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Abstract. We prove:

Theorem 0.1. Let K be a universal class. If K is categorical in
cardinals of arbitrarily high cofinality, then K is categorical on a
tail of cardinals.

The proof stems from ideas of Adi Jarden and Will Boney, and
also relies on a deep result of Shelah. As opposed to previous
works, the argument is in ZFC and does not use the assumption of
categoricity in a successor cardinal. The argument generalizes to
abstract elementary classes (AECs) that satisfy a locality property
and where certain prime models exist. Moreover assuming amal-
gamation we can give an explicit bound on the Hanf number and
get rid of the cofinality restrictions:

Theorem 0.2. Let K be an AEC with amalgamation. Assume
that K is fully LS(K)-tame and short and has primes over sets
of the form M ∪ {a}. Write H2 := i(

2

i
(2LS(K))

+
)+ . If K is

categorical in a λ > H2, then K is categorical in all λ′ ≥ H2.
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1. Introduction

Morley’s categoricity theorem [Mor65] states that a first-order count-
able theory that is categorical in some uncountable cardinal must be
categorical in all uncountable cardinals. The result motivated much of
the development of first-order classification theory (it was later gener-
alized by Shelah [She74] to uncountable theories).

Toward developing a classification theory for non-elementary classes,
one can ask whether there is such a result for infinitary logics, e.g. for
an Lω1,ω sentence. In 1971, Keisler proved [Kei71, Section 23] a general-
ization of Morley’s theorem to this framework assuming in addition that
the model in the categoricity cardinal is sequentially homogeneous. Un-
fortunately Shelah later observed using an example of Marcus [Mar72]
that Keisler’s assumption does not follow from categoricity. Still in the
late seventies Shelah proposed the following far-reaching conjecture:

Conjecture 1.1 (Open problem D.(3a) in [She90]). If L is a count-
able language and ψ ∈ Lω1,ω is categorical in one λ ≥ iω1 , then it is
categorical in all λ′ ≥ iω1 .

This has now become the central test problem in classification theory
for non-elementary classes. Shelah alone has more than 2000 pages
of approximations (for example [She75, She83a, She83b, MS90, She99,
She01, She09a, She09b]). Shelah’s results led him to introduce a se-
mantic framework encompassing several different infinitary logics and
algebraic classes [She87a]: abstract elementary classes (AECs). In this
framework, we can state an eventual version of the conjecture1:

Conjecture 1.2 (Shelah’s eventual categoricity conjecture for AECs).
An AEC that is categorical in a high-enough cardinal is categorical on
a tail of cardinals.

1The statement here appears in [She09a, Conjecture N.4.2].
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Remark 1.3. A more precise statement is that there should be a func-
tion µ 7→ λµ such that every AEC K categorical in some λ ≥ λLS(K)

is categorical in all λ′ ≥ λLS(K). By a similar argument as for the
existence of Hanf numbers [Han60] (see [Bal09, Conclusion 15.13]),
Shelah’s eventual categoricity conjecture for AECs is equivalent to the
statement that an AEC categorical in unboundedly many cardinals is
categorical on a tail of cardinals. We will use this equivalence freely.
Note that Theorem 0.2 gives an explicit2 bound for λµ, so proves a
stronger statement than just Shelah’s eventual categoricity conjecture
for universal classes with amalgamation3.

Positive results are known in less general frameworks: For homoge-
neous model theory by Lessmann [Les00] and more generally for ℵ0-
tame4 simple finitary AECs by Hyttinen and Kesälä [HK11] (note that
these results apply only to countable languages). In uncountable lan-
guages, Grossberg and VanDieren proved the conjecture in tame AECs
categorical in a successor cardinal [GV06c, GV06a]. Later Will Boney
pointed out that tameness follows5 from large cardinals [Bon14b], a re-
sult that (as pointed out in [LR]) can also be derived from a 25 year old
theorem of Makkai and Paré ([MP89, Theorem 5.5.1]). A combination
of this gives that statements much stronger than Shelah’s categoricity
conjecture for a successor hold if there exists a proper class of strongly
compact cardinals.

The question of whether categoricity in a sufficiently high limit cardinal
implies categoricity on a tail remains open (even in tame AECs). The
central tool there is the notion of a good λ-frame, a local axiomatization
of forking which is the main concept in [She09a]. After developing the
theory of good λ-frames over several hundreds of pages, Shelah claims
to be able to prove the following (see [She09a, Discussion III.12.40], a
proof should appear in [She]):

2We thank John Baldwin for helpful conversation on the topic.
3We are not sure how to make the distinction precise. Maybe one can call the

computable eventual categoricity conjecture the statement that has the additional
requirement that µ 7→ λµ be computable, where computable can be defined as in
[BS14]. Note that in Shelah’s original categoricity conjecture, λµ is i(2µ)+ , see

[She00, 6.14.(3)].
4Tameness is a locality property for orbital types introduced by Grossberg and

VanDieren in [GV06b].
5Recently Boney and Unger [BU] established that the statement “all AECs are

tame” is in fact equivalent to a large cardinal axioms (the existence of a proper class
of almost strongly compact cardinals). This result does not however say anything
on the consistency strength of Shelah’s eventual categoricity conjecture.
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Claim 1.4. Assume that 2θ < 2θ
+

for all cardinals θ. Let K be an AEC
such that there is an ω-successful6 good+ λ-frame with underlying class
Kλ. If K is categorical in λ and in some µ > λ+ω, then K is categorical
in all µ > λ+ω.

Assuming amalgamation and Claim 1.4, Shelah obtains the eventual
categoricity conjecture [She09a, Theorem IV.7.12] (or see [Vas17, Sec-
tion 11] for an exposition):

Fact 1.5. Assume Claim 1.4 and 2θ < 2θ
+

for all cardinals θ. Then
an AEC with amalgamation categorical in some λ ≥ h(ℵLS(K)+) is
categorical in all λ′ ≥ h(ℵLS(K)+).

Here and throughout the rest of this paper, we use the notation from
[Bal09, Chapter 14]:

Notation 1.6. For θ an infinite cardinal, let h(θ) := i
(2θ)

+ . For a

fixed AEC K, write H1 := h(LS(K)), H2 := h(H1).

Note that Fact 1.5 applies in particular to homogeneous model theory
and finitary AECs with uncountable language (the latter case could
not previously be dealt with).

Now a conjecture of Grossberg made in 1986 (see Grossberg [Gro02,
Conjecture 2.3]) is that categoricity of an AEC in a high-enough cardi-
nal should imply amalgamation (above a certain Hanf number). This
is especially relevant considering that all the positive results above as-
sume amalgamation. In the presence of large cardinals, Grossberg’s
conjecture is known to be true (This was first pointed out by Will
Boney for general AECs, see [Bon14b, Theorem 4.3] and the discus-
sion around Theorem 7.6 there. The key is that the proofs in [MS90,
Proposition 1.13] or the stronger [SK96] which are for classes of models
of an Lκ,ω sentence, κ a large cardinal, carry over to AECs K with
LS(K) < κ). In recent years it has been shown that several results
that could be proven using large cardinals can be proven using just
the model-theoretic assumption of tameness or shortness (see all of
the above papers on tameness and for example [Vas16c, BVb]). Thus
one can ask whether tameness suffices to get amalgamation from cat-
egoricity. In general, this is not known. The only approximation is a
result of Adi Jarden [Jar16] discussed more at length in Section 4. Our
contribution is a weak version of amalgamation which one can assume
alongside tameness to prove Grossberg’s conjecture:

6See Appendix A for a definition of good frames and the related technical terms.
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Corollary 4.17. Let K be tame AEC categorical in unboundedly
many cardinals. If K is eventually syntactically characterizable7 and
has weak amalgamation (see Definition 4.11), then there exists λ such
that K≥λ has amalgamation.

The proof uses a deep result of Shelah showing that a categorical AEC
is well-behaved in a specific cardinal, then uses tameness and weak
amalgamation to transfer the good behavior up.

We apply our result to universal classes. Universal classes were in-
troduced by Shelah in [She87b] as an important framework where he
thought finding dividing lines should be possible8. For many years,
Shelah has claimed a main gap theorem for these classes but the full
proof has not appeared in print. The most recent version is Chapter V
of [She09b] which contains hundreds of pages of approximations. The
methods used are stability theory inside a model (averages) as well as
combinatorial tools to build many models. Here we show that universal
classes are tame9 (in fact fully (< ℵ0)-tame and short) and have weak
amalgamation. Moreover Shelah has shown10 that categoricity in car-
dinals of arbitrarily high cofinality implies that the class is eventually
syntactically characterizable. Thus combining Corollary 4.17 and Fact
1.5 we can already prove Theorem 0.1 assuming the weak generalized
continuum hypothesis and Claim 1.4. If the universal class is cate-
gorical in unboundedly many successor cardinals, we can use [GV06a]
instead to get a categoricity transfer in ZFC.

By relying on Shelah’s analysis of frames in [She09a, Chapter III] as
well as the frame transfer theorems in [Bon14a, BVd], we can also prove
that Claim 1.4 holds in ZFC for universal classes (this uses the proof of
Corollary 4.17). We deduce Theorem 0.1 in the abstract (see Corollary
5.28). Note that the result also holds in uncountable languages.

Our results apply to a more general context than universal classes: fully
tame and short AECs with amalgamation which have a prime model
over every set of the form M ∪{a} for M a model (this is Theorem 0.2
in the abstract, see Theorem 5.18 for a proof). Note that existence of
prime models over sets of the form M∪{a} already played a crucial role

7A technical condition discussed more at length in Section 4.
8We were told by Rami Grossberg that another motivation was to study certain

non first-order classes of modules.
9This uses an argument of Will Boney.
10In fact, Shelah asserts that the cofinality restriction is not necessary but Will

Boney and the author have found a gap in Shelah’s argument, and Shelah’s fix has
not yet been published. See the beginning of Section 4.
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in the proof of the categoricity transfer theorem for excellent classes
of models of an Lω1,ω sentences [She83b, Theorem 5.9] (in fact, our
proof works also in this setting). Since in that case we are assuming
amalgamation, there is no cofinality restrictions and the Hanf number
can be explicitly computed.

Theorem 0.2 shows that, at least assuming amalgamation, tameness
and shortness, the existence of primes is the only obstacle. Since amal-
gamation and full tameness and shortness follow from large cardinals
[Bon14b], we obtain:

Theorem 1.7. Let K be an AEC and let κ > LS(K) be strongly
compact. Assume that in K≥κ there are prime models over sets of
the form M ∪ {a}. If K is categorical in a λ > h(h(κ)), then K is
categorical in all λ′ ≥ h(h(κ)).

When K is a universal class, we can replace the strongly compact with
a measurable (Theorem 5.27).

There remains one question: can the conclusion of Theorem 0.1 be
obtained from only categoricity in a single cardinal (without cofinality
restriction)? We answer positively in a sequel11 [Vasd]. Here, let us note
that Theorem 0.1 generalizes to fully tame and short AECs with primes,
but universal classes have better properties (as demonstrated by Shelah
in [She09b, Chapter V]), so there is still room for improvement12.

