assume the reader is familiar with the
definition of an abstract elementary class (AEC) and the basic related concepts.
See [Gro02] for an introduction.

For the rest of this section, fix an AEC K. We denote the partial ordering on K
by ≤, and write M < N if M ≤ N and M 6= N . For R a binary relation on K
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and δ an ordinal, an R-increasing chain (Mi)i<δ is a sequence of models in K such
that for all i < δ, if i + 1 < δ then R(Mi,Mi+1). The chain is continuous if it is
≤-increasing and for any limit i < δ, Mi =

⋃
j<iMj. When we talk of an increasing

chain, we mean a ≤-increasing chain. Strictly increasing means <-increasing.

For K an abstract elementary class and F an interval4 of cardinals of the form
[λ, θ), where θ > λ is either a cardinal or ∞, let KF := {M ∈ K | ‖M‖ ∈ F}. We
write Kλ instead of K{λ}, K≥λ instead of K[λ,∞) and K≤λ instead of K[0,λ].

The following properties of AECs are classical:

Definition 2.1 (Amalgamation, joint embedding, no maximal models). Let F be
an interval of cardinals as above.

(1) KF has amalgamation if for any M0 ≤ M` ∈ KF , ` = 1, 2 there exists
N ∈ KF and f` : M` −−→

M0

N , ` = 1, 2.

(2) KF has joint embedding if for any M` ∈ KF , ` = 1, 2 there exists N ∈ KF
and f` : M` → N , ` = 1, 2.

(3) KF has no maximal models if for any M ∈ KF there exists N > M in KF .

Fact 2.2. Let F be an interval of cardinals as above.

(1) If Kµ has no maximal models for all µ ∈ F , then KF has no maximal
models.

(2) If Kµ has amalgamation for all µ ∈ F , then KF has amalgamation.

Proof. No maximal models is straightforward and amalgamation is [She09a, Con-
clusion I.2.12]. �

Finally, we will also use:

Lemma 2.3. Let F = [λ, θ) be an interval of cardinals as above. If KF has
amalgamation and Kλ has joint embedding, then KF has joint embedding.

Proof sketch. Let M` ∈ KF , ` = 1, 2. Pick M ′
` ≤M` of size λ. Use joint embedding

on M ′
1,M

′
2, then use amalgamation. �

2.2. Galois types, stability, and tameness. We assume familiarity with Galois
types (see [Gro02, Section 6]). For M ∈ K, we write Sα(M) for the set of Galois
types of sequences of length α over M . We will at one point also consider types
over the empty set, which are defined analogously (see e.g. [She, Definition 1.4]).
We write S(M) for S1(M). We write Sna(M) for the set of nonalgebraic 1-types
over M , that is:

4The definitions that follow make sense for an arbitrary set of cardinals F , but the proofs of
most of the facts below require that F is an interval.
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Sna(M) := {gtp(a/M ;N) | a ∈ N\M,M ≤ N ∈ K}

From now on, we will write tp(a/M ;N) for gtp(a/M ;N).

We briefly review the notion of tameness. Although it appears implicitly (for
saturated models) in [She99], tameness as a property of AECs was first introduced
in [GV06b] and used to prove a stability spectrum theorem. It was later used in
[GV06a] to prove an upward categoricity transfer. Our definition follows [Bon14b,
Definition 3.1].

Definition 2.4 (Tameness). Let λ > κ ≥ LS(K). Let α be a cardinal. We say
that K is (κ, λ)-tame for α-length types if for any M ∈ K≤λ and any p, q ∈ Sα(M),
if p 6= q, then there exists M0 ∈ K≤κ with M0 ≤ M such that p � M0 6= q � M0.
We define similarly (κ,< λ)-tame, (< κ, λ)-tame, etc. When λ = ∞, we omit it.
When α = 1, we omit it. We say that K is fully κ-tame if it is κ-tame for all
lengths.

We also recall that we can define a notion of stability:

Definition 2.5 (Stability). Let λ ≥ LS(K) and α be cardinals. We say that K is
α-stable in λ if for any M ∈ Kλ, |Sα(M)| ≤ λ.

We say that K is stable in λ if it is 1-stable in λ.

We say that K is α-stable if it is α-stable in λ for some λ ≥ LS(K). We say that
K is stable if it is 1-stable in λ for some λ ≥ LS(K). We write “unstable” instead
of “not stable”.

We define similarly stability for KF , e.g. KF is stable if and only if K is stable in
λ for some λ ∈ F .

Remark 2.6. If α < β, and K is β-stable in λ, then K is α-stable in λ.

The following follows from [Bon, Theorem 1.1].

Fact 2.7. Let λ ≥ LS(K). Let α be a cardinal. Assume K is stable in λ and
λα = λ. Then K is α-stable in λ.

2.3. Universal and limit extensions.

Definition 2.8 (Universal and limit extensions). For M,N ∈ K, we say that
N is universal over M (written M <univ N) if and only if M < N and for any
M ′ ∈ K‖M‖ with M ′ ≥ M , M ′ can be embedded inside N over M . We also write
N >univ M for M <univ N .

For µ ≥ LS(K) and 0 < δ < µ+ an ordinal, we say that N is (µ,δ)-limit over
M (written M <µ,δ N) if and only if M,N ∈ Kµ, M ≤ N , and there is a <univ-
increasing chain (Mi)i≤δ with M0 = M , Mδ = N and Mδ =

⋃
i<δMi if δ is limit.

We also write N >µ,δ M for M <µ,δ N .
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We say that a model N is limit if it is (‖N‖, γ)-limit over M for some M ≤ N
and some limit ordinal γ < µ+.

Definition 2.9. A model N ∈ K is µ-model-homogeneous if for any M ≤ N
with ‖M‖ < µ, we have M <univ N . N is model-homogeneous if it is ‖N‖-model-
homogeneous.

Fact 2.10. Let µ ≥ LS(K). Assume Kµ has amalgamation, no maximal models,
and is stable. For any M ∈ Kµ, there exists N ∈ Kµ such that M <univ N .
Therefore there is a model-homogeneous N ∈ Kµ+ with M < N .

Proof. The first part is by [She09a, Claim II.1.16.1(a)]. The second part follows
from iterating the first part µ+ many times. �

Remark 2.11. By [She01, Lemma 0.26], for µ > LS(K), N is µ-model-homogeneous
if and only if it is µ-saturated.

The next proposition is folklore and the results appear in several places in the
literature (see for example [She99, Lemma 2.2]). For the convenience of the reader,
we have included the proofs.

Proposition 2.12. Let M0,M1,M2 ∈ Kµ, µ ≥ LS(K) and 0 < δ < µ+. Then:

(1) M0 <µ,δ M1 implies M0 <univ M1.
(2) M0 <univ M1 ≤M2 implies M0 <univ M2.
(3) Assume Kµ has amalgamation. Then M0 ≤ M1 <µ,δ M2 implies M0 <µ,δ

M2.
(4) Assume Kµ has amalgamation, no maximal models, and is stable. Then

there exists M ′
0 such that M0 <µ,δ M

′
0.

(5) Conversely, if for every M0 ∈ Kµ there exists M ′
0 ∈ Kµ such that M0 <univ

M ′
0, then Kµ has amalgamation, no maximal models, and is stable.

Proof.

(1) Fix (Ni)i≤δ witnessing that M0 <µ,δ M1. Let M ′
0 ≥ M0 have size µ. Since

δ > 0, N1 is well defined, and is universal over N0 = M0, hence M ′
0 can be

embedded inside N1 over M0, and hence since N1 ≤ M1 can be embedded
inside M1 over M0.

(2) Let M ′
0 ≥ M0 have size µ. Since M ′

0 embed inside M1 over M0, it also
embeds inside M2 over M0.

(3) Let (Ni)i≤δ witness M0 <µ,δ M1. We show that M0 <univ N1. This is
enough since then M0 _ (Ni)0<i≤δ will witness that M0 <µ,δ M2. Let
M ′

0 ≥ M0 have size µ. By amalgamation, find M ′
1 ≥ M1 and h : M ′

0 −−→
M0

M ′
1. Now use universality of M2 over M1 to find g : M ′

1 −−→
M1

M2. Let

f := g ◦ h. Then f : M ′
0 −−→
M0

M2, as desired.
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(4) Iterate Fact 2.10 δ many times.
(5) Let M0 ∈ Kµ and let M ′

0 >univ M0 be in Kµ. M ′
0 witnesses that M0 is

not maximal in Kµ. Moreover, M0 is an amalgamation base, since any
two models of size µ extending M0 can amalgamated over M0 inside M ′

0.
Finally, all types over M0 are realized in M ′

0 which has size µ, there can be
at most µ many of them, so stability follows.

�

We give orderings satisfying the conclusion of Proposition 2.12 a name:

Definition 2.13 (Abstract universal ordering). An abstract universal ordering
on Kµ is a binary relation C on Kµ satisfying the following properties. For any
M0,M1,M2 ∈ Kµ:

(1) M0 CM1 implies M0 <univ M1.
(2) There exists N0 ∈ Kµ such that M0 C N0.
(3) M0 ≤M1 CM2 implies M0 CM2.
(4) Closure under isomorphism: if M0 C M1 and f : M1

∼= M ′
1, then f [M0] C

M ′
1.