The paper is organized as follows. In Section 2, we recall the defi-
nition of universal classes and more generally of AECs which admit
intersections (a notion introduced by Baldwin and Shelah in [BS08]),
give examples, and prove some basic properties. In Section 3, we prove
that universal classes are fully (< ℵ0)-tame and short. In Section 4
we give conditions under which amalgamation follows from categoric-
ity (in more general classes than universal classes). In Section 5, we
prove a categoricity transfer in universal classes that have amalgama-
tion and more generally in fully tame and short AECs with primes and
amalgamation.

To avoid cluttering the paper, we have written the technical definitions
and results on independence needed for the paper (but not crucial to

11Since the initial circulation of this paper (in June 2015), there have been
several other improvements: Question 5.19 has been answered positively [Vasc] and
the categoricity threshold of Theorem 0.2 has been improved from H2 to H1 [Vas17].
All these improvements rely on the results of this paper.

12In fact, we had claimed in an earlier version of this work to be able to prove
the full categoricity conjecture for universal classes but our argument contained an
error.
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a conceptual understanding) in Appendix A. In Appendix B, we prove
Fact 5.10, a result of Shelah which is crucial to our argument but whose
proof is only implicit in Shelah’s book. In Appendix C, we give some
properties of independence in AECs which admit intersections.

A word on the background needed to read this paper: we assume famil-
iarity with a basic text on AECs such as [Bal09] or [Gro] and refer the
reader to the preliminaries of [Vas16c] for more details and motivations
on the notation and concepts used here. Familiarity with good frames
[She09a, Chapter II] would be helpful, although the basics are reviewed
in Appendix A. The proof of the two theorems in the abstract relies on
the construction of a good frame in [Vas16b], and more generally13 on
the study of global independence relations in [Vas16a]. Some material
from Chapter III of [She09a] is implicitly used there. To get amalgama-
tion and prove Theorem 0.1, the hard arguments of [She09a, Chapter
IV] are used. However we do not rely on them once amalgamation has
been obtained (so for example Theorem 0.2 does not rely on [She09a,
Chapter IV]). Finally, let us note that a more leisurely overview of the
proof of Theorem 0.1 will appear in [BVc]. We have also written a
short outline of the proof in [Vasb].

This paper was written while working on a Ph.D. thesis under the di-
rection of Rami Grossberg at Carnegie Mellon University and I would
like to thank Professor Grossberg for his guidance and assistance in my
research in general and in this work specifically. I thank Will Boney
for pointing me to AECs which admit intersections, for helpful con-
versations, and for good feedback. I thank John Baldwin, Adi Jarden,
and the referee for useful feedback that greatly helped me improve the
presentation of this paper.

2. AECs which admit intersections

Recall:

Definition 2.1 ([She87b]). A class of structures K is universal if:

(1) It is a class of L-structures for a fixed language L = L(K),
closed under isomorphisms.

(2) If 〈Mi : i < δ〉 is ⊆-increasing in K, then
⋃
i<δMi ∈ K.

(3) If M ∈ K and M0 ⊆M , then M0 ∈ K.

13Although since this paper has first been made public, an improvement has been
published that avoids dealing with global independence relation, see [Vasc] (we have
kept the original proof to avoid changing history and also because Appendix A is
useful in other contexts).
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Example 2.2.

(1) The class of models of a universal Lλ,ω theory (that is, a set of
sentences of the form ∀x0 . . . ∀xn−1ψ, with ψ a quantifier-free
Lλ,ω-formula) is universal.

(2) Not all elementary classes are universal but some universal
classes are not elementary (locally finite groups are one exam-
ple).

(3) Coloring classes [KLH16] are universal classes. This shows that
the behavior of amalgamation is non-trivial even in universal
classes: some coloring classes can have amalgamation up to
iα for some α < LS(K)+ and fail to have it above iLS(K)+ .
Other universal classes with non-trivial amalgamation spectrum
appear in [BKL].

(4) If K is a universal class in a countable vocabulary with:
(a) Arbitrarily large models.
(b) Joint embedding.
(c) Disjoint amalgamation (see Definition 4.1).

Then K is a finitary abstract elementary class in the sense of
Hyttinen and Kesälä [HK06, Definition 2.9]. We do not know
whether K is always simple (in the sense of [HK11, Definition
6.1]. In any case, the arguments of Hyttinen and Kesälä only
deal with countable languages.

Universal classes are abstract elementary classes:

Definition 2.3 (Definition 1.2 in [She87a]). An abstract elementary
class (AEC for short) is a pair (K,≤), where:

(1) K is a class of L-structured, for some fixed language L = L(K).
(2) ≤ is a partial order (that is, a reflexive and transitive relation)

on K.
(3) (K,≤) respects isomorphisms: If M ≤ N are in K and f : N ∼=

N ′, then f [M ] ≤ N ′.
(4) If M ≤ N , then M ⊆ N .
(5) Coherence: If M0,M1,M2 ∈ K satisfy M0 ≤ M2, M1 ≤ M2,

and M0 ⊆M1, then M0 ≤M1;
(6) Tarski-Vaught axioms: Suppose δ is a limit ordinal and 〈Mi ∈

K : i < δ〉 is an increasing chain. Then:
(a) Mδ :=

⋃
i<δMi ∈ K and M0 ≤Mδ.

(b) If there is some N ∈ K so that for all i < δ we have
Mi ≤ N , then we also have Mδ ≤ N .
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(7) Löwenheim-Skolem-Tarski axiom: There exists a cardinal λ ≥
|L(K)| + ℵ0 such that for any M ∈ K and A ⊆ |M |, there is
some M0 ≤ M such that A ⊆ |M0| and ‖M0‖ ≤ |A| + λ. We
write LS(K) for the minimal such cardinal.

We often will not distinguish between the class K and the pair (K,≤).

Remark 2.4. If K is a universal class, then (K,⊆) is an AEC with
LS(K) = |L(K)| + ℵ0. We will use this fact freely. Note that K may
have finite models, and it is the case in several examples, see [BKL].

We now recall the definition of AECs that admit intersections, a notion
introduced by Baldwin and Shelah. It is interesting to note that Bald-
win and Shelah thought of admitting intersections as a weak version of
amalgamation (see the conclusion of [BS08]).

Definition 2.5 (Definition 1.2 in [BS08]). Let K be an AEC.

(1) Let N ∈ K and let A ⊆ |N |. N admits intersections over A if
there is M0 ≤ N such that |M0| =

⋂
{M ≤ N | A ⊆ |M |}. N

admits intersections if it admits intersections over all A ⊆ |N |.
(2) K admits intersections if N admits intersections for all N ∈ K.

Example 2.6.

(1) If K is a universal class, then K admits intersections (and see
Remark 2.13).

(2) If K is a class of models of a first-order theory, then when (K,⊆)
admits intersections has been characterized by Rabin [Rab62].

(3) Several classes appearing in algebra admit intersections. For ex-
ample [Gro02, Example 1.15], let K be the class of algebraically
closed valued fields (we code the value group with an additional
predicate), ordered by F1 ≤ F2 if and only if F1 is a subfield of
F2, the value groups are the same, and the valuations coincide
on F1. Then K admits intersections. Again, K is not universal
(as it is not closed under substructure).

(4) The examples in [BS08] admit intersections. Since they are not
(< ℵ0)-tame, they cannot be universal classes (see Theorem
3.7).

(5) The Hart-Shelah example [HS90, BK09] admits intersections
but is also not (< ℵ0)-tame.

(6) If C is a quasiminimal excellent pregeometry class (see [Zil05,
Kir10]) then the AEC K that it induces admits intersections
and is categorical in every uncountable cardinal. Moreover it
will be fully tame and short (at least assuming the existence of
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large cardinals). However it need not be finitary (take C to be
the class of pseudo-exponential fields [Kir13, Theorem 2]).

In the rest of this section, we give several equivalent definitions of
admitting intersections and deduce some properties of these classes.
All throughout this paper, we assume:

Hypothesis 2.7. K is an AEC.

Definition 2.8. Let M ∈ K and let A ⊆ |M | be a set. M is minimal
over A if whenever M ′ ≤M contains A, then M ′ = M . M is minimal
over A in N if in addition M ≤ N .

Definition 2.9. Let N ∈ K. We say F is a set of Skolem functions
for N if:

(1) F is a non-empty set, and each element f of F is a function
from Nn to N , for some n < ω.

(2) For all A ⊆ |N |, M := F [A] :=
⋃
{f [A] | f ∈ F} is such that

M ≤ N and contains A.

Remark 2.10. The proof of Shelah’s presentation theorem (see [She09a,
Lemma I.1.7]) gives that for each N ∈ K, there is F a set of Skolem
functions for N with |F| ≤ LS(K).

Theorem 2.11. Let K be an AEC and let N ∈ K. The following are
equivalent:

(1) N admits intersections.
(2) There is an operator cl := clN : P(|N |)→ P(|N |) such that for

all A,B ⊆ |N | and all M ≤ N :
(a) cl(A) ≤ N .
(b) A ⊆ cl(A).
(c) A ⊆ B implies cl(A) ⊆ cl(B).
(d) cl(M) = M .

(3) For each A ⊆ |N |, there is a unique minimal model over A in
N .

(4) There is a set F of Skolem functions for N such that:
(a) |F| ≤ LS(K).
(b) For all M ≤ N , we have F [M ] = M .

Moreover the operator clN : P(|N |) → P(|N |) with the properties in
(2) is unique and if it exists then it has the following characterizations:

• clN(A) =
⋂
{M ≤ N | A ⊆ |M |}.

• clN(A) = F [A], for any set of Skolem functions F for N such
that F [M ] = M for all M ≤ N .
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• clN(A) is the unique minimal model over A in N .

Proof.

• (1) implies (2): Let clN(A) :=
⋂
{M ≤ N | A ⊆ |M |}. Even

without hypotheses on N , (2b), (2c), and (2d) are satisfied.
Since N admits intersections, (2a) is also satisfied.
• (2) implies (3): Let A ⊆ |N |. Let cl be as given by (2). Let

M := cl(A). By (2a), M ≤ N . By (2b), A ⊆ |M |. Moreover
if M ′ ≤ N contains A, then by (2c), |M | ⊆ |cl(M ′)| but by
(2d), cl(M ′) = M ′. Thus by coherence and (2a) M ≤M ′. This
shows both that M is minimal over A and that it is unique.
• (3) implies (4): We slightly change the proof of [She09a, Lemma

I.1.7] as follows: Let χ := LS(K). For each ā ∈ <ω|N |, let
〈bāi : i < χ〉 be an enumeration (possibly with repetitions) of
the unique minimal model over ran(ā) in N . For each n < ω
and i < χ, we let fni : Nn → N be fni (ā) := bāi . Let F := {fni |
i < χ, n < ω}. Then |F| ≤ LS(K) and if A ⊆ |N |, we claim
that F [A] is minimal over A in N . This shows in particular
that F is as required.

Let M := F [A]. By definition, M =
⋃
ā∈<ω |A|F [ran(ā)].

Now if ā ∈ <ωA, Mā := F [ran(ā)] = {bāi : i < χ} is the unique
minimal model over ran(ā) in N . Thus if ran(ā) ⊆ ran(b̄), we
must have (by coherence) Mā ≤Mb̄. It follows that M ∈ K and
by the axioms of AECs also M ≤ N . Of course, M contains A.
Now if M ′ ≤ M contains A, then for all ā ∈ <ωA, ā ∈ <ω|M ′|,
so as Mā is minimal over ran(ā), Mā ≤ M ′. It follows that
M ≤M ′ so M = M ′.
• (4) implies (1): Let F be as given by (4). Let A ⊆ |N |. Let

M := F [A]. By definition of Skolem functions, M contains A
and M ≤ N . We claim that M =

⋂
{M ′ ≤ N | A ⊆ |M ′|}.

Indeed, if M ′ ≤ N contains A, then by the hypothesis on F ,
M = F [A] ⊆ F [M ′] = M ′.

The moreover part follows from the arguments above. �

Definition 2.12. For N ∈ K let clN : P(|N |)→ P(|N |) be defined by
clN(A) :=

⋂
{M ≤ N | A ⊆ |M |}.

Remark 2.13. If K is a universal class, then one can take the set F
of Skolem functions in (4) to consist of all the functions of N . Thus
clN(A) is just the closure of A under the functions of N .
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Theorem 2.11 allows us to deduce several properties of the operator
clN .

Proposition 2.14. Let M ≤ N ∈ K and let A,B ⊆ |N |.

(1) Invariance: If f : N ∼= N ′, then f [clN(A)] = clN
′
(f [A]).

(2) Monotonicity 1: A ⊆ clN(A).
(3) Monotonicity 2: A ⊆ B implies clN(A) ⊆ clN(B).
(4) Monotonicity 3: If A ⊆ |M |, then clN(A) ⊆ clM(A). Moreover

if N admits intersections over A, then M admits intersections
over A and clN(A) = clM(A).

(5) Idempotence: clN(M) = M .
(6) Finite character: If N admits intersections, then if B ⊆ clN(A)

is finite, there exists a finite A0 ⊆ A such that B ⊆ clN(A0).

Proof. Straightforward given Theorem 2.11: For finite character, use
the characterization in terms of Skolem functions. For monotonicity 3,
let M0 := clN(A). We have M0 ≤ N since N admits intersections over
A. Since M ≤ N contains A, we must have |M0| ⊆ |M |. By coherence,
M0 ≤M , and by minimality, M0 = clM(A). �

Note in particular the following:

Corollary 2.15.

(1) Assume that for every M ∈ K and every A ⊆ |M |, there is
N ≥ M such that N admits intersections over A. Then K
admits intersections.

(2) N ∈ K admits intersections if and only if it admits intersections
over every finite A ⊆ |N |.

Proof.

(1) By Monotonicity 3.
(2) By the proof of Theorem 2.11.

�

Remark 2.16. The second result is implicit in the discussion after
Remark 4.3 in [BS08].

Before stating the next proposition, we recall that any AECs admits a
semantic notion of types. This was first introduced in [She87b, Defini-
tion II.1.9]. We use the notation of [Vas16c, Definition 2.16].

Definition 2.17 (Galois types).
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(1) Let K3 be the set of triples of the form (b̄, A,N), where N ∈ K,
A ⊆ |N |, and b̄ is a sequence of elements from N .

(2) For (b̄1, A1, N1), (b̄2, A2, N2) ∈ K3, we write (b̄1, A1, N1)Eat(b̄2, A2, N2)
if A := A1 = A2, and there exists f` : N` −→

A
N such that

f1(b̄1) = f2(b̄2). We call Eat atomic equivalence of triples and
say that two triples are atomically equivalent.

(3) Note that Eat is a symmetric and reflexive relation on K3. We
let E be the transitive closure of Eat.

(4) For (b̄, A,N) ∈ K3, let gtp(b̄/A;N) := [(b̄, A,N)]E. We call
such an equivalence class a Galois type.

(5) For p = gtp(b̄/A;N) a Galois type, define14 `(p) := `(b̄) and
dom(p) := A.

(6) We say a Galois types p = gtp(b̄/A;N) is algebraic if b̄ ∈ `(b̄)A
(it is easy to check this does not depend on the choice of repre-
sentatives). We mostly use this when `(p) = 1.

(7) For N ∈ K, A ⊆ |N |, and α an ordinal, we let gSα(A;N) :=
{gtp(b̄/A;N) | b̄ ∈ α|N |}. When α = 1, we omit it. ForM ∈ K,
we write gSα(M) for

⋃
M ′≥M gSα(M ;M ′). We similarly define

gS<∞(M), etc.

We can go on to define the restriction of a type (if A0 ⊆ dom(p),
I ⊆ `(p), we will write pI � A0 when the realizing sequence is restricted
to I and the domain is restricted to A0), the image of a type under an
isomorphism, or what it means for a type to be realized.

The next result says that in AECs admitting intersections, equality of
Galois types is witnessed by an isomorphism. This can be seen as a
weak version of amalgamation (see Section 4).

Proposition 2.18. AssumeK admits intersections. Then gtp(ā1/A;N1) =
gtp(ā2/A;N2) if and only if there exists f : clN1(Aā1) ∼=A clN2(Aā2)
such that f(ā1) = ā2.

Proof. Let M1 := clN1(Aā1), M2 := clN2(Aā2). Since N` admits inter-
sections, we have M` ≤ N`, ` = 1, 2 so the right to left direction follows.
Now assume gtp(ā1/A;N1) = gtp(ā2/A;N2). It suffices to prove the
result when the equality is atomic (then we can compose the isomor-
phisms in the general case). So let N ∈ K and f` : N` −→

A
N witness

atomic equality, i.e. f1(ā1) = f2(ā2). By invariance and monotonicity

3, f`[M`] = clf [N`](Af`(ā`)) = clN(Af`(ā`)). Since f1(ā1) = f2(ā2), we

14It is easy to check that this does not depend on the choice of representatives.
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must have that f1[M1] = f2[M2]. Thus f := (f2 � M2)−1 ◦ (f1 � M1) is
as desired. �

Remark 2.19. Proposition 2.18 was already observed (without proof)
in [BS08, Lemma 1.3]. Baldwin and Shelah also assert that E = Eat

(see Definition 2.17), but this does not seem to follow.

Before ending this section, we point out a technical disadvantage of the
definition of admitting intersection. The notion is not closed under the
tail of the AEC: If K admits intersections and λ is a cardinal, then it
is not clear that K≥λ admits intersections. Thus we will work with a
slightly weaker definition:

Definition 2.20. For K an AEC and M ∈ K, let KM be the AEC
defined by adding constant symbols for the elements of M and requiring
that M embeds inside every model of KM . That is, L(KM) = L(K) ∪
{ca | a ∈ |M |}, where the ca’s are new constant symbols, and

KM := {(N, cNa )a∈|M | | N ∈ K and a 7→ cNa is a K-embedding from M into N}

We order KM by (N1, c
N
a )a∈|M | ≤ (N2, c

N2
a ) if and only if N1 ≤ N2 and

cN1
a = cN2

a for all a ∈ |M |.

Definition 2.21. For P a property of AECs and M ∈ K, K has P
above M if KM has P . K locally has P if it has P above every M ∈ K.

Remark 2.22. K locally admits intersections if and only if for every
M ≤ N in K and every A ⊆ |N | which contains M , clN(A) ≤ N .

Remark 2.23. If K locally has P , then for every cardinal λ, K≥λ
locally has P .

3. Universal classes are fully tame and short

In this section, we show that universal classes are fully (< ℵ0)-tame
and short. The basic argument for Theorem 3.7 is due to Will Boney
and will also appear in [Bon].

Note that it is impossible to extend this result to AECs which admits
intersections: [BS08] gives several counterexamples. One could hope
that showing that categoricity in a high-enough cardinal implies tame-
ness (a conjecture of Grossberg and VanDieren, see [GV06a, Conjecture
1.5]) is easier in AECs which admits intersections, but we have been
unable to make progress in that direction and leave it to future work.
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The key of the argument for tameness of universal classes is that the
isomorphism characterizing the equality of Galois type is unique. We
abstract this feature into a definition:

Definition 3.1. K is pseudo-universal if it admits intersections and
for any N1, N2, ā1, ā2, if gtp(ā1/∅;N1) = gtp(ā2/∅;N2) and f, g :
clN1(ā1) ∼= clN2(ā2) are such that f(ā1) = g(ā1) = ā2, then f = g.

Example 3.2.

(1) In universal classes, clN(A) is just the substructure of N gener-
ated by A (see Remark 2.13). Thus universal classes are pseudo-
universal.

(2) Let K be the class of groups in the language containing only the
multiplication symbol. Then K is not a universal class but it
is pseudo-universal (the inverse function and the unit constant
are first-order definable).

(3) We show below that pseudo-universal classes are (< ℵ0)-tame,
hence the AECs in [BS08] admit intersections but are not pseudo-
universal.

(4) More simply, the class K of algebraically closed fields is ele-
mentary (hence (< ℵ0)-tame), admits intersections, but is not
pseudo-universal. Indeed, let M be the algebraic closure of Q
and let x be transcendental. Let N be the algebraic closure of
M ∪ {x}. Then there exists two different automorphisms of N
that fix M ∪ {x}: the identity and one that sends

√
x to −

√
x.

We quickly recall the definitions of tameness and shortness: Tameness
as a property of AECs was introduced by Grossberg and VanDieren in
[GV06b] (it was isolated from a proof in [She99]). It says that Galois
types are determined by small restrictions of their domain. Shortness15

was introduced by Will Boney in [Bon14b, Definition 3.3]. It says that
Galois types are determined by restrictions to small length. We will
use the notation of [Vas16c, Definition 2.22].

Definition 3.3. Let κ be an infinite cardinal.

(1) K is (< κ)-tame if for any M ∈ K and any p 6= q in gS(M),
there exists A ⊆ |M | with |A| < κ such that p � A 6= q � A.

(2) K is fully (< κ)-tame and short if for any M ∈ K, any ordinal
α, and any p 6= q in gSα(M), there exists I ⊆ α and A ⊆ |M |
such that |I|+ |A| < κ and pI � A 6= qI � A.

15What we call “shortness” is called “type shortness” by Boney, but in this paper
we never write the “type”.
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(3) κ-tame means (< κ+)-tame, similarly for fully κ-tame and short.

Definition 3.4. Let ā` ∈ α|N`| and let κ be an infinite cardinal. We
write (ā1, N1) ≡<κ (ā2, N2) if for every I ⊆ α of size less than κ,
gtp(ā1 � I/∅;N1) = gtp(ā2 � I/∅;N2).

The next proposition says roughly that it is enough to show short-
ness for types over the empty set. This appears already as [Bon14b,
Theorem 3.5]. We repeat the argument here for convenience.

Proposition 3.5. Let κ be an infinite cardinal. Assume that for every
α, N` ∈ K, ā` ∈ α|N`|, ` = 1, 2, we have that (ā1, N1) ≡<κ (ā2, N2)
implies gtp(ā1/∅;N1) = gtp(ā2/∅;N2). Then K is fully (< κ)-tame and
short.