Note that this implies that C is a strict partial ordering on Kµ extending <.

For 0 < δ < µ+, a model M ∈ Kµ is (δ,C)-limit if there exists a C-increasing
chain (Mi)i<δ in Kµ such that M =

⋃
i<δMi. M is C-limit if there exists a limit

δ such that M is (δ,C)-limit.

Remark 2.14. Assume Kµ has amalgamation, no maximal models, and is stable.
Then by Proposition 2.12, for any 0 < δ < µ+, <µ,δ is an abstract universal
ordering on Kµ. Moreover, the existence of any abstract universal ordering on
Kµ implies that <univ is an abstract universal ordering, and hence that Kµ has
amalgamation, no maximal models, and is stable.

Let LS(K) ≤ µ < λ. Even assuming stability everywhere, is is unclear whether
there should be any model-homogeneous model in λ (think for example of the case
cf(λ) = ω). The following tells us that we can at least get an approximation to one:
we can do the usual construction of special models in a cardinal λ if K is stable
below λ. This will be used in the proof of the superstability theorem (Theorem
5.6).

Lemma 2.15. Let LS(K) ≤ µ+ < λ. Assume K[µ,λ) has amalgamation, no
maximal models, and is stable in µ′ for unboundedly many µ < µ′ < λ (that is,
for any µ < µ′ < λ, there exists µ′ ≤ µ′′ < λ such that Kµ′′ is stable).

For any N0 ∈ K[µ,λ), there exists (Ni)i<λ <univ-increasing continuous in K[µ,λ) with
each Ni+1 µ

+-model-homogeneous. Moreover any M ∈ K[µ,λ] such that N0 ≤ M
can be embedded inside N :=

⋃
i<λNi over N0.
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Proof. We build (Ni)i<λ by induction. N0 is already given and without loss of
generality ‖N0‖ ≥ µ+. Take unions at limits and for a given Ni, first take N ′i ≥ Ni

such that K‖N ′
i‖ is stable, and iterate Fact 2.10 µ+-many times to pick Ni+1 ∈

K‖N ′
i‖ which is also µ+-model-homogeneous such that N ′i <univ Ni+1 (and so by

Proposition 2.12 also Ni <univ Ni+1).

Now given M ∈ K[µ,λ] with N0 ≤ M , let (Mi)i≤λ be an increasing continuous
resolution of M such that ‖Mi‖ < λ for all i < λ and M0 = N0. Inductively build
(fi)i≤λ an increasing continuous chain of K-embeddings such that for each i ≤ λ,
fi : Mi −−→

M0

Ni. This is easy since Ni+1 >univ Ni for all i < λ. Then fλ embeds M

into N . �

2.4. Good frames. Good frames were first defined in [She09a, Chapter II]. The
idea is to provide a localized (i.e. only for base models of a given size λ) axiom-
atization of a forking-like notion for (a “nice enough” set of) 1-types. Jarden
and Shelah (in [JS13]) later gave a slightly more general definition, not assuming
the existence of a superlimit model and dropping some of the redundant clauses.
We will use a slight variation here: we assume the models come from KF , for
F an interval, instead of just Kλ. We first adapt the definition of a pre-λ-frame
from [She09a, Definition III.0.2.1] to such an interval:

Definition 2.16 (Pre-frame). Let F be an interval of the form [λ, θ), where λ is
a cardinal, and θ > λ is either a cardinal or ∞.

A pre-F-frame is a triple s = (K,^,Sbs), where:

(1) K is an abstract elementary class5 with λ ≥ LS(K), Kλ 6= ∅.
(2) Sbs ⊆

⋃
M∈KF

Sna(M). For M ∈ KF , we write Sbs(M) for Sbs ∩ Sna(M).
(3) ^ is a relation on quadruples of the form (M0,M1, a,N), where M0 ≤

M1 ≤ N , a ∈ N , and M0, M1, N are all in KF . We write ^(M0,M1, a,N)

or a
N

^
M0

M1 instead of (M0,M1, a,N) ∈^.

(4) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and a
N

^
M0

M1, then f(a)
N ′

^
f [M0]

f [M1]. If

tp(a/M1;N) ∈ Sbs(M1), then tp(f(a)/f [M1];N
′) ∈ Sbs(f [M1]).

(b) Monotonicity: If a
N

^
M0

M1, M0 ≤ M ′
0 ≤ M ′

1 ≤ M1 ≤ N ′ ≤ N ≤ N ′′

with a ∈ N ′ and N ′′ ∈ KF , then a
N ′

^
M ′

0

M ′
1 and a

N ′′

^
M ′

0

M ′
1.

5In [She09a, Definition III.0.2.1], Shelah only asks that K contains the models of size F of an
AEC. For easy of exposition, we do not adopt this approach.
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(c) Nonforking types are basic: If a
N

^
M
M , then tp(a/M ;N) ∈ Sbs(M).

We write λ-frame instead of {λ}-frame, (≥ λ)-frame instead of [λ,∞)-frame. We
sometimes drop the F when it is clear from context.

A pre-frame is type-full if Sbs(M) = Sna(M) for all M ∈ KF .

For F ′ ⊆ F an interval, we let s � F ′ denote the pre-F ′-frame defined in the
obvious way by restricting the basic types and ^ to models in KF ′ . For λ′ ∈ F ,
we write s � λ′ instead of s � {λ′}.

By the invariance and monotonicity properties, ^ is really a relation on types.
This justifies the next definition.

Definition 2.17. If s = (K,^,Sbs) is a pre-F -frame, p ∈ S(M1) is a type, we

say p does not s-fork over M0 if a
N

^
M0

M1 for some (equivalently any) a and N such

that p = tp(a/M1;N).

Remark 2.18. A pre-frame defines an abstract notion of forking. That is, we
only know that the relation ^ satisfies some axioms but it could a-priori be de-
fined arbitrarily. Later in the paper, we will study a specific definition of forking
(based on splitting). While the specific definition we will give will coincide (over
sufficiently saturated models) with first-order forking when the AEC is a class of
models of a first-order theory, the reader should remember that we are working in
much more generality than the first-order framework, hence most of the properties
of first-order forking need not hold here.

Remark 2.19. We could have started from (K,^) and defined the basic types
as those that do not fork over their own domain. The existence property of good
frames (see below) would then hold for free. Since we are sometimes interested in
studying frames that only satisfy existence over a certain class of models (like the
saturated models), we will not adopt this approach.

Remark 2.20 (Monotonicity of s-forking). If s = (K,^,Sbs) is a pre-F -frame,
M0 ≤ M1 ≤ N1 ≤ N0 are in KF , and p ∈ Sbs(N0) does not s-fork over M0, then
by the monotonicity axiom, p � N1 does not s-fork over M1. We will use this fact
freely.

Definition 2.21 (Good frame). Let F be as above.

A good F-frame is a pre-F -frame (K,^,Sbs) satisfying in addition:

(1) KF has amalgamation, joint embedding, and no maximal model.
(2) bs-Stability: |Sbs(M)| ≤ ‖M‖ for all M ∈ KF .
(3) Density of basic types: If M < N and M,N ∈ KF , then there is a ∈ N

such that tp(a/M ;N) ∈ Sbs(M).
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(4) Existence: If M ∈ KF and p ∈ Sbs(M), then p does not s-fork over M .
(5) Extension: If p ∈ S(N) does not s-fork over M , and N ′ ∈ KF is such that

N ′ ≥ N , then there is q ∈ S(N ′) extending p that does not s-fork over M .
(6) Uniqueness: If p, q ∈ S(N) do not s-fork over M and p �M = q �M , then

p = q.

(7) Symmetry: If a1
N

^
M0

M2, a2 ∈M2, and tp(a2/M0;N) ∈ Sbs(M0), then there

is M1 containing a1 and there is N ′ ≥ N such that a2
N ′

^
M0

M1.

(8) Local character: If δ is a limit ordinal, (Mi)i≤δ is an increasing chain in KF
with Mδ =

⋃
i<δMi, and p ∈ Sbs(Mδ), then there exists i < δ such that p

does not s-fork over Mi.
(9) Continuity: If δ is a limit ordinal, (Mi)i≤δ is an increasing chain in KF

with Mδ =
⋃
i<δMi, p ∈ S(Mδ) is so that p � Mi does not s-fork over M0

for all i < δ, then p does not s-fork over M0.
(10) Transitivity6: If M0 ≤ M1 ≤ M2, p ∈ S(M2) does not s-fork over M1 and

p �M1 does not s-fork over M0, then p does not s-fork over M0.

For L a list of properties, a good−L F -frame is a pre-F -frame that satisfies all the
properties of good frames except possibly the ones in L. In this paper, L will only
contain symmetry and/or bs-stability. We abbreviate symmetry by S, bs-stability

by St, and write good− for good−(S,St).

We say that K has a good F -frame if there is a good F -frame where K is the
underlying AEC (and similarly for good−).