Proof. Let β be an ordinal, M ∈ K, p, q ∈ gSβ(M). Assume that
pI � A = qI � A for all I ⊆ β and A ⊆ |M | of size less than κ. Say
p = gtp(ā1/M ;N1), q = gtp(ā2/M ;N2). Let b̄ be an enumeration of
|M | and let p′ := gtp(ā1b̄/∅;N1), q′ := gtp(ā2b̄/∅;N2). By assumption,
(p′)I

′
= (q′)I

′
for all I ′ of size less than κ. In other words, (ā1b̄, N1) ≡<κ

(ā2b̄, N2). Therefore by our locality assumption p′ = q′, and from the
definition of Galois types this implies that p = q. �

Remark 3.6. By a similar argument, we can show that pseudo-universal
classes are locally pseudo-universal (recall Definition 2.21).

Theorem 3.7. If K is pseudo-universal, then K is fully (< ℵ0)-tame
and short.

Proof. Let N` ∈ K, ā` ∈ α|N`|, ` = 1, 2. Assume that (ā1, N1) ≡<ℵ0
(ā2, N2). We show that gtp(ā1/∅;N1) = gtp(ā2/∅;N1), which is enough
by Proposition 3.5. Let M` := clN`(ran(ā`)).

For each finite I ⊆ α, let M`,I := clN`(ran(ā` � I)). By definition of
≡<ℵ0 , for each finite I ⊆ α, gtp(ā1 � I/∅;N1) = gtp(ā2 � I/∅;N2).
Therefore (because K admits intersections) there exists fI : M1,I

∼=
M2,I such that fI(ā1 � I) = ā2 � I. Moreover by definition of pseudo-
universal, fI is unique with that property. This means in particular
that if I ⊆ J ⊆ α are both finite, we must have fI ⊆ fJ . By finite
character of the closure operator, M` =

⋃
I∈[α]<ℵ0 M`,I and so letting

f :=
⋃
I∈[α]<ℵ0 fI , we have that f : M1

∼= M2 and f(ā1) = ā2. This

witnesses that gtp(ā1/∅;M1) = gtp(ā2/∅;M2) and so (since M` ≤ N`),
gtp(ā1/∅;N1) = gtp(ā2/∅;N2). �

Remark 3.8. If K is a universal class (i.e. not “pseudo”), then the
proof of Theorem 3.7 (together with Remark 2.13) shows that Galois
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types are the same as quantifier-free types. That is, gtp(ā1/A;N1) =
gtp(ā2/A;N2) if and only if tpqf(ā1/A;N1) = tpqf(ā2/A;N2), where
tpqf(ā/A;N) denotes the quantifier-free types of ā over A computed in
N .

We can localize Theorem 3.7 to obtain more generally (Remark 3.6):

Corollary 3.9. If K is locally pseudo-universal, then K is fully LS(K)-
tame and short.

Proof. Let M ∈ K and let p, q ∈ gSα(M). Assume that pI � A = qI � A
for all A ⊆ |M | of at most size LS(K) and all I ⊆ α of size at most
LS(K). We want to see that p = q. Without loss of generality ‖M‖ ≥
LS(K). Let M0 ≤ M have size LS(K). We know that pI � M0 = qI �
M0 for all I ⊆ α of size at most LS(K). Since K is locally pseudo-
universal, KM0 (see Definition 2.20) is pseudo-universal. By Theorem
3.7, KM0 is fully (< ℵ0)-tame and short. Translating to K, this means
that for any N ≥M0, any p′, q′ ∈ gSβ(N), if (p′)I � (|M0|∪A) = (q′)I �
(|M0| ∪A) for all finite I and A, then p′ = q′. Setting N, p′, q′ to stand
for M, p, q, we get that p = q, as desired. �

4. Amalgamation from categoricity

We investigate how to get amalgamation from categoricity in tame
AECs admitting intersections. In what follows, we will often use Re-
mark 1.3 without comments. Recall:

Definition 4.1. An AEC K has amalgamation if for any M0 ≤ M`,
` = 1, 2, there exists N ∈ K and embeddings f` : M` −−→

M0

N . We say

that K has λ-amalgamation if this holds for the models in Kλ. We
define similarly disjoint amalgamation, where we require in addition
that f1[M1] ∩ f2[M2] = M0.

We will use the concept of a good λ-frame, a notion of forking for types
of length one over models of size λ, see [She09a, Definition II.2.1] or
Appendix A. The following claim is a deep result of Shelah which says
that good λ-frames exist in categorical classes.

Claim 4.2. If K is categorical in unboundedly many cardinals, then
there exists a categoricity cardinal λ ≥ LS(K) such that K has a good
λ-frame (i.e. there exists a good λ-frame s such that Ks = Kλ). In
particular, K has λ-amalgamation.
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The statement is implicit in Chapter IV of [She09a], but in June 2015
Will Boney and the author identified a gap in a key part of Shelah’s
proof [BVa]. In September 2016, Shelah communicated a fix to the
author, which should appear as an online revision of Sh:734. As of
December 2016, Shelah’s fix has not yet been made public.

The key notion in the proof of Claim 4.2 is:

Definition 4.3 (Definition 2.1 in [BVa]). An AECK is L∞,θ-syntactically
characterizable if whenever M,N ∈ K, if M ≤ N then M �L∞,θ N .
We say that K is eventually syntactically characterizable if for every
infinite cardinal θ, there exists λ such that K≥λ is L∞,θ-syntactically
characterizable.

Remark 4.4. Using that saturated models are model-homogeneous, it
is easy to see that any AEC with amalgamation categorical in a proper
class of cardinals is eventually syntactically characterizable [BVa, Propo-
sition 1.3].

The problematic part of Shelah’s proof is a claim that an AEC cate-
gorical in unboundedly many cardinals is eventually syntactically char-
acterizable (see [She09a, Conclusion IV.2.14]). However the following
weakening is true:

Fact 4.5 (Conclusion IV.2.12.(1) in [She09a]). If K is categorical in
cardinals of arbitrarily high cofinality (that is, for every θ there exists
λ such that K is categorical in λ and cf(λ) ≥ θ), then K is eventually
syntactically characterizable.

From an eventually syntactically characterizable AEC that is categor-
ical in unboundedly many cardinals, Shelah’s proof of Claim 4.2 goes
through:

Fact 4.6 (Theorem 2.12 in [BVa]). If K is eventually syntactically
characterizable and categorical in unboundedly many cardinals, then
there exists a categoricity cardinal λ ≥ LS(K) such that K has a good
λ-frame.

Thus it is reasonable to assume that we have a good λ-frame, and
we want to transfer amalgamation above it. Our inspiration is a recent
result of Adi Jarden, presented at a talk in South Korea in the Summer
of 2014.

Fact 4.7 (Corollary 7.16 in [Jar16]). Assume K has a good λ-frame
where the class of uniqueness triples satisfies the existence property
and K is strongly λ-tame, then K has λ+-amalgamation.



CATEGORICITY IN UNIVERSAL CLASSES: PART I 19

We will not give the definition of the class of uniqueness triples here
(but see Definition A.17 and Fact A.18). It suffices to say that they
are a version of domination for good frames. As for strong tameness,
it is a variation of tameness relevant when amalgamation fails to hold.
Recall that λ-tameness asks for two types that are equal on all their
restrictions of size λ to be equal. The strong version asks them to be
atomically equal, i.e. there is a map witnessing it that amalgamates
the two models in which the types are computed, see Definition 2.17.
Jarden’s result is interesting, since it shows that tameness, a locality
property that we see as quite mild compared to assuming amalgama-
tion, can be of some use to proving amalgamation. The downside is
that we have to ask for a strengthened version.

While Jarden proved much more than λ+-amalgamation, it has been
pointed out by Will Boney (in a private communication) that if one only
wants amalgamation, the hypothesis that uniqueness triples satisfy the
existence property is not necessary. The reason is that the argument
of [Bon14a] can be used to transfer enough of the good frame to λ+ so
that the extension property holds, and the extension property implies
amalgamation.

We make the argument precise here and also show that less than strong
tameness is needed (in particular, it suffices to assume tameness and
that the AEC admits intersections). We first fix some notation.

Definition 4.8. Let λ ≥ LS(K).

(1) K3,1 is the set of triples (a,M,N) such that M ≤ N and a ∈ N .
K3,1
λ is the set of such triples where the models are in Kλ (the

difference with Definition 2.17 is that we require the base to be
a model and the sequence b̄ to have length one).

(2) We say (a1,M1, N1) ∈ K3,1 atomically extends (a0,M0, N0) ∈
K3,1 if M1 ≥M0 and (a1,M0, N1)Eat(a0,M0, N0) (recall Defini-
tion 2.17)

(3) We say M ∈ Kλ has the type extension property if for any
N ≥ M in Kλ and any p ∈ gS(M), there exists q ∈ gS(N)
extending p.

(4) We say M has the strong type extension property if for any N ≥
M , whenever (a,M,M ′) ∈ K3,1

λ , there exists (b,N,N ′) ∈ K3,1
λ

atomically extending (a,M,M ′).

We say Kλ has the [strong] type extension property (or K has the
[strong] type extension property in λ) if every M ∈ Kλ has it.



20 SEBASTIEN VASEY

Remark 4.9. It is well-known (see for example [Gro]) that if K has
amalgamation, then E = Eat. Similarly if λ ≥ LS(K) and K has
λ-amalgamation, then E � K3,1

λ = Eat � K3,1
λ . Moreover, K has λ-

amalgamation if and only if Kλ has the strong type extension property.

We think of the type extension property as saying that amalgamation
cannot fail because there are “fundamentally incompatible” elements
in the two models we want to amalgamate. Rather, the reason amal-
gamation fails is because we simply “do not have enough models” to
witness that two types are equal in one step. It would be useful to
formalize this intuition but so far we have failed to do so.

We are interested in conditions implying that the type extension prop-
erty (not the strong one) is enough to get amalgamation. For this, it
turns out that it is enough to require that the AEC admits intersec-
tions. However we can even require a weaker condition:

Definition 4.10 (Weak atomic equivalence). Let (a`,M,N`) ∈ K3,1
λ ,

` = 1, 2. We say (a1,M,N1)E−at(a2,M,N2) (in words, (a1,M,N1) and
(a2,M,N2) are weakly atomically equivalent) if for ` = 1, 2, there exists
N ′` ≤ N` containing a` and M such that (a`,M,N ′`)Eat(a3−`,M,N3−`).

Definition 4.11. K has weak amalgamation if E � K3,1 = E−at �
K3,1, i.e. equivalence of triples is the same as weak atomic equiva-
lence of triples. Similarly define what it means for K to have weak
λ-amalgamation.

Remark 4.12. K has weak amalgamation if and only if whenever
gtp(a1/M ;N1) = gtp(a2/M ;N2), there exists N ′1 ≤ N1 containing a1

and M and there exists N ≥ N2 and f : N ′1 −→
M

N so that f(a1) = a2.

Remark 4.13. If K locally admits intersections, (a`,M,N`) ∈ K3,1
λ ,

` = 1, 2 and (a1,M,N1)E(a2,M,N2), then by Proposition 2.14, N ′` :=
clN`(|M |∪{a`}) witnesses that (a1,M,N1)E−at(a2,M,N2). Thus in that
case, E � K3,1

λ = E−at � K
3,1
λ , so K has weak amalgamation.

Intuitively, weak amalgamation requires only that points that have the
same Galois types can be amalgamated. The key result is:

Theorem 4.14. Let K be an AEC and λ ≥ LS(K). Assume Kλ has
the type extension property. The following are equivalent:

(1) K has λ-amalgamation.
(2) E � K3,1

λ = Eat � K
3,1
λ (i.e. equivalence of triples is the same as

atomic equivalence of triples).
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(3) K has weak λ-amalgamation (i.e. equivalence of triples is the
same as weak atomic equivalence of triples).

In particular, if K admits intersections and has the type extension
property, then it has amalgamation.

Proof. (1) implies (2) implies (3) is easy. We prove (3) implies (1).

Assume E � K3,1
λ = E−at � K3,1

λ . The idea of the proof is as follows:
we want to amalgamate a triple (M0,M,N), M0 ≤ M , M0 ≤ N .
We use weak amalgamation first to amalgamate some smaller triple
(M0,M

′, N ′) with M0 < M ′ ≤ M , M0 < N ′ ≤ N , then proceed
inductively to amalgamate the entire triple. Claim 1 below shows that
there exists a smaller triple which can be amalgamated and Claim 2 is
a renaming of Claim 1. We then use Claim 2 repeatedly to amalgamate
the full triple.

Claim 1. For every triple (M0,M1,M2) of models in Kλ so that M0 <
M1 and M0 ≤ M2, there exists M ′

1 ≤ M1 and M ′
2 ≥ M2 in Kλ such

that M0 < M ′
1, and there exists g : M ′

1 −−→
M0

M ′
2.

M1

M ′
1

OO

g
// M ′

2

M0

OO

// M2

OO

Proof of claim 1. Let M0 < M` be models in Kλ, ` = 1, 2. Pick any
a1 ∈ |M1|\|M0|. Let p := gtp(a1/M0;M1). By the type extension
property, there exists q ∈ gS(M2) extending p. Pick M∗

2 ≥M2 and a2 ∈
|M∗

2 | such that q = gtp(a2/M2;M∗
2 ). Since E is E−at over the domain of

interest, we have (a1,M0,M1)E−at(a2,M0,M
∗
2 ). Let M ′

1 ≤ M1 contain
a1 and M0 such that (a1,M0,M

′
1)Eat(a2,M0,M

∗
2 ). By definition, we

have that there exists M ′
2 ≥ M∗

2 such that M ′
1 embeds into M ′

2 over
M0, as needed. †Claim 1

Now we obtain amalgamation by repeatedly applying Claim 1. Since
the result is key to subsequent arguments, we give full details below.

Claim 2. For every triple (M0,M1,M2) of models in Kλ so that M0 <
M1 and f : M0 → M2, there exists M ′

1 ≤ M1, M ′
2 ≥ M2 in Kλ and

g : M ′
1 −→M ′

2 such that M0 < M ′
1 and f ⊆ g.
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M1

M ′
1

OO

g
// M ′

2

M0

OO

f
// M2

OO

Proof of claim 2. Let M0,M1,M2 and f be as given by the hypothesis.

Let M̂2 and f̂ be such that f ⊆ f̂ , M0 ≤ M̂2 and f̂ : M̂2
∼= M2. Now

apply Claim 1 to (M0,M1, M̂2) to obtain M ′
1 ≤ M1 with M0 < M ′

1,

M̂2

′
≥ M̂2 and ĝ : M ′

1 −−→
M0

M̂2

′
. Now let f̂ ′, M ′

2 be such that M ′
2 ≥M2

and f̂ ′ : M̂2

′ ∼= M ′
2 extends f̂ . Let g := f̂ ′ ◦ ĝ. Since ĝ fixes M0 and f̂ ′

extends f , g extends f , as desired. †Claim 2

Now let M0 ≤ M and M0 ≤ N be in Kλ. We want to amalgamate M
and N over M0. We try to build 〈Mi : i < λ+〉, 〈Ni : i < λ+〉 increasing
continuous in Kλ and 〈fi : i < λ+〉 an increasing continuous sequence
of embeddings such that for all i < λ+:

(1) Mi ≤M .
(2) fi : Mi −−→

M0

Ni.

(3) N0 = N .
(4) Mi < Mi+1.

This is impossible since then
⋃
i<λ+ Mi has cardinality λ+ but is a K-

substructure of M which has cardinality λ. Now for i = 0, we can take
N0 = N and f0 = idM0 and for i limit we can take unions. Therefore
there must be some α < λ+ such that fα, Mα, Nα are defined but we
cannot define fα+1, Mα+1, Nα+1. If Mα < M , we can use Claim 2
(with M0, M1, M2, f there standing for Mα, M , Nα, fα here) to get
Mα+1 ≤ M with Mα < Mα+1 and Nα+1 ≥ Nα with fα+1 : Mα+1 →
Nα+1 extending fα (so M ′

1, M ′
2, g in Claim 2 stand for Mα+1, Nα+1,

fα+1 here). Thus we can continue the induction, which we assumed
was impossible. Therefore Mα = M , so fα : M −−→

M0

Nα amalgamates

M and N over M0, as desired. �

Remark 4.15. It is enough to assume that the type extension property
holds on a set of types satisfying what Shelah calls the density property
of basic types (see axiom (D)(c) in [She09a, Definition II.2.1]): for any
M < N in Kλ, there exists b ∈ |N |\|M | such that gtp(b/M ;N) can be
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extended to any M ′ ≥ M with M ′ ∈ Kλ. This generalization is the
reason the last part of the proof is done non-constructively rather than
first enumerating M and amalgamating it element by element. This
is used to prove Theorem 4.16 in full generality (i.e. without assuming
that the good frame is type-full).

We are now ready to formally state the amalgamation transfer:

Theorem 4.16. Let K be an AEC. Let λ ≥ LS(K) and assume s is a
good λ-frame with underlying class Kλ. If:

(1) K is λ-tame.
(2) K≥λ has weak amalgamation.

Then K≥λ has amalgamation.

Proof. We extend s to models of size greater than λ by defining ≥ s as
in [She09a, Section II.2] (or see [Bon14a, Definition 2.7]). Even without
assuming tameness or weak amalgamation, Shelah has shown that ≥ s
has local character, density of basic types, and transitivity. Moreover,
tameness implies that it has uniqueness. Now work by induction on
µ ≥ λ to show that K has µ-amalgamation. When µ = λ this follows
from the definition of a good frame so assume µ > λ. As in [Bon14a,
Theorem 5.13], we can prove that ≥ s has the extension property for
models of size µ (the key is that the directed system argument only
uses amalgamation below µ). In particular, Kµ has the type extension
property for basic types. The proof of Theorem 4.14 together with the
density of basic types (see Remark 4.15) shows that this suffices to get
µ-amalgamation. �

Corollary 4.17. Let K be a tame AEC that is eventually syntacti-
cally characterizable and categorical in unboundedly many cardinals.
If K has weak amalgamation, then there exists λ such that K≥λ has
amalgamation.

Proof. By Fact 4.6, we can find λ ≥ LS(K) such that Kλ has a good
frame and K is λ-tame. By Theorem 4.16, K≥λ has amalgamation. �

Corollary 4.18. Let K be an eventually syntactically characterizable
AEC categorical in unboundedly many cardinals. If K is tame and
locally admits intersections, then there exists λ such that K≥λ has
amalgamation.

Proof. By Remark 4.13, K has weak amalgamation. Now apply Corol-
lary 4.17. �
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Corollary 4.19. Let K be locally pseudo-universal AEC. If K is
eventually syntactically characterizable and categorical in unboundedly
many cardinals, then there exists λ such that K≥λ has amalgamation.

Proof. By Corollary 3.9, K is tame. Now apply Corollary 4.18. �

We can apply these results to Shelah’s categoricity conjecture and im-
prove Fact 1.5. When K has primes, this will be further improved in
Section 5.

Corollary 4.20. Let K be a tame AEC with weak amalgamation.

(1) If K is categorical in a high-enough successor cardinal, then K
is categorical on a tail of cardinals.

(2) Assume 2θ < 2θ
+

for every cardinal θ and an unpublished claim
of Shelah (Claim 1.4). If K is eventually syntactically charac-
terizable and categorical in unboundedly many cardinals, then
K is categorical on a tail of cardinals.

Proof. By Corollary 4.17 (using Fact 4.5 to see that K is eventually
syntactically characterizable in (1)), we can assume without loss of
generality that K has amalgamation. Now:

(1) Apply [GV06a] (and [She99] can also give a downward transfer).
(2) Apply Fact 1.5.

�

Note that even if K is a universal class which already has amalgama-
tion, Theorem 4.16 is still key to transfer categoricity (see Theorem
5.16).

5. Categoricity transfer in AECs with primes

In this section, we prove a categoricity transfer for AECs that have
amalgamation and primes. Prime triples were introduced in [She09a,
Section III.3], see also [Jar].

Definition 5.1.

(1) Let M ∈ K and let A ⊆ |M |. M is prime over A if for any
enumeration ā of A and any N ∈ K, whenever gtp(ā/∅;M) =
gtp(b̄/∅;N), there exists f : M → N such that f(ā) = b̄.

(2) (a,M,N) is a prime triple if M ≤ N , a ∈ |N |, and N is prime
over |M | ∪ {a}.
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(3) K has primes if for any p ∈ gS(M) there exists a prime triple
(a,M,N) such that p = gtp(a/M ;N).

(4) K weakly has primes if whenever gtp(a1/M ;N1) = gtp(a2/M ;N2),
there exists M1 ≤ M containing a1 and N1 and f : M1 −→

M
N2

such that f(a1) = a2. Similarly define what it means for Kλ to
have or weakly have primes.

Remark 5.2. For M ≤ N and a ∈ |N |, (a,M,N) is a prime triple
if and only if whenever gtp(b/M ;N ′) = gtp(a/M ;N), there exists f :
N −→

M
N ′ such that f(a) = b. Thus if K has primes, then K weakly

has primes.

Remark 5.3. If K admits intersections, M ≤ N , and a ∈ |N |,
(a,M, clN(|M | ∪ {a})) is a prime triple. Thus K has primes.

Assume K is an AEC categorical in λ := LS(K) (this is a reasonable as-
sumption as we can always restrict ourselves to the class of λ-saturated
models of K). Our goal is to prove (with more hypotheses) that if K
is categorical in a θ > λ then it is categorical in all θ′ ≥ λ. To accom-
plish this, we will show that Kλ is uni-dimensional. In [She09a, Section
III.2], Shelah gives several possible generalization of the first-order def-
inition in [She90, Definition V.2.2]. We have picked what seems to be
the most convenient to work with:

Definition 5.4 (Definition III.2.2.6 in [She09a]). Let λ ≥ LS(K). Kλ

is weakly uni-dimensional if for every M < M`, ` = 1, 2 all in Kλ, there
is c ∈ |M2|\|M | such that gtp(c/M ;M2) has more than one extension
in gS(M1).