Remark 2.22. Using F instead of a single cardinal λ is only a convenience: just
like an abstract elementary class K is determined by KLS(K), a good− F -frame s is
determined by s � λ, where λ := min(F). More precisely, if t is a good− F -frame
such that t � λ = s � λ, then the arguments from [She09a, Section II.2] show that
t = s.

Note that local character implies nonforking is always witnessed by a model of
small size:

Proposition 2.23. Assume F is an interval of cardinals with minimum λ. Assume
s = (K,^,Sbs) is a pre-F -frame satisfying local character and transitivity. If
M ∈ KF and p ∈ Sbs(M), then there exists M ′ ∈ Kλ such that p does not s-fork
over M ′.

Proof. By induction on λ′ := ‖M‖. If λ′ = λ, then since local character implies
existence, we can take M ′ := M . Otherwise, λ′ > λ so we can take a resolution
(Mi)i<λ′ of M such that λ ≤ ‖Mi‖ < λ′ for all i < λ′. By local character, there

6This actually follows from uniqueness and extension, see [She09a, Claim II.2.18].
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exists i < λ′ such that p does not s-fork over Mi. By monotonicity, p � Mi does
not s-fork over Mi, so must be basic. By the induction hypothesis, there exists
M ′ ∈ Kλ such that p � Mi does not s-fork over M ′. By transitivity, p does not
s-fork over M ′. �

3. A skeletal frame from splitting

Hypothesis 3.1.

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal. Kµ 6= ∅.
(2) Kµ has amalgamation.

In this section, we start our quest for a good frame. Note that we do not assume
that any abstract notion of forking is available to us at the start. Recall the
following variations on first-order splitting from [She99, Definition 3.2]:

Definition 3.2. For p ∈ S(N), we say that p µ-splits over M if M ≤ N and there
exists N1, N2 ∈ Kµ so that M ≤ N` ≤ N for ` = 1, 2, and h : N1

∼=M N2 such that
h(p � N1) 6= p � N2.

When µ is clear from context, we drop it.

Remark 3.3 (Monotonicity of splitting). If p ∈ S(N) does not µ-split over M
and M ≤M ′ ≤ N ′ ≤ N are all in Kµ, then p � N ′ does not µ-split over M ′.

Remark 3.4. If s is a good− µ-frame, and p does not s-fork over M , then p does
not µ-split over M (this will not be used but follows from the uniqueness property,
see e.g. [BGKV, Lemma 4.2]). Thus splitting can be seen as a first approximation
to a forking notion.

Our starting point will be the following extension and uniqueness properties of
splitting, first isolated by VanDieren [Van02, Theorem II.7.9, Theorem II.7.11].
Intuitively, they tell us that the usual uniqueness and extension property of a
forking notion hold of splitting provided we have enough room (concretely, the
base model has to be “shifted” by a universal extension).

Fact 3.5. Let M0 <univ M ≤ N with M0,M,N ∈ Kµ. Then:

(1) Weak uniqueness: If p` ∈ S(N) does not split over M0, ` = 1, 2, p1 � M =
p2 �M , then p1 = p2.

(2) Weak extension: If p ∈ S(M) does not split over M0, then there exists
q ∈ S(N) extending p that does not split over M0. Moreover, q can be
taken to be nonalgebraic if p is nonalgebraic.

Proof. See [Van06, Theorem I.4.12] for weak uniqueness. For weak extension,

use universality to get h : N −−→
M0

M . Further extend h to an isomorphism ĥ :
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N̂ ∼=M0 M̂ . So that M̂ contains a realization a of p. Let a′ := ĥ−1(a), and let

q := tp(a/N ; N̂). The proof of [Van06, Theorem I.4.10] shows q is indeed an
extension of p that does not split over M0. In addition if q is algebraic, a′ ∈ N so
a = h(a′) ∈M , so p is algebraic. �

We will mostly use those two properties instead of the exact definition of splitting.
However, they characterize splitting in the following sense:

Proposition 3.6. Assume Kµ has amalgamation, no maximal models, and is
stable. Let s be a type-full pre-µ-frame with underlying AEC K. The following
are equivalent.

(1) For all M,N ∈ Kµ with M ≤ N and all types p ∈ S(N), if p does not
s-fork over M , then for any M <univ M

′ ≤ N , p does not split over M ′.
(2) s-forking satisfies weak uniqueness and weak extension (i.e. the conclusion

of Fact 3.5 holds with “split” replaced by “fork”).

Proof. Chase the definitions (not used). �

We also obtain a weak transitivity property:

Proposition 3.7 (Weak transitivity of splitting). Let M0 ≤ M1 <univ M
′
1 ≤ M2

all be in Kµ. Let p ∈ S(M2). If p �M ′
1 does not split over M0 and p does not split

over M1, then p does not split over M0.

Proof. By weak extension, find q ∈ S(M2) extending p �M ′
1 and not splitting over

M0. By monotonicity, q does not split over M1. By weak uniqueness, p = q, as
needed. �

We now turn to building a forking notion that will satisfy a version of uniqueness
and extension (see Definition 2.21) in Kµ. The idea is simple enough: we want to
say that a type does not fork over M if there is a “small” substructure M0 of M
over which the type does not split. Fact 3.5 suggests that “small” should mean
“such that M is a universal extension of M0”, and this is exactly how we define it:

Definition 3.8 (µ-forking). Let M0 ≤M ≤ N be models in Kµ. We say p ∈ S(N)
explicitly does not µ-fork over (M0,M) if:

(1) M0 <univ M ≤ N .
(2) p does not µ-split over M0.

We say p does not µ-fork over M if there exists M0 so that p explicitly does not
µ-fork over (M0,M).

The reader should note that the word “forking” is used in two different senses in
this paper:
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• In the sense of an “abstract notion”: this depends on a pre-F -frame s and
is called s-forking in Definition 2.17. This is defined for models of sizes in
F .
• In the concrete sense of Definition 3.8. This is called µ-forking and is

only defined for types over models of size µ. Later this will be extended
to models of sizes at least µ and we will get a (concrete) notion called
(≥ µ)-forking (Definition 4.2). Of course, the two notions will coincide
over models of size µ.

When we say that a type p explicitly does not µ-fork over (M0,M), we think of M
as the base, and M0 as the explicit witness to the µ-nonforking. It would be nice if
we could get rid of the witness entirely and get that µ-nonforking satisfies extension
and uniqueness, but uniqueness seems to depend on the particular witness.

Transitivity is also problematic: although we manage to get a weak version depend-
ing on the particular witnesses, we still do not know how to prove the witness-free
version. This was stated as [Bal09, Exercise 12.9] but Baldwin later realized [Bal]
there was a mistake in his proof.

If instead we define “p does not µ-fork∗ over M” to mean “for all M0 <univ M
both in Kµ there exists M ′

0 in Kµ with M0 ≤M ′
0 <univ M and p explicitly does not

µ-fork over (M ′
0,M)” then extension and uniqueness (and thus transitivity) hold,

but local character (assuming local character of splitting) is problematic. Thus
it seems we have to carry along the witness in our definition of forking, and this
makes the resulting independence notion quite weak (hence the name “skeletal”).
However, we will see in the next sections that (assuming some tameness and ho-
mogeneity) our skeletal µ-frame transfers to a much better-behaved frame above
µ. In particular, full uniqueness and transitivity will hold there.

Lemma 3.9 (Basic properties of µ-forking). Below, all models are in Kµ.

(1) Monotonicity: If p ∈ S(N) explicitly does not µ-fork over (M0,M), M0 ≤
M ′

0 ≤ M ≤ M ′ ≤ N ′ ≤ N and M ′
0 <univ M

′, then p � N ′ explicitly does
not µ-fork over (M ′

0,M
′). In particular, if p ∈ S(N) does not µ-fork over

M and M ≤M ′ ≤ N ′ ≤ N , then p � N ′ does not µ-fork over M ′.
(2) Extension: If p ∈ S(N) explicitly does not µ-fork over (M0,M) and N ′ ≥

N , then there is q ∈ S(N ′) extending p that explicitly does not µ-fork over
(M0,M). If p is nonalgebraic, then q is nonalgebraic.

(3) Uniqueness: If p` ∈ S(N) explicitly does not µ-fork over (M0,M), ` = 1, 2,
and p1 �M = p2 �M , then p1 = p2.

(4) Transitivity: Let M1 ≤ M2 ≤ M3 and let p ∈ S(M3). If p � M2 explic-
itly does not µ-fork over (M0,M1) and p explicitly does not µ-fork over
(M ′

0,M2) for M0 ≤M ′
0, then p explicitly does not µ-fork over (M0,M1).