To understand this definition, it might be helpful to look at the nega-
tion: there exists M < M`, ` = 1, 2 all in Kλ such that for all
c ∈ |M2|\|M |, gtp(c/M ;M2) has exactly one extension in gS(M1).
Working in a good frame, this one extension must be the nonforking
extension (so in particular gtp(c/M ;M2) is omitted in M1). It turns
out that for any c ∈ |M2|\|M | and d ∈ |M1|\|M |, gtp(c/M ;M2) and
gtp(d/M ;M1) are orthogonal (in a suitable sense, see Appendix B), so
they will generate two different dimensions.

Fact 5.5 (Claim III.2.3.(4) in [She09a]). Let λ ≥ LS(K). If Kλ is
weakly uni-dimensional, is categorical in λ, is stable in λ, and has λ-
amalgamation, then16 K is categorical in λ+.

16In [She09a, Claim III.2.3.(4)], Shelah assumes more generally the existence of
a good λ-frame, but the proof shows that the hypotheses mentioned here suffice.
In any case, we will only use Fact 5.5 inside a good frame.



26 SEBASTIEN VASEY

If K is λ-tame and has amalgamation, then categoricity in λ+ is enough
by the categoricity transfer of Grossberg and VanDieren:

Fact 5.6 (Theorem 6.3 in [GV06a]). Assume K is an LS(K)-tame
AEC with amalgamation and no maximal models. If K is categorical
in LS(K) and LS(K)+, then K is categorical in all µ ≥ LS(K).

Thus the hard part is showing that KLS(K) is weakly uni-dimensional.
We proceed by contradiction.

Definition 5.7 (III.12.39.(d) in [She09a]). Let M ∈ K and let p ∈
gS(M). We define17 K¬∗p to be the class of N ∈ KM (recall Definition
2.20) such that f(p) has a unique extension to gS(N � L(K)). Here
f : M → N is given by f(a) := cNa . We order K¬∗p with the strong
substructure relation induced from KM .

Remark 5.8. Let p ∈ gS(M) be nonalgebraic and let M ≤ N . If we
are working in a good frame and p has a unique extension to gS(N),
then it must be the nonforking extension. Thus p is omitted in N .
However even if p is omitted in N , p could have two nonalgebraic
extensions to gS(N), so K¬∗p need not be the same as the class K¬p of
models omitting p.

In general, we do not claim that K¬∗p is an AEC. Nevertheless it is
an abstract class in the sense introduced by Grossberg in [Gro], see
[Vas16c, Definition 2.7]. Thus we can define notions such as amal-
gamation, Galois types, and tameness there just as in AECs. The
following gives an easy criterion for when K¬∗p is an AEC:

Proposition 5.9. Let s = (K,^) be a type-full good (≥ λ)-frame (so
λ = LS(K) and K<λ = ∅). Let M ∈ K and let p ∈ gS(M). Then K¬∗p
is an AEC.

Proof. All the axioms are easy except closure under chains. So let δ be
a limit ordinal and let 〈Ni : i < δ〉 be increasing continuous in K¬∗p.
Identify models in K with their expansions in KM , assuming without
loss of generality that M ≤ N0, i.e. the map a 7→ cN0

a for a ∈ M is
the identity. Let Nδ :=

⋃
i<δMi. We have that Nδ � L(K) ∈ K. Now

if p1, p2 ∈ gS(Nδ � L(K)) are two extensions of p, by local character
there exists i < δ such that p1 and p2 do not fork over Ni. Since
p has a unique extension to Ni, p1 � Ni = p2 � Ni. By uniqueness,
p1 � Nδ = p2 � Nδ. �

17Shelah calls the class K∗.
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In fact, Shelah gave a criterion for when K¬∗p has a good λ-frame:

Fact 5.10 (Claim III.12.39 in [She09a]). Let s be a good λ-frame with
underlying class Kλ. Assume s is type-full, good+, successful (see ap-
pendix A for the definitions of these terms), and Kλ has primes. As-
sume further that K is categorical in λ.

If Kλ is not weakly uni-dimensional, then there exists M ∈ Kλ and
p ∈ gS(M) such that s � K¬∗p (the restriction of s to models in K¬∗p)
is a type-full good λ-frame.

Since this result is crucial to our argument and Shelah’s proof is only
implicit, we have included a proof in Appendix B.

Note that the hypotheses of Fact 5.10 are reasonable. In fact, it is
known that they follow from categoricity in fully tame and short AECs
with amalgamation:

Fact 5.11 (Theorem 15.6 in [Vas16a]). Let K be a fully (< κ)-tame
and short AEC with amalgamation. Let λ, µ be cardinals such that:

LS(K) < κ = iκ < λ = iλ ≤ µ

Assume further that cf(λ) ≥ κ. If K is categorical in µ, then K is
categorical in λ and there exists a type-full successful good λ-frame s
with underlying class Kλ.

From Proposition A.20, it will follow that the frame given by Fact 5.11
is also good+. If in addition the AEC has primes (e.g. if it is universal),
then the hypotheses are satisfied. Of course, the Hanf numbers in Fact
5.11 are not optimal. We give the following improvement in Appendix
A:

Theorem 5.12. Let K be a fully LS(K)-tame and short AEC with
amalgamation and no maximal models. If K is categorical in a µ >
LS(K), then there exists λ0 < h(LS(K)) such that for all λ ≥ λ0 where
K is categorical in λ, there exists a type-full successful good+ λ-frame
with underlying class Kλ.

Proof. Combine Corollaries A.16 and A.21. �

Now we reach a crucial point. For the purpose of a categoricity trans-
fer, it would be enough to show that K¬∗p above has arbitrarily large
models, since this means that there are non-saturated models in every
cardinal above λ. Unfortunately, even if K is fully tame and short and
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has amalgamation, it is not easy to get a handle on K¬∗p. For example,
it is not clear if it has amalgamation or even if it is tame. In [She09a,
Discussion III.12.40] Shelah claims to be able to show using enough
instances of the weak generalized continuum hypothesis that s � K¬∗p
above has arbitrarily large models (this is probably how Claim 1.4 is
proven) and this is the key to the proof of Fact 1.5.

We make the situation where K¬∗p is well-behaved into a definition:

Definition 5.13. K is nice if:

(1) K has weak amalgamation.
(2) For any M ∈ K and any p ∈ gS(M), K¬∗p has weak amalga-

mation and if K is ‖M‖-tame, then so is K¬∗p.

Note that if K is a universal class, then K¬∗p also is universal (using
that K is fully (< ℵ0)-tame and short, we can prove as in Proposition
5.9 that it is an AEC), hence K is nice! More generally:

Proposition 5.14. If K weakly has primes, then K is nice.

Proof. Weak amalgamation follows from the definition of weakly having
primes. Now let M ∈ K and p ∈ gS(M). Observe that K¬∗p weakly has
primes, because if N ∈ K¬∗p, N0 ≤ N � L(K) is in K, and M ≤ N0,
then the natural expansion of N0 is in K¬∗p. Therefore K¬∗p also has
weak amalgamation. If in addition K is ‖M‖-tame, then so is K¬∗p:
indeed if N ∈ K¬∗p, q1, q2 ∈ gS(N), and the two types are equal in K,
then since K¬∗p weakly has primes there is a map witnessing equality
of the types in K¬∗p also. �

The following fact is the key to our argument. It was first proven under
slightly stronger hypotheses by Will Boney [Bon14a]. The interesting
consequence to us is that it gives a local criterion for a tame AEC to
have arbitrarily large models.

Fact 5.15 (Corollary 6.10 in [BVd]). If s is a good λ-frame on Kλ, K
is λ-tame and has amalgamation, then s extends to a good (≥ λ)-frame
on K≥λ. In particular, K≥λ has no maximal models and is stable in
every cardinal above λ.

Theorem 5.16. Let s be a good λ-frame with underlying AEC K.
Assume s is type-full, good+, successful, and Kλ has primes. Assume
also that K is categorical in λ, λ-tame, and nice. The following are
equivalent.

(1) Kλ is weakly uni-dimensional.
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(2) K is categorical in all µ ≥ λ.
(3) K is categorical in some θ > λ.

Proof. Replacing K with K≥λ, assume without loss of generality that
λ = LS(K) and K<LS(K) = ∅. First note that K has amalgamation by
Theorem 4.16. By Fact 5.15, s extends to a good (≥ λ)-frame on K. In
particular, K has no maximal models and is stable in every cardinal.
Moreover by Proposition 5.9, K¬∗p is an AEC for all p ∈ gS(M) and
M ∈ K.

If Kλ is weakly uni-dimensional, then by Fact 5.5, K is categorical in
λ+. By Fact 5.6, K is categorical in all µ ≥ λ. So (1) implies (2). Of
course, (2) implies (3). It remains to show (3) implies (1). We show
the contrapositive.

Assume that K is not weakly uni-dimensional. Let M ∈ Kλ and p ∈
gS(M) be as given by Fact 5.10. Let s¬∗p := s � K¬∗p, the restriction of
s to models in K¬∗p. Since K is nice, K¬∗p has weak amalgamation and
since K is also λ-tame, K¬∗p is λ-tame. Since s¬∗p is a good λ-frame,
Theorem 4.16 gives that K¬∗p has amalgamation. By Fact 5.15, K¬∗p
has no maximal models and is stable in every cardinals. Now let θ > λ.
By stability, K has a saturated model of size θ. Moreover since K¬∗p
has arbitrarily large models there must exist N̂ ∈ K¬∗p of size θ. By

construction, N̂ � L(K) is not saturated of size θ. Therefore K is not
categorical in θ. �

We are now ready to prove a categoricity transfer in fully tame and
short AECs with amalgamation (Theorem 0.2 from the abstract). We
state one more fact:

Fact 5.17. If K is a LS(K)-tame AEC with amalgamation and no
maximal models which is categorical in a λ ≥ H2 (recall Notation 1.6)
and the model of size λ is saturated, then K is categorical in H2.

Proof. By the proof of [She99, Theorem II.1.6] (or see [Bal09, Theorem
14.8]). �

Theorem 5.18. Let K be a fully LS(K)-tame and short AEC with
amalgamation such that K≥H2 has primes. If K is categorical in a
λ > H2, then K is categorical in all λ′ ≥ H2.

Proof. Without loss of generality, K has joint embedding and no max-
imal models: we can start by splitting K into disjoint parts, each of
which has joint embedding, and then work with the unique part which
has arbitrarily large models.
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We start by observing that K is categorical in H2 by Fact 5.17 (note
that the model of size λ is saturated by Facts A.8 and A.9). Now apply
Theorem 5.12 (to K≥LS(K)+) and Theorem 5.16. �

The only place where shortness is used above is to get the existence
property for uniqueness triples (i.e. that the good frame is successful).
The proof shows that it is enough to assume that for some λ, K≥λ is
almost fully good, i.e. it has a nice-enough global independence relation
(see A.1 for a more precise definition). One can ask:

Question 5.19. Can the full tameness and shortness hypothesis be
weakened to just being LS(K)-tame?

We obtain a categoricity transfer for universal classes with amalgama-
tion.

Corollary 5.20. Let K be a locally pseudo-universal AEC with amal-
gamation. If K is categorical in a λ > H2, then K is categorical in all
λ′ ≥ H2.

Proof. By Corollary 3.9, K is fully LS(K)-tame and short. By Remark
5.3, K has primes. Now apply Theorem 5.18. �

In view of Theorem 5.18, a natural question is whether the existence
of primes follows from the other hypotheses:

Question 5.21. If K is fully tame and short, has amalgamation, and
is categorical in unboundedly many cardinals, does there exists λ such
that K≥λ has primes?

Note that by [Bon14b], a positive answer would imply that Shelah’s
categoricity conjecture follows from the existence of a proper class of
strongly compact cardinals. Moreover, it turns out that a converse is
true. This was conjectured in earlier versions of this paper, and the
missing piece was proven in [Vasa]:

Fact 5.22. Let K be an almost fully good AEC (see Definition A.2).
For any λ > LS(K)+, Kλ-sat

λ has primes.

Blackboxing Fact 5.22, we can give a proof of the converse of Theorem
5.18:

Theorem 5.23. Let K be a fully LS(K)-tame and short AEC with
amalgamation. The following are equivalent:

(1) K≥H2 has primes and is categorical in some λ > H2
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(2) K is categorical in all λ′ ≥ H2.

Proof. (1) implies (2) is Theorem 5.18. We show (2) implies (1). As in
the proof of Theorem 5.18, we assume without loss of generality that
K has joint embedding and no maximal models. By Corollary A.16
(with κ, θ there standing for LS(K)+, λ here), K∗ := Kµ-sat is almost

fully good, where µ :=
(
2LS(K)

)+5
. Now apply Fact 5.22 to the AEC

K∗ and use categoricity in all λ′ ≥ H2. �

Remark 5.24. Using the threshold improvements of [Vas17], we can
replace H2 by H1 (and allow λ = H1 in (1)) in Theorem 5.23.

There is still an assumption of amalgamation in Theorem 5.18. Assum-
ing the categoricity cardinals are sufficiently nice, this can be removed
using the results of Section 4:

Theorem 5.25. Let K be a fully tame and short AEC with primes.
If K is categorical in cardinals of arbitrarily high cofinality, then K is
categorical on a tail of cardinals.

Proof. By Fact 4.5, K is eventually syntactically characterizable. By
the definition of having primes, K has weak amalgamation. By Corol-
lary 4.17, there exists λ such that K≥λ has amalgamation. Now apply
Theorem 5.18 to K≥λ. �

Remark 5.26. Instead of categoricity in cardinals of arbitrarily high
cofinality, it suffices to assume that K is eventually syntactically char-
acterizable and categorical in unboundedly many of cardinals.

We can replace the assumption on the categoricity cardinal by large
cardinals. As pointed out in the introduction (Theorem 1.7), a strongly
compact would be enough. Here we improve this to a measurable (but
assume full tameness and shortness). This only gives amalgamation
below the categoricity cardinal but we can then transfer amalgamation
upward using the arguments in Section 4.

Theorem 5.27. Let K be a fully LS(K)-tame and short AEC with
primes. Let κ > LS(K) be a measurable cardinal. If K is categorical
in some λ > h(h(κ)), then K is categorical in all λ′ ≥ h(h(κ)).

Proof. By the main result of [SK96]18 K[κ,λ) has amalgamation (and
K≥κ has no maximal models, using ultraproducts). Combining (the

18The result there is stated in terms of the class of models of an Lκ,ω sentence.
However, Boney [Bon14b] has pointed out that this applies as well when K is an
AEC and κ > LS(K), see in particular the discussion around Theorem 7.6 there.
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proofs of) Facts A.8 and A.9, there is a good κ+-frame with underlying
class Kκ+ . By Theorem 4.16, K≥κ has amalgamation. Now apply
Theorem 5.18 to K≥κ. �

We can now prove Theorem 0.1 from the abstract.

Corollary 5.28. Let K be a universal class (or just a locally pseudo-
universal AEC, see Example 3.2.(1) and Remark 3.6).

(1) If K is categorical in cardinals of arbitrarily high cofinality, then
K is categorical on a tail of cardinals.

(2) If κ > LS(K) is a measurable cardinal and K is categorical in
some λ > h(h(κ)), then K is categorical in all λ′ ≥ h(h(κ)).

Proof. Follow the proof of Corollary 5.20 to see that the assumptions
of Theorems 5.25 and 5.27 respectively are satisfied. �

Appendix A. Independence below the Hanf number

In this appendix, we give all the results needed for the proof of Theorem
5.12. We also define all the technical terms related to good frames used
there. Good frames were introduced by Shelah in [She09a, Chapter II]
but we use the notation and definitions in [Vas16a] (we also extensively
use its results). The reader is invited to consult this paper for more
motivation and background on the concepts used here.

The first definition is that of a global forking-like notion:

Definition A.1 (Definition 8.1 in [Vas16a]). i = (K,^) is a fully good
independence relation if:

(1) K is an AEC with K<LS(K) = ∅ and K 6= ∅.
(2) K has amalgamation, joint embedding, and no maximal models.
(3) K is stable in all cardinals.
(4) i is a (<∞,≥ LS(K))-independence relation (see [Vas16a, Defi-

nition 3.6]). That is, ^ is a relation on quadruples (M,A,B,N)
with M ≤ N and A,B ⊆ |N | satisfying invariance, monotonic-

ity, and normality. We write A
N

^
M
B instead of ^(M,A,B,N),

and we also say gtp(ā/B;N) does not fork overM for ran(ā)
N

^
M
B.

(5) i has base monotonicity, disjointness (A
N

^
M
B implies A ∩ B ⊆

|M |), symmetry, uniqueness, extension, and the local character
properties:
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(a) If p ∈ gSα(M), there exists M0 ≤ M with ‖M0‖ ≤ |α| +
LS(K) such that p does not fork over M0.

(b) If 〈Mi : i ≤ δ〉 is increasing continuous, p ∈ gSα(Mδ) and
cf(δ) > α, then there exists i < δ such that p does not fork
over Mi.

(6) i has the left and right (≤ LS(K))-witness properties: A
N

^
M
B if

and only if for all A0 ⊆ A and B0 ⊆ B with |A0|+|B0| ≤ LS(K),

we have that A0

N

^
M
B0.

(7) i has full model continuity: if for ` < 4, 〈M `
i : i ≤ δ〉 are

increasing continuous such that for all i < δ, M0
i ≤ M `

i ≤ M3
i

for ` = 1, 2 and M1
i

M3
i

^
M0
i

M2
i , then M1

δ

M3
δ

^
M0
δ

M2
δ .

We say that i is good if it has all the properties above except full model
continuity. We say that K is [fully] good if there exists ^ such that
(K,^) is [fully] good.

We will use the following variation:

Definition A.2. i = (K,^) is almost fully good if it satisfies Defini-
tion A.1 except that only the following types are required to have a
nonforking extension:

(1) Types that do not fork over saturated models.
(2) Type that do not fork over models of size LS(K).
(3) Types of length at most LS(K).

As before, we say that K is almost fully good if there exists ^ such
that (K,^) is almost fully good. If we drop “fully” we mean that full
model continuity need not hold.

In this terminology, we have:

Fact A.3 (Theorem 15.1.(3) in [Vas16a]). Let K be a fully (< κ)-tame
and short AEC with amalgamation.

If κ = iκ > LS(K), and K is categorical in a µ > λ0 := (2κ)+5, then
K≥λ is almost fully good, where we have set λ := min(µ, h(λ0)).

A localization of fully good independence relation are Shelah’s good λ-
frames. Roughly speaking, we simply require the types to have length
one and the models to have a fixed size λ. We only give the definition
of a type-full good λ-frame here, since this is the one that we can build
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here. In [She09a, Section II.2], Shelah has a more general definition
where he only requires a dense class of basic types to satisfy the prop-
erties of forking: this is also what we call a good λ-frame (without the
“type-full”) in this paper, e.g. in Theorem 4.16. We use the defini-
tion in [Vas16a, Definition 8.1.(2)] and refer to Remark 3.5 there for
why this is equivalent (in the type-full case) to Shelah’s definition in
[She09a, Section II.2].

Definition A.4. s = (Ks,^) is a type-full good λ-frame if:

(1) There exists an AEC K with λ = LS(K), Kλ = Ks. Below, we
require that all the models be in Ks.

(2) Ks 6= ∅.
(3) Ks has amalgamation, joint embedding, and no maximal mod-

els.
(4) Ks is stable in λ.
(5) ^ is a relation on quadruples (M0, a,M,N) with M0 ≤M ≤ N

and a ∈ |N | satisfying invariance, monotonicity, and normality.

As before, we write a
N

^
M0

M instead of ^(M0, a,M,N), and we

also say gtp(a/M ;N) does not fork over M0 for a
N

^
M0

M .

(6) s has base monotonicity, disjointness, full symmetry (if a
N

^
M0

M ,

b ∈ |M |, then there exists N ′ ≥ N and M ′
0 ≥M0 with M ′

0 ≤ N ′,

a ∈ |M ′
0|, and b

N ′

^
M0

M ′
0), uniqueness, extension, and the local

character property: If 〈Mi : i ≤ δ〉 is increasing continuous,
p ∈ gS(Mδ), then there exists i < δ such that p does not fork
over Mi.

We define similarly “type-full good (≥ λ)-frame”, where we allow the
models in Ks to have sizes in K≥λ (but still work with types of length
one).

Notation A.5. When i = (K,^) is an almost good independence
relation and λ ≥ LS(K), we write pre(i≤1) � Kλ for the type-full good
λ-frame obtained by restricting ^ to types of length one and models
in Kλ. Similarly for pre(i≤1) � K≥λ.

Assuming tameness and amalgamation, good frames can be built from
a superstability-like condition (the superstability condition already ap-
pears implicitly in [SV99] and is developed further in [Van06, Van13,
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GVV16, Vas16b, Vas16a, BVb, Van16, VV]). The construction of a
good frame appears implicitly already in [Vas16b]:

Definition A.6 (Superstability, see Definition 10.1 in [Vas16a]).

(1) For M,N ∈ K, say M <univ N (N is universal over M) if
and only if M < N and whenever we have M ′ ≥ M such that
‖M ′‖ ≤ ‖N‖, then there exists f : M ′ −→

M
N . Say M ≤univ N

if and only if M = N or M <univ N .
(2) p ∈ gS(N) µ-splits overM if M ≤ N , M ∈ Kµ, and there exists

N1, N2 ∈ Kµ with M ≤ N` ≤ N , ` = 1, 2, and an isomorphism
f : N1

∼=M N2, such that f(p � N1) 6= p � N2.
(3) K is µ-superstable if:

(a) LS(K) ≤ µ.
(b) There exists M ∈ Kµ such that for any M ′ ∈ Kµ there is

f : M ′ →M with f [M ′] <univ M .
(c) If 〈Mi : i < δ〉 is increasing in Kµ such that i < δ implies

Mi <univ Mi+1 and p ∈ gS(
⋃
i<δMi), then there exists i < δ

such that p does not µ-split over Mi.

Definition A.7. For λ a cardinal, let Kλ-sat be the class of λ-saturated
models in K≥λ.

Fact A.8. Assume K is µ-superstable, µ-tame, and has amalgamation.
Then:

(1) [Vas16a, Proposition 10.10]] K is µ′-superstable for all µ′ ≥ µ.
In particular, K≥µ has joint embedding, no maximal models,
and is stable in all cardinals.