(5) Nonalgebraicity: If p ∈ S(N) does not µ-fork over M and p � M is not
algebraic, then p is not algebraic.
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Proof. Monotonicity follows directly from the definition (and Proposition 2.12.(2)),
extension and uniqueness are just restatements of Fact 3.5, and transitivity is a
restatement of Proposition 3.7. For nonalgebraicity, assume p �M is nonalgebraic.
Then it has a nonalgebraic nonforking extension to N by extension, and this
extension must be p by uniqueness, so the result follows. �

Assuming some local character for splitting, we obtain weak versions of the local
character and continuity properties:

Definition 3.10. Let R be a binary relation on Kµ, and let κ be a regular cardinal.
We say that µ-splitting has κ-local character for R-increasing chains if for any R-
increasing (Mi)i≤δ with cf(δ) ≥ κ, Mδ =

⋃
i<δMi, and any p ∈ S(Mδ), there is

i < δ so that p does not split over Mi.

Remark 3.11. If Kµ is stable, then by [GV06b, Fact 4.6] µ-splitting has µ+-local
character for ≤-increasing chains.

Lemma 3.12. Let C be an abstract universal ordering on Kµ, and let κ be a
regular cardinal. Assume splitting has κ-local character for C-increasing chains.
Then:

(1) κ-local character for C-increasing chains: If (Mi)i≤δ is a C-increasing chain
in Kµ with cf(δ) ≥ κ, Mδ =

⋃
i<δMi and p ∈ S(Mδ), then there exists

i < δ so that p explicitly does not µ-fork over (Mi,Mi+1).
(2) κ-continuity for C-increasing chains: If (Mi)i≤δ is a C-increasing chain in

Kµ with cf(δ) ≥ κ, Mδ =
⋃
i<δMi and p ∈ S(Mδ) such that p � Mi does

not µ-fork over M0 for all i < δ, then p does not µ-fork over M0. Moreover,
if in addition p � Mi explicitly does not µ-fork over (M ′

0,M0) for all i < δ
(i.e. the witness is always the same), then p explicitly does not µ-fork over
(M ′

0,M0).
(3) Existence over (≥ κ,C)-limits: If M ∈ Kµ is (δ,C)-limit for some δ

with cf(δ) ≥ κ, then any p ∈ S(M) does not µ-fork over M . In fact,
if p0, ..., pn−1 ∈ S(M), n < ω, then there exists M0 <univ M such that pi
explicitly does not µ-fork over (M0,M) for all i < n.

Proof.

(1) Follows from κ-local character of splitting for C-increasing chains.
(2) By κ-local character, there exists i < δ so that p explicitly does not µ-fork

over (Mi,Mi+1). By assumption, there exists M ′
0 <univ M0 so that p �Mi+1

explicitly does not µ-fork over (M ′
0,M0). Since M ′

0 ≤ Mi, we can apply
transitivity to obtain that p explicitly does not µ-fork over (M ′

0,M0). The
proof of the moreover part is similar.

(3) By local character and monotonicity.

�
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Thus if splitting has ℵ0-local character for C-increasing chains for some abstract
universal ordering C and if all models in Kµ are C-limit (e.g. if Kµ is categorical),
then it seems we are very close to having a good−S µ-frame, but the witnesses
must be carried along, which as observed above is rather annoying. Also, local
character and continuity only hold for C-chains.

In the next sections, we show that these problems disappear when we transfer
our skeletal frame above µ. Note that Shelah’s construction of a good frame
in [She09a, Theorem II.3.7] already takes advantage of that phenomenon. A similar
idea is also exploited in the definition of a rooted minimal type in Grossberg and
VanDieren’s categoricity transfer from tameness [GV06a, Definition 2.6].

4. Going up without assuming tameness

Hypothesis 4.1.

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal. Kµ 6= ∅.
(2) C is an abstract universal ordering on Kµ. In particular (by Remark 2.14),

Kµ has amalgamation, no maximal models, and is stable.

In [She09a, Section II.2], Shelah showed how to extend a good µ-frame to all models
in K≥µ. The resulting object will in general not be a good (≥ µ)-frame, but several
of the properties are nevertheless preserved. In this section, we apply the same
procedure on our skeletal µ-frame (induced by µ-forking defined in the previous
section) and show Shelah’s arguments still go through, assuming the base models
are µ+-homogeneous. In the next section, we will assume tameness to prove more
properties of (≥ µ)-forking.

We define (≥ µ)-forking from µ-forking in exactly the same way Shelah extends a
good µ-frame to a (≥ µ)-frame:

Definition 4.2. Assume M,N ∈ K≥µ and p ∈ Sna(N). We say that p does not
(≥ µ)-fork over M if M ≤ N and there exists M ′ in Kµ with M ′ ≤ M such that
for all N ′ ∈ Kµ with M ′ ≤ N ′ ≤ N , p � N ′ does not µ-fork over M ′.

For technical reasons, we also need to define explicit (≥ µ)-forking over a model
of size µ:

Definition 4.3 (Explicit (≥ µ)-forking in K≥µ). Assume N ∈ K≥µ, M0 ≤M are
in Kµ, and p ∈ Sna(N). We say that p explicitly does not (≥ µ)-fork over (M0,M)
if p does not µ-split over M0 and M0 <univ M ≤ N . Equivalently, for all N ′ ∈ Kµ

with M ≤ N ′ ≤ N , we have p � N ′ explicitly does not µ-fork over (M0,M) (see
Definition 3.8).

Remark 4.4. The following easy propositions follow from the definitions. We will
use them without further comments in the rest of this paper.
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(1) The definitions of (≥ µ)-forking and µ-forking coincide over models of size
µ. That is, if M0,M,N ∈ Kµ and p ∈ Sna(N), then p does not µ-fork
over M if and only if p does not (≥ µ)-fork over M and p explicitly does
not (≥ µ)-fork over (M0,M) if and only if p explicitly does not µ-fork over
(M0,M).

(2) For M ≤ N both in K≥µ, p ∈ Sna(N) does not (≥ µ)-fork over M if and
only if there exists M0 ≤ M in Kµ such that p does not (≥ µ)-fork over
M0.

(3) For M ≤ N with M ∈ Kµ, N ∈ K≥µ, p ∈ Sna(N) does not (≥ µ)-fork over
M if and only if for all N ′ ≤ N with M ≤ N ′, p � N ′ does not µ-fork over
M .

Definition 4.5. We define a nonforking relation ^ on K≥µ by a
N̂

^
M
N if and only

if M,N, N̂ ∈ K≥µ, a ∈ N̂ , and tp(a/N ; N̂) does not (≥ µ)-fork over M .

Proposition 4.6. s0 := (K,^,Sna) is a type-full pre-[µ,∞)-frame.

Proof. The properties to check follow directly from the definition of (≥ µ)-nonforking.
s0 is type-full since we defined the basic types to be all the nonalgebraic types. �

In Kµ we had by definition that a type which does not µ-fork over M also explicitly
does not µ-fork over (M0,M) for some witness M0. This is not necessarily the
case for (≥ µ)-nonforking: take for example N ∈ K>µ and M ∈ Kµ and assume
p ∈ S(N) does not (≥ µ)-fork over M . Then for all N ′ ∈ Kµ with M ≤ N ′ ≤ N ,
p � N ′ does not µ-fork over M , i.e. there is a witness M ′

0 such that p � N ′ explicitly
does not µ-fork over (M ′

0,M), but there could be different witnessesM ′
0 for different

N ′.

The next lemma shows that this can be avoided if we have enough homogeneity.
This is crucial to our proofs of transitivity, uniqueness, and extension.

Lemma 4.7. Assume M ≤ N are both in K≥µ+ and M is µ+-model-homogeneous.
Assume p ∈ S(N) does not (≥ µ)-fork over M . Then there exists M ′

0,M
′ ∈ Kµ

with M ′
0 ≤ M ′ ≤ M such that p explicitly does not (≥ µ)-fork over (M ′

0,M
′)

(i.e. (≥ µ)-nonforking over M ′ is witnessed by the same M ′
0 uniformly, see the

discussion above).

Proof. By definition, there is M ′
0 in Kµ with M ′

0 ≤M such that p does not (≥ µ)-
fork over M ′

0. Since M is µ+-model-homogeneous, one can pick M ′ >univ M
′
0 in Kµ

with M ′ ≤M . By monotonicity (Lemma 3.9.(1)), p explicitly does not (≥ µ)-fork
over (M ′

0,M
′). �

Using Lemma 4.7, we can give a simpler definition of (≥ µ)-forking. This will not
be used but shows that our forking is the same as that defined in [She09a, Definition
III.9.5.2].
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Proposition 4.8. AssumeM ≤ N are both inK≥µ+ andM is µ+-model-homogeneous.
Let p ∈ Sna(N). Then p does not (≥ µ)-fork over M if and only if there exists
M0 ∈ Kµ such that M0 ≤M and p does not µ-split over M0.

Proof. If p does not (≥ µ)-fork over M , use Lemma 4.7 to get M ′
0,M

′ ∈ Kµ

with M0 ≤ M ′ ≤ M such that p explicitly does not (≥ µ)-fork over (M0,M
′).

By definition, this means that p does not µ-split over M0. Conversely, assume
M0 ∈ Kµ is such that M0 ≤ M and p does not µ-split over M0. Since M is µ+-
model-homogeneous, there exists M ′ ∈ Kµ such that M0 <univ M

′ ≤ M . Thus p
explicitly does not (≥ µ)-fork over (M0,M

′), so it does not (≥ µ)-fork over M . �

Lemma 4.9 (Existence). Let M ∈ K≥µ+ be µ+-model-homogeneous. Then p ∈
Sna(M) if and only if p does not (≥ µ)-fork over M .

Proof. If p does not fork over M , then p is nonalgebraic by definition. Now assume
p is nonalgebraic. By [GV06b, Fact 4.6], there is M ′

0 ∈ Kµ with M ′
0 ≤M such that

p does not µ-split over M0. Pick M ′ ∈ Kµ with M ′ >univ M
′
0 so that M ′ ≤ M .

This is possible by µ+-model-homogeneity. We have that p explicitly does not
(≥ µ)-fork over (M ′

0,M
′), so does not (≥ µ)-fork over M ′, as needed. �

Lemma 4.10 (Transitivity). If M0 ≤ M1 ≤ M2 are all in K≥µ, M1 is µ+-model-
homogeneous, p ∈ Sna(M2) is such that p � M1 does not (≥ µ)-fork over M0 and
p does not (≥ µ)-fork over M1, then p does not (≥ µ)-fork over M0.

Proof. Find M ′
0 ∈ Kµ with M ′

0 ≤ M0 such that p � M1 does not (≥ µ)-fork
over M ′

0. Using monotonicity and Lemma 4.7, we can also find M ′
1,M

′′
1 ∈ Kµ

with M ′
0 ≤ M ′

1 <univ M
′′
1 ≤ M1 such that p explicitly does not (≥ µ)-fork over

(M ′
1,M

′′
1 ). By transitivity in Kµ (Lemma 3.9.(4)), p does not (≥ µ)-fork over M ′

0,
and hence over M0. �

Lemma 4.11 (Local character). Assume splitting has κ-local character for C-
increasing chains. If cf(δ) ≥ κ, (Mi)i≤δ is an increasing chain in K≥µ+ with Mδ =⋃
i<δMi, Mi is µ+-model-homogeneous for i < δ, and p ∈ Sna(Mδ), then there is

i < δ such that p does not (≥ µ)-fork over Mi.

Proof. Without loss of generality, δ is regular. If δ ≥ µ+, then Mδ is also µ+-
model-homogeneous so one can pick N∗ ∈ Kµ with N∗ ≤Mδ witnessing existence
(use Lemma 4.9) and find i < δ with N∗ ≤ Mi, so p does not (≥ µ)-fork over Mi

as needed. Now assume δ < µ+. We imitate the proof of [She09a, Claim II.2.11.5].
Assume the conclusion fails. Build (Ni)i≤δ C-increasing continuous in Kµ, (N ′i)i≤δ
≤-increasing continuous in Kµ such that for all i < δ:

(1) Ni ≤Mi.
(2) Ni ≤ N ′i ≤Mδ.
(3) p � N ′i+1 explicitly µ-forks over (Ni, Ni+1).
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(4)
⋃
j≤i(N

′
j ∩Mi+1) ⊆ |Ni+1|.

This is possible. For i = 0, let N0 ∈ Kµ be any model with N0 ≤ M0, and let
N ′0 := N0. For i limit, take unions. For the successor case, assume i = j + 1.
Choose Ni ≤ Mi satisfying (4) with Ni B Nj (possible since Mi is µ+-model-
homogeneous). By assumption, p (≥ µ)-forks over Mi, hence explicitly (≥ µ)-
forks over (Nj, Ni), and so by definition of forking and monotonicity there exists
N ′i ∈ Kµ with Mδ ≥ N ′i ≥ Ni, N

′
i ≥ N ′j, and p � N ′i explicitly µ-forking over

(Nj, Ni). It is as required.

This is enough. By local character in Kµ, there is i < δ such that p � Nδ explicitly
does not µ-fork over (Ni, Ni+1). By (2) and (4), N ′δ ≤ Nδ. Thus p � N ′i+1 explicitly
does not µ-fork over (Ni, Ni+1), contradicting (3).

�

Lemma 4.12 (Continuity). Assume splitting has κ-local character forC-increasing
chains. If cf(δ) ≥ κ, (Mi)i≤δ is an increasing chain in K≥µ+ with Mδ =

⋃
i<δMi,

Mi µ
+-model-homogeneous for i < δ, and p ∈ S(Mδ) is so that p � Mi does not

(≥ µ)-fork over M0 for all i < δ, then pδ does not (≥ µ)-fork over M0.

Proof. In a type-full frame such as ours, this follows directly from κ-local character
and transitivity, see [She09a, Claim II.2.17.3]. �

Remark 4.13. In the statements of local character and continuity, we assumed
that Mi was µ+-model-homogeneous for all i < δ, but not that their union Mδ

was µ+-model-homogeneous.

5. A tame good−S frame

Boney showed in [Bon14a] that given a good µ-frame, tameness implies that She-
lah’s extension of the frame to ≥ µ is actually a good (≥ µ)-frame. In this
section, we apply the ideas of his proof (assuming the base models are µ+-model-
homogeneous) to our skeletal µ-frame.

More precisely, we fix a cardinal λ > µ, assume enough tameness, and build a
good−S λ-frame (i.e. we have all the properties of a good λ-frame except perhaps
symmetry). We will prove symmetry in the next section.

Hypothesis 5.1.

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal. Kµ 6= ∅.
(2) C is an abstract universal ordering on Kµ. In particular (by Remark 2.14),

Kµ has amalgamation, no maximal models, and is stable.
(3) κ is the least regular cardinal such that splitting has κ-local character for
C-increasing chains in Kµ.

(4) λ > µ is such that:
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(a) K is (µ, λ)-tame7.
(b) K[µ,λ] has amalgamation.
(c) K[µ,λ) has no maximal models.

Remark 5.2. κ plays a similar role as the cardinal κ(T ) in the first-order context.
By Remark 3.11 and Hypothesis 5.1.(2), κ ≤ µ+. In the end, we will be able to
obtain a good frame only when κ = ℵ0, but studying the general case leads to
results on the stability spectrum.

Note that uniqueness is actually equivalent to (µ, λ)-tameness by [Bon14a, Theo-
rem 3.2]. The easiest case is when λ = µ+. Then we know a model-homogeneous
model exists in Kλ, and this simplifies some of the proofs.

Lemma 5.3 (Uniqueness). Let M ≤ N be models in K[µ,λ]. Let p, q ∈ S(N).
Assume p �M = q �M .

(1) If M ∈ Kµ and p, q explicitly do not (≥ µ)-fork over (M0,M) for some
M0 <univ M , then p = q.

(2) If M ∈ K[µ+,λ] is µ+-model-homogeneous and p, q do not (≥ µ)-fork over
M , then p = q.

Proof. (1) follows from uniqueness in Kµ (Lemma 3.9.(3)) and tameness. To see
(2), use monotonicity and Lemma 4.7, to find M ′

0,M
′ ∈ Kµ with M ′

0 <univ M
′ ≤M

such that both p and q explicitly do not (≥ µ)-fork over (M ′
0,M

′). Now apply
(1). �

Interestingly, we already have enough machinery to obtain a stability transfer
theorem. First recall:

Fact 5.4. Kµ+ is stable.

Proof. This could be done using the method of proof of Theorem 5.6, but this is
also [BKV06, Theorem 1]. �

Recall that κ is the local character cardinal, see Hypothesis 5.1.(3.

Lemma 5.5. Assume that λ > µ+, cf(λ) ≥ κ, and there are unboundedly (in the
same sense as in the statement of Lemma 2.15) many µ ≤ λ′ < λ such that Kλ′ is
stable. Then Kλ is stable.

Proof. Let M ∈ Kλ. By Lemma 2.15, M can be embedded inside some M̂ ∈ Kλ

which can be written as
⋃
i<λMi, with (Mi)i<λ an increasing chain8 of µ+-model-

homogeneous models in K[µ+,λ). From amalgamation, we know that Galois types

7Recall (Definition 2.4) that this means that the Galois types over models of size at most λ
are determined by their restrictions to submodels of size µ.

8Explicitly, we take (Ni)i<λ as given by Lemma 2.15 for some N0 ≤ M in Kµ+ , and let

Mi := Ni+1. Note that the chain (Mi)i<λ will not be continuous.
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can be extended, so |S(M)| ≤ |S(M̂)|, and so we can assume without loss of

generality that M = M̂ . Let (pj)j<λ+ be types in S(M). By κ-local character, for
each j < λ+ there is ij < λ such that pj does not (≥ µ)-fork over Mij . By the
pigeonhole principle, we may assume ij = i0 for all j < λ+. Taking i0 bigger if
necessary, we may assume that K‖Mi0

‖ is stable. Thus |S(Mi0)| ≤ ‖Mi0‖ ≤ λ, so
by the pigeonhole principle again, we can assume that there is q ∈ S(Mi0) such
that pj � Mi0 = q for all j < λ+. By uniqueness, pj = pj′ for each j, j′ < λ+, so
the result follows. �

We can now prove that stability transfers up if the locality cardinal κ of Hypothesis
5.1.(3) is ℵ0. Recall that λ is the cardinal above µ fixed in Hypothesis 5.1.(4).
Recall also that we already have stability in µ by Hypothesis 5.1.(2).

Theorem 5.6 (The superstability theorem). If κ = ℵ0, then Kλ is stable.

Proof. We work by induction on λ. If λ = µ+, this is Fact 5.4 and if λ > µ+ this
is given by Lemma 5.5 and the induction hypothesis. �

Assuming the generalized continuum hypothesis (GCH), we can also say something
for arbitrary κ (this will not be used):

Theorem 5.7. Assume GCH. If λ<κ = λ, then Kλ is stable.

Proof. By induction on λ. If λ = µ+, this is Fact 5.4, so assume λ > µ+. By
König’s theorem, cf(λ) ≥ κ. If λ is successor, then λµ = λ by GCH, so by [GV06b,
Corollary 6.4], K is stable in λ. If λ is limit there exists a sequence of successor
cardinals (λi)i<cf(λ) increasing cofinal in λ with λ0 ≥ µ+. Since without loss of
generality κ ≤ µ+ (Remark 3.11), GCH implies that λ<κi = λi, so by the induction
hypothesis, K is stable in λi for all i < cf(λ). Apply Lemma 5.5 to conclude. �

We now prove extension. This follows from compactness in the first-order case,
but we make crucial use of the superstability hypothesis κ = ℵ0 in the general case
(recall from the hypotheses of this section that κ is the local character cardinal for
µ-splitting).

Lemma 5.8. Assume κ = ℵ0. Let δ < λ+ be a limit ordinal. Assume (Mi)i≤δ
is an increasing continuous sequence in K[µ,λ) with M0 ∈ Kµ. Let (pi)i<δ be an
increasing continuous sequence of types with pi ∈ S(Mi) for all i < δ, and pi
explicitly does not (≥ µ)-fork over (M ′

0,M0). Assume that one of the following
holds:

(1) (Mi)i<δ is C-increasing in Kµ.
(2) For all i < δ, Mi+1 is µ+-model-homogeneous.

Then there exists a unique pδ ∈ S(Mδ) extending each pi and explicitly not (≥ µ)-
forking over (M ′

0,M0).
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Proof. This is similar to the argument in [GV06a, Corollary 2.22], but we give
some details. We focus on (1) (the proof of the other case is completely similar).
Build by induction (fi,j)i<j<δ, (ai)i<δ, and increasing continuous (Ni)i<δ such that
for all i < j < δ:

(1) Mi ≤ Ni, ai ∈ Ni.
(2) fi,j : Ni → Nj.
(3) For j < k < δ, fj,k ◦ fi,j = fi,k.
(4) fi,j fixes Mi.
(5) fi,j(ai) = aj.
(6) pi = tp(ai/Mi;Ni).

This is enough. Let (Nδ, (fi,δ))i<δ be the direct limit of the system (Ni, fi,j)i<j<δ,
and let aδ := f0,δ(a0), pδ := tp(aδ/Mδ;Nδ). One easily checks that pδ extends
each pi, i < δ, and so using continuity for C-increasing chains (Lemma 3.12.(2)),
explicitly does not (≥ µ)-fork over (M ′

0,M0). Finally, pδ is unique by Lemma 5.3.

This is possible. For i = 0, we take a0 and N0 so that tp(a0/M0;N0) = p0. For i
limit, we let (Ni, fi0,i)i0<i be the direct limit of the system (Ni0 , fi0,j0)i0<j0<i, and
let ai := f0,i(a0). By continuity for C-increasing chains, tp(ai/Mi;Ni) explicitly
does not (≥ µ)-fork over (M ′

0,M0), and so by uniqueness, it must equal pi. For
i = i0 + 1 successor, find ai and N ′i ≥ Mi such that pi = tp(ai/Mi;N

′
i). Since

pi � Mi0 = pi0 , we can use the definition of types to amalgamate Ni0 and N ′i over
Mi0 : there exists Ni ≥ N ′i and fi0,i : Ni0 −−→

Mi0

Ni so that fi0,i(ai0) = ai. Define

fi′0,i := fi0,i ◦ fi′0,i0 for all i′0 < i0. �

Lemma 5.9 (Extension). Assume κ = ℵ0. Let M ≤ N both be in K[µ+,λ] with
M and N µ+-model-homogeneous, and let p ∈ Sna(M). Then there is q ∈ S(N)
extending p that does not fork over M .

Proof. We imitate the proof of [Bon14a, Theorem 5.3]. By existence and Lemma
4.7, there exists M ′

0,M0 ∈ Kµ with M ′
0 <univ M0 ≤ M and p explicitly (≥ µ)-

nonforking over (M ′
0,M0). Work by induction on λ. If N ∈ K<λ, use the induction

hypothesis, so assume N ∈ Kλ. There are two cases: either λ = µ+ or λ > µ+.

Assume first λ > µ+. By transitivity and Lemma 2.15, we can assume without
loss of generality that N =

⋃
i<λNi, where (Ni)i≤λ is a <univ-increasing continuous

chain in K[µ+,λ), each Ni+1 is µ+-model-homogeneous, and N0 extends M0. Now
inductively build a ≤-increasing continuous (Mi)i≤λ with Mλ = M so that M0 ≤
Mi ≤ Ni for all i < λ (we allow repetitions). Set pi := p � Mi and note that by
monotonicity, pi explicitly does not (≥ µ)-fork over (M ′

0,M0).

We inductively build an increasing (qi)i≤λ with qi ∈ S(Ni), pi ≤ qi, and qi explicitly
does not (≥ µ)-fork over (M ′

0,M0). For i = 0, use extension in K<λ to find q0
as needed. For i = j + 1, use extension to find a (≥ µ)-nonforking extension
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qi ∈ S(Ni) of qj that explicitly does not (≥ µ)-fork over (M ′
0,M0). By uniqueness,

qi ≥ pi. At limits, use Lemma 5.8 and uniqueness. q := qλ is as desired.

If λ = µ+, the construction is exactly the same except we use extension in Kλ

at successor steps and the first case of Lemma 5.8 at limit steps. Note that since
N is µ+-model-homogeneous, N =

⋃
i<µ+ Ni, where (Ni)i<µ+ is a C-increasing

continuous chain in Kµ. �

Definition 5.10. Let s := s0 � λ, where s0 is the pre-frame from Proposition 4.6.

Corollary 5.11. Assume:

(1) κ = ℵ0.
(2) Kµ has joint embedding.
(3) Kλ has no maximal models.
(4) All the models in Kλ are µ+-model-homogeneous.

Then s is a type-full good−S λ-frame.

Proof. It is easy to see s is a type-full pre-λ-frame. Kλ has amalgamation and
no maximal models by hypothesis. It has joint embedding since Kµ has joint
embedding and K[µ,λ] has amalgamation (see Lemma 2.3). Stability holds by
Theorem 5.6. Density of basic types is always true in a type-full frame. For the
other properties, see Lemmas 4.9, 4.10, 4.11, 4.12, 5.3, and 5.9 (note that the
original statement of extension in Definition 2.21 follows from Lemma 5.9 and
transitivity). �

Lemma 5.12. Assume K is categorical in λ and κ = ℵ0. Then:

(1) K[µ,λ] has joint embedding and Kλ (and hence K[µ,λ]) has no maximal
models.

(2) All the models in Kλ are µ+-model-homogeneous.

Proof. To see (2), assume first that Kλ has no maximal models. Use stability to
build (Mi)i≤µ+ <univ-increasing continuous with Mi ∈ Kλ for all i < µ+. Then
Mµ+ is µ+-model-homogeneous. If Kλ has a maximal model, then it is easy to
check directly that the maximal model is µ+-model-homogeneous.

For (1), Kλ has joint embedding by categoricity. Now since K[µ,λ) has no maximal
models, any M ∈ K[µ,λ) embeds into an element of Kλ, so joint embedding for
K[µ,λ] follows . To see Kλ has no maximal model, let N ∈ Kλ be given. First
assume λ = µ+. Build a C-increasing continuous chain (Mi)i≤µ+ , and a ∈ N such
that for all i < µ+:

(1) Mi ∈ Kµ, Mi ≤ N .
(2) a /∈M0.
(3) tp(a/Mi;N) does not µ-fork over M0.
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This is enough. Mµ+ ∈ Kλ+ . Moreover by Lemma 3.9.(5), a /∈ Mi for all i < µ+,
so a /∈Mµ+ . Thus Mµ+ < N . By categoricity, the result follows.

This is possible. Pick a C-limit M0 ∈ Kµ with M0 ≤ N (this is possible by model-
homogeneity of N), and pick any a ∈ N\M0. At limits, take unions and use con-
tinuity (Lemma 3.12.(2)) to see the requirements are maintained. For a successor
i = j+1, use extension and some renaming. In details, pick an arbitrary M ′

i BMj

with M ′
i ≤ N (possible by model-homogeneity). By extension (Lemma 3.9.(2)),

there is q ∈ S(M ′
i) that does not µ-fork over M0 and extends pj := tp(a/Mj;N).

Since N is saturated, there is a′ ∈ N realizing q. Pick N ≥ Ni ≥M ′
i containing a′

and a. By assumption, tp(a′/Mj;Ni) = pj = tp(a/Mj;Ni). Thus there is N ′i ≥ Ni

and f : Ni −−→
Mj

N ′i such that f(a′) = a and without loss of generality N ′i ≤ N . Let

Mi := f [M ′
i ] and use invariance to see it is as desired.

If λ > µ+, the proof is completely similar: if there is N1 > N , we are done, so
assume not. Then amalgamation implies N must be model-homogeneous. Build
a <univ-increasing continuous (Mi)i≤λ and a ∈ N such that for all i < λ:

(1) Mi ∈ K[µ+,λ), Mi ≤ N .
(2) Mi+1 is µ+-model-homogeneous.
(3) tp(a/Mi;N) does not (≥ µ)-fork over M0.

As before, this is possible and the result follows. �

Corollary 5.13. If K is categorical in λ and κ = ℵ0, then s is a type-full good−S

λ-frame.

Proof. Lemma 5.12 tells us all the hypotheses of Corollary 5.11 are satisfied. �

Note that categoricity in λ is not the only hypothesis giving that all models in Kλ

are µ+-model-homogeneous. For example:

Fact 5.14 (Theorem 5.4 in [BG]). Assume K has amalgamation, is categorical
in a cardinal θ so that Kθ has a µ+-model-homogeneous model (this holds if e.g.
θµ = θ). Then every member of K≥χ is µ+-model-homogeneous, where χ :=
min(θ, supγ<µ i(2γ)+).

6. Getting symmetry

From Corollary 5.11, we obtain from reasonable assumptions a forking notion that
satisfies all the properties of a good λ-frame except perhaps symmetry. Note that
assuming more tameness, the frame can also be extended (see Fact 6.12) to models
of size above λ:

Fact 6.1. Let s = (K,^,Sbs) be a good−S λ-frame. Let θ > λ and let F := [λ, θ).
Assume KF has amalgamation and no maximal models, and K is (λ,< θ)-tame.
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Then s can be extended to a good−S F -frame. If s is type-full, then the extended
frame will also be type-full.

Proof. Apply [Bon14a, Theorem 1.1]: its proof only uses the tameness for 2-types
hypothesis to obtain symmetry. Note that if (as there) we start with a good λ-
frame, then no maximal models follows. Here we do not have symmetry, so we
assume it as an additional hypothesis. The proof of Lemma 4.11 gives us that the
extended frame is type-full if s is. �

We have justified:

Hypothesis 6.2. s = (K,^,Sbs) is a good− F -frame, where F is an interval of
cardinals of the form [λ, θ) for λ a cardinal and θ > λ either a cardinal or ∞.

In this section, we will prove that s also satisfies symmetry if θ is big-enough.
Note that we do not need to assume tameness since enough tameness for what
we want follows from the uniqueness and local character properties of s-forking,
see [Bon14a, Theorem 3.2].

Note that (see the definition of good− in 2.21) we do not assume s satisfies bs-
stability. It will hold in the setup of the previous sections, but the arguments of
this section work just as well without it. Note in passing that bs-stability and
stability are equivalent:

Fact 6.3 ( [She09a], Claim II.4.2.1). For any λ′ ∈ F , s � λ′ satisfies bs-stability if
and only if K is stable in λ′.

Moreover, eventual stability will follow from the structural properties of forking:

Proposition 6.4.

(1) If 2λ ∈ F , then K is stable in 2λ.
(2) Assume χ0 ∈ F and K is stable in χ0. Then K is stable in every χ ≥ χ0

with χ ∈ F .

In particular, if χ is a cardinal with 2λ ≤ χ < θ, then K is stable in χ.

Proof.

(1) Let χ := 2λ. By Fact 6.3, it is enough to show that s � χ satisfies bs-
stability. Let M ∈ Kχ, and let (pi)i<χ+ be elements of Sbs(M). Let (Mi)i<χ
be a resolution of M . For each i < χ+, local character implies there
exists ji < χ such that pi does not s-fork over Mji . By the pigeonhole
principle, we can assume without loss of generality that ji = j0 for all
i < χ+. By Proposition 2.23 and transitivity, there exists M ′ ∈ Kλ such
that M ′ ≤Mj0 and pi does not s-fork over M ′ for all i < χ+. We know that
|S(M ′)| ≤ 2λ = χ, so by the pigeonhole principle again, we can assume that
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there is q ∈ S(M ′) such that pi � M ′ = q for all i < χ+. By uniqueness,
pi = pi′ for all i, i′ < χ+, and the result follows.

(2) By the proof of stability in Fact 6.1.

�

We would like to give conditions under which s has symmetry. A useful fact9 is
that it is enough to look at s � λ:

Fact 6.5 (Theorem 6.8 in [BVb]). s has symmetry if and only if s � λ has sym-
metry.

Since we are not assuming anything about how s is defined, we will work by
contradiction: We will show that if θ is big enough and symmetry fails, then we
get the order property, a nonstructure property which implies unstability. This
is how the symmetry property of forking was originally proven in the first-order
context, see [She90, Theorem III.4.13]. The same approach was later used in a non-
elementary setup in [She75, Theorem 5.1], and generalized in [BGKV, Theorem
5.14]. We will rely on the proof of the latter.

The definitions and fact below do not need Hypothesis 6.2.

Definition 6.6. Let α, χ and γ be cardinals. A model N has the (α, χ)-order
property of length γ if there exists M ∈ K≤χ with M ≤ N (we also allow M to
be empty) and (āi)i<γ, āi ∈ αN so that for any i0 < i1 < γ and j0 < j1 < γ,
tp(āi0 āi1/M ;N) 6= tp(āj1 āj0/M ;N). If χ = 0, we omit it.

K has the (α, χ)-order property of length γ if some N ∈ K has it. K has the (α, χ)-
order property if it has the (α, χ)-order property for all lengths (we sometimes also
say K has the (α, χ)-order property of length ∞). K has the order property if it
has the α-order property for some α.

Remark 6.7. If N has the (α, χ)-order property of length γ, then it has the
(α + χ)-order property of length γ.

Definition 6.8. Given a cardinal χ, define h(χ) := i(2χ)+ .

Fact 6.9.

(1) If K has the (α, χ)-order property of length h(α+χ+ LS(K)), then K has
the (α, χ)-order property.

(2) If K has the (α, χ)-order property, then it is α-unstable in χ′ for all χ′ ≥ χ.

9This is not crucial to our argument, but enables us to obtain an explicit upper bound on the
amount of tameness needed.
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Proof. The statements essentially appear in [She99, Claim 4.5.3, Claim 4.7.2]. The
proof of (1) is an application of Morley’s method together with Shelah’s presenta-
tion theorem, and a proof of a statement similar to (2) is sketched in [BGKV, Fact
5.13]. �

Fact 6.10. If s does not have symmetry, then K has the (2, λ)-order property of
length θ.

Proof. By Fact 6.5, s � λ does not have symmetry. The result now follows by
exactly the same proof as [BGKV, Theorem 5.14]. �

Corollary 6.11. If θ ≥ h(λ), then s has symmetry.

Proof. If s does not have symmetry, then by Fact 6.10 and Fact 6.9.(1), K has the
(2, λ)-order property and hence by Fact 6.9.(2) is 2-unstable in 2λ. By Theorem 2.7,
K is unstable in 2λ, contradicting Proposition 6.4 (note that 2λ < h(λ) ≤ θ). �

Thus it seems quite a big gap between λ and θ is needed. On the other hand the
proof of Fact 6.1 tells us that with enough tameness we can make F bigger:

Fact 6.12. Let θ′ ≥ θ and let F ′ := [λ, θ′). Assume KF ′ has amalgamation and
no maximal models, and K is (λ, θ′)-tame. Then s can be extended to a good−

[λ, θ′)-frame. If s has bs-stability, the extended frame will also have bs-stability.
If s is type-full, then the extended frame will also be type-full.

Proof. By Remark 2.22, s is determined by s � λ. Now apply Fact 6.1. �

Remark 6.13. We could replace (λ, θ′)-tameness by (λ′, θ′)-tameness in the above,
where λ′ ∈ F . This turns out to be equivalent (at least if we consider tameness for
basic types) since the uniqueness property of s gives us (λ, λ′)-tameness for basic
types.

Corollary 6.14. Let F ′ := [λ, h(λ)). Assume KF ′ has amalgamation and no
maximal models, and K is (λ,< h(λ))-tame. Then s has symmetry.

Proof. Using Fact 6.12, we can extend s to assume without loss of generality that
θ ≥ h(λ). Now use Corollary 6.11. �

7. The main theorems

We finally have our promised good frame:

Theorem 7.1. Assume:

(1) K is an abstract elementary class. µ ≥ LS(K) is a cardinal.
(2) Kµ 6= ∅ has joint embedding.
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(3) C is an abstract universal ordering on Kµ. In particular (by Remark 2.14),
Kµ has amalgamation, no maximal models, and is stable.

(4) Splitting has ℵ0-local character for C-increasing chains in Kµ.
(5) λ > µ is such that:

(a) K is (µ,< h(λ))-tame.
(b) K[µ,h(λ)) has amalgamation and no maximal models.
(c) All the models in Kλ are µ+-model-homogeneous.

Then K has a type-full good [λ, h(λ))-frame.

Proof. Corollary 5.11, gives us a good−S λ-frame s. By Corollary 6.14, s also has
symmetry. �

We can use categoricity to derive some of the hypotheses above. We will use:

Fact 7.2. Assume K has amalgamation and no maximal models. Assume K is
categorical in λ. Then:

(1) K is stable in all LS(K) ≤ µ < λ.
(2) For any LS(K) ≤ µ < cf(λ) and any limit δ < µ+, µ-splitting has ℵ0-local

character for C-chains, where C:=<µ,δ.
(3) Let h2 := h(h(LS(K))). Assume λ is a successor cardinal and λ > λ0 ≥ h2.

Then K is (h2, λ0)-tame and categorical in λ0. In addition, the model of
size λ0 is saturated.

Proof. (1) is [She99, Claim 1.7]. (2) is [She99, Lemma 6.3], and (3) were originally
stated (with a lower Hanf number) in [She99, Main Claim II.2.3] and [She99,
Theorem II.2.7]. A full proof (with discussion on whether it is possible to lower
the h2 bound) can be found in [Bal09, Chapter 14]. �

Theorem 7.3. Let K be an abstract elementary class and let λ be a cardinal such
that cf(λ) > µ ≥ LS(K). Let F := [λ, h(λ)), F ′ := [µ, h(λ)). Assume:

(1) KF ′ has amalgamation and no maximal models.
(2) Kλ is categorical.
(3) K is (µ,< h(λ))-tame.

Then K has a type-full good F -frame.

Proof. First, Kλ 6= ∅ by categoricity. By Lemma 5.12, KF ′ has joint embedding
and all models in Kλ are µ+-model-homogeneous. By Fact 7.2, µ-splitting has
ℵ0-local character for C-chains, where C:=<λ,ω. This shows all the hypotheses of
Theorem 7.1 are satisfied. �

Assuming categoricity in a high-enough successor, we obtain the tameness assump-
tion:
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Theorem 7.4. LetK be an abstract elementary class. Let µ := h2 := h(h(LS(K))).
Let λ := µ+. Assume K has amalgamation, joint embedding, and is categorical in
some successor θ ≥ h(λ).

Let F := [λ, θ). Then there is a type-full good F -frame with underlying AEC K.

Proof. Since θ ≥ h(LS(K)), K has arbitrarily large models and so using joint
embedding K has no maximal models. By Fact 7.2, K is categorical in λ and K
is (µ,< h(λ))-tame. Apply Theorem 7.3. �

Notice that one also obtains that categoricity (at a cardinal of high-enough cofinal-
ity) and tameness implies stability everywhere. This improves on [BKV06, Corol-
lary 4.7]:

Theorem 7.5. Let K be an abstract elementary class with amalgamation and no
maximal models. Assume K is categorical in some λ such that cf(λ) > µ ≥ LS(K)
and K is (µ, µ′)-tame. Then K is stable in all θ ∈ [LS(K), µ′]. In particular, if
µ′ =∞, then K is stable everywhere.

Proof. By Fact 7.2, µ-splitting has ℵ0-local character for C-chains, where C:=<µ,ω

and K is stable everywhere below and at µ. Apply Theorem 5.6 to see K is stable
everywhere in (µ, µ′]. �

This result is much more local than the other results of this section. For example,
we do not need to assume that µ′ ≥ h(µ). Moreover, as Theorem 5.6 shows, the
categoricity hypothesis can be replaced by µ-splitting having ℵ0-local character for
C-chains, for some abstract universal ordering C on Kµ.

Assuming the generalized continuum hypothesis (GCH), we obtain a more general
stability spectrum theorem:

Theorem 7.6. Assume GCH. Let K be an abstract elementary class with amal-
gamation and no maximal models. Assume K is µ-tame for µ ≥ LS(K), C is
an abstract universal ordering on Kµ, and µ-splitting has κ-local character for
C-increasing chains. Then K is stable in all λ ≥ µ with λ = λ<κ.

Proof. K is stable in µ since we have an abstract universal ordering on Kµ. If
λ > µ, the result follows from Theorem 5.7. �

Remark 7.7. If K is the class of models of a complete first-order theory, the
conditions for stability given by Corollary 7.6 are very close10 to optimal (see
[She90, Corollary III.3.8]).

10The least regular cardinal κ such that splitting has κ-local character will be at most the
successor of κ(T ).
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Remark 7.8. Let K be an abstract elementary class with amalgamation and no
maximal models. AssumeK is χ-tame and stable in some µ ≥ h(χ). Then [GV06b,
Theorem 4.13] shows that for some κ < h(χ), µ-splitting has κ-local character.
Thus we have:

Corollary 7.9. Assume GCH. Let K be an abstract elementary class with amal-
gamation and no maximal models. Assume K is χ-tame and stable in some
µ ≥ LS(K). Then there is κ < h(χ) such that K is stable in all λ ≥ µ with
λ<κ = λ.

Proof. If µ < h(χ), then by [GV06b, Corollary 6.4] one can take κ := µ+, so
assume µ ≥ h(χ). By the previous remark, there is κ < h(χ) such that µ-splitting
has κ-local character. The result now follows from Theorem 7.6. �

Remark 7.10. In [Vasb], we use different methods to prove Corollary 7.9 in ZFC.
We do not know whether Corollary 7.6 also holds in ZFC (although it is clear from
the proof that much less than GCH is needed).

We can also apply our good frame to the question of uniqueness of limit models:

Theorem 7.11 (Uniqueness of limit models). Assume the hypotheses of Theorem
7.3 hold. Then K has a unique limit model in any µ′ ∈ F . In fact, if M0 ∈ Kµ′ and
M` is (µ′, δl)-limit over M0 for ` = 1, 2 and δl a limit ordinal, then M1

∼=M0 M2.

In particular, if K has amalgamation and no maximal models, is categorical in λ
and is µ-tame for some µ < cf(λ), then K has a unique limit model in any µ′ ≥ λ.

Proof. By Theorem 7.3, K has a good F -frame s. In particular, K is stable in µ′,
so one can iterate Fact 2.10 to build a (µ′, δ)-limit model for any desired δ < (µ′)+.
To see uniqueness, apply [She09a, Lemma II.4.8] (see [Bon14a, Theorem 9.2] for a
detailed proof of that result). �

We see this theorem as an encouraging approximation to generalizing the upward
categoricity transfer result of [GV06a] (which assumes categoricity in a successor
cardinal) to categoricity in a limit cardinal.

Remark 7.12. Uniqueness of limit models of cardinality µ was asserted to follow
from categoricity in some λ+ > µ already in [SV99]. However, an error was found
by VanDieren in 1999. VanDieren [Van06, Van13] proves uniqueness with the
additional assumption that unions of amalgamation bases are amalgamation bases
(but does not use tameness). It is still open whether uniqueness of limit models
follows from categoricity only. In [GVV], it is shown that uniqueness of limit
models follows from a superstability-like assumption akin to ℵ0-local character
of µ-splitting, amalgamation, and a unidimensionality assumption (the authors
initially claimed to prove the result without unidimensionality but the claim was
later retracted).
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Remark 7.13. A variation on Theorem 7.11 is [BG, Corollary 6.10], which uses
stronger locality assumptions but manages to obtain uniqueness of limit models
below the categoricity cardinal without any cofinality restriction.

8. Conclusion and further work

Assuming amalgamation, joint embedding, no maximal models, and tameness,
we have given superstability-like conditions under which an abstract elementary
class has a type-full good frame s, i.e. a forking-like notion for 1-types. These
arguments would work just as well to get a notion of independence for all n-
types, with n < ω. The proof of extension breaks down, however, for types of
infinite length (difficulties in obtaining the extension property in the absence of
compactness is one of the reasons11 it was assumed as an axiom in [BG]).

Shelah’s approach around this in [She09a, Chapter II] is to show that if the frame
is weakly successful (a uniqueness condition for certain kinds of amalgamations),
then it has a notion of forking for types of models. In [She09a, Chapter III], Shelah
has several hundreds of pages of approximations on when weak successfulness can
be transferred across cardinals (many of his difficulties come from the fact he is
not assuming amalgamation or no maximal models), but even assuming s � λ is
weakly successful for every λ, it is not clear how we can get a good forking notion
for models of different sizes. This is one direction further work could focus on.

Another (non-orthogonal) direction would be to find applications for such a forking
notion. As mentioned in the previous section, we believe it could be useful in
proving categoricity transfer theorems. Moreover, the frame built in Section 5 is
only well-behaved for µ+-saturated models, and it would be interesting to know
when the class of µ+-saturated models is an AEC. This calls for tools to deal with
unions of saturated models and we plan to explore this further in future work12.
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