(2) [VV, Corollary 6.10] If λ > µ, then Kλ-sat is an AEC with
LS(Kλ-sat) = λ.

(3) ([VV, Corollary 6.14] and [BVd, Corollary 6.10]). For any λ >
µ, there exists a type-full good (≥ λ)-frame with underlying
AEC Kλ-sat.

From the analysis of Shelah and Villaveces in [SV99, Theorem 2.2.1], we
obtain that superstability follows from categoricity (if the cofinality of
the categoricity cardinal is high-enough, this appears as [She99, Lemma
6.3]). The version that we state here assumes amalgamation instead of
GCH and appears in [BGVV].

Fact A.9. Assume K has amalgamation and no maximal models. If
K is categorical in a θ > LS(K), then K is LS(K)-superstable.

Corollary A.10. Assume K is LS(K)-tame and has amalgamation
and no maximal models. If K is categorical in a θ > LS(K), then
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there exists a type-full good (≥ LS(K)+)-frame with underlying class
Kθ+-sat.

Proof. Combine Facts A.9, and A.8. �

It remains to see how to build a fully good (i.e. global) independence
relation from just a local good frame. This is done using shortness,
together with a property Shelah calls successfulness (we do not give the
exact definition of uniqueness triple, the relation ≤NF

λ+ , or the successor
frame, as we have no use for it).

Definition A.11 (Definition III.1.1 in [She09a]). Let s be a type-full
good λ-frame.

(1) s is weakly successful if for any M ∈ Kλ and any nonalgebraic
p ∈ gS(M), there exists N ≥ M and a ∈ |N | such that p =
gtp(a/M ;N) and (a,M,N) is a uniqueness triple (see [She09a,
Definition II.5.3]).

(2) s is successful if in addition the class (Kλ+-sat
λ+ ,≤NF

λ+ ) (see [JS13,
Definition 10.1.1]) is an AEC.

(3) [She09a, Definition III.1.12] s is ω-successful if for all n < ω,
the nth successor frame s+n (see [She09a, Definition III.1.12])
is a type-full successful good λ-frame.

We can obtain an ω-successful frame using existence of a sufficiently
well-behaved global independence relation:

Fact A.12 (Theorem 11.21 in [Vas16a]). Assume i is a (< ∞,≥
LS(K))-independence relation on K and λ > LS(K) is a cardinal such
that19:

(1) s := pre(i≤1) is a type-full good (≥ LS(K))-frame.
(2) i has base monotonicity, uniqueness for types over models, and

the left and right (≤ LS(K))-witness properties.
(3) i has the following local character property: for every n < ω, if

µ := λ+(n+1), then for every increasing continuous 〈Mi : i ≤ µ〉
and every p ∈ gS<µ(Mµ), there exists i < µ such that p does
not fork (in the sense of i) over Mi.

Then s � Kλ-sat
λ (the restriction of s to the classKλ-sat

λ ) is an ω-successful
type-full good λ-frame.

19In [Vas16a], it is also assumed that Kλ+n-sat is an AEC for all n < ω. However
Fact A.8 shows that this follows from the rest.
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In [Vas16a], we used (< κ)-satisfiability as i above. The downside
is that we used that κ = iκ > LS(K). Now we show we can use
an independence relation induced by µ-nonsplitting instead of (< κ)-
satisfiability. We need one more fact:

Fact A.13. Assume K has amalgamation and is stable in µ ≥ LS(K).
Let M ∈ K≥µ and let p ∈ gS<κ(M). If µ = µ<κ, then there exists
M0 ∈ Kµ with M0 ≤M such that p does not µ-split over M0.

Proof. By [She99, Claim 3.3] (or [GV06b, Fact 4.6]), it is enough to
show that |gS<κ(N)| = µ for every N ∈ Kµ. This holds by stability in
µ and [Bon17, Theorem 3.1]. �

Lemma A.14. Let K be an AEC with amalgamation. Assume that
K is fully (< κ)-tame and short with κ ≤ LS(K)+. Assume further
that K is LS(K)-superstable. Let λ > LS(K) be such that λ = λ<κ.
Then there exists an ω-successful good λ+-frame with underlying class
Kλ+-sat
λ+ .

Proof sketch. Define a (< ∞,≥ λ) independence relation i = (Ki,^)
as follows:

• Ki = Kλ-sat.
• p ∈ gSα(M) does not fork (in the sense of i) over M0 ≤ M if

and only if:
– M0,M ∈ Kλ-sat.
– For every I ⊆ α with |I| < κ, there exists M ′

0 ≤M0 in Kµ

such that pI does not µ-split over M ′
0.

We claim that i satisfies the hypotheses of Fact A.12 (where K there
is K≥λ here and λ there is λ+ here). By Fact A.13 and supersta-
bility, we have that i induces a LS(K)-generator for a weakly good
(< κ)-independence relation (in the sense of [Vas16a, Definition 7.3]),
as well as a LS(K)-generator for a good (≤ 1)-independence relation
(see [Vas16a, Definition 8.5]). It follows from [Vas16a, Theorems 7.5,
8.9] that s := pre(i≤1) is a type-full good (≥ λ)-frame and i<κ (the
restriction of i to types of length less than κ) has base monotonicity,
uniqueness for types over models, transitivity, and so that any type
does not fork over a model of size LS(K).

Now, it is easy to see using shortness that i also has uniqueness for types
over models. By definition, it also has base monotonicity, transitivity,
and the left (< κ)-witness property. Now from transitivity and the
local character property mentioned in the previous paragraph, we get
([Vas16a, Proposition 4.3.(6)]) that i has the right (≤ LS(K))-witness
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property. Thus all the hypotheses of Fact A.12 are satisfied, so s is
ω-successful. �

From an ω-successful good λ-frame, we obtain the desired global inde-
pendence relation:

Fact A.15. Let s = (Kλ,^) be an ω-successful good λ-frame which
is categorical in λ. If K is fully (< cf(λ))-tame and short and has

amalgamation, then Kλ+3-sat is almost fully good.

Proof. By [Vas16a, Theorems 12.16, 13.6, 14.15] �

Corollary A.16. Assume that K has amalgamation, no maximal
models, and is fully (< κ)-tame and short, with κ ≤ LS(K)+ a regular
cardinal. If K is categorical in a θ > LS(K), then Kλ-sat is almost fully
good, where λ := (LS(K)<κ)+5.

Proof. By Fact A.9, K is LS(K)-superstable. Let µ := (LS(K)<κ)+.
By Fact A.14 (with λ there standing for µ here), there is an ω-successful

good µ+-frame with underlying class Kµ+-sat
µ+ . By Fact A.15 (with λ

there standing for µ+ here), Kµ+4-sat is almost fully good. �

Note for future reference that in almost good AECs, uniqueness triples
have an easier definition.

Definition A.17. Let i = (K,^) be an almost good independence
relation. (a,M,N) is a domination triple if M ≤ N , a ∈ |N |\|M |, and

for any N ′ ≥ N and any B ⊆ |N ′|, if a
N ′

^
M
B, then N

N ′

^
M
B.

Fact A.18 (Lemma 11.7 in [Vas16a]). Let i = (K,^) be an almost
good independence relation. Let µ ≥ LS(K) and let s := pre(i≤1) � Kµ.

For M,N ∈ Kµ, (a,M,N) is a domination triple if and only it is a
uniqueness triple in s.

We continue the proof of Theorem 5.12 by showing that the frame
induced by an almost good independence relation is good+, a technical
property of frames:

Definition A.19 (Definition III.1.3 in [She09a]). Let s = (Kλ,^) be a
type-full good λ-frame. s is good+ if the following is impossible: There
exists increasing continuous chains 〈Mi : i ≤ λ+〉, 〈Ni : i ≤ λ+〉, a type
p∗ ∈ gS(M0), and a sequence 〈ai : i < λ+〉 such that for all i < λ+:

(1) Mλ+ is λ+-saturated.
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(2) Mi ≤ Ni and they are both in Kλ.
(3) ai+1 ∈ |Mi+2|.
(4) gtp(ai+1/Mi+1;Mi+2) is a nonforking extension of p∗.
(5) gtp(ai+1/N0;Ni+2) forks over M0.

Proposition A.20. If i = (K,^) is an almost good independence
relation, then pre(i≤1) � KLS(K) is good+.

Proof. Suppose 〈Mi : i ≤ λ+〉, 〈Ni : i ≤ λ+〉, 〈ai : i < λ+〉, and p∗

witness the failure of being good+. By local character, there exists

i < λ+ such that N0

Nλ+

^
Mi

Mλ+ . By symmetry and monotonicity, we

must have that ai+1

Nλ+

^
Mi

N0, i.e. gtp(ai+1/N0;Ni+2) does not fork over

Mi. By transitivity and base monotonicity, gtp(ai+1/N0;Ni+2) does
not fork over M0, contradiction. �

Corollary A.21. Assume i = (K,^) is an almost good independence
relation. Let λ > LS(K) and let s := pre(i≤1) � Kλ-sat. Then s is
ω-successful and good+.

Proof. By Fact A.12 and Proposition A.20 (applied to the restriction
of i to λ-saturated models). �

Remark A.22. In Section 5, we only need a (type-full) successful
good+ frame. Moreover Shelah proves in [She09a, Claim III.1.9] that
if s is successful, then the successor frame s+ is good+, so why do we
bother building an almost good independence relation? The reason is
that we want a successful good+ λ-frame when λ is a limit cardinal.
Then if K is categorical in λ and has primes, the frame will have primes
(no need to restrict to saturated models, where it is not clear whether
primes exist even if the original class has primes), so the hypotheses of
Theorem 5.16 will be satisfied

Appendix B. Frames that are not weakly uni-dimensional

In this appendix, we give a proof of Fact 5.10. We work with the
following hypotheses:

Hypothesis B.1.

(1) s = (Kλ,^) is a type-full successful good+ λ-frame.
(2) Kλ has primes.
(3) K is categorical in λ.
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We will use the orthogonality calculus developed in [She09a, Chapter
III].

Definition B.2 (Definition III.6.2 in [She09a]).

(1) Let M ∈ Kλ and let p, q ∈ gS(M) be nonalgebraic. We say
that p and q are weakly orthogonal if whenever (a,M,N) is a
uniqueness triple with gtp(a/M ;N) = q, then p has a unique
extension to gS(N). We say that p and q are orthogonal, written
p ⊥ q if for every N ≥ M , the nonforking extensions to N p′,
q′ of p and q respectively are weakly orthogonal.

(2) Let M` ∈ Kλ and p` ∈ gS(M`) be nonalgebraic, ` = 1, 2. We say
that p1 and p2 are orthogonal if there exists N ≥M` such that
the nonforking extensions to N p′1, p′2 of p1 and p2 respectively
are orthogonal.

Fact B.3 (Claims III.6.7, III.6.8 in [She09a]). Let M ∈ Kλ and p, q ∈
gS(M) be nonalgebraic.

(1) [She09a, Claim III.6.3] p is weakly orthogonal to q if and only if
there exists a uniqueness triple (a,M,N) such that gtp(a/M ;N) =
q and p has a unique extension to gS(N).

(2) [She09a, Claim III.6.7.2] p ⊥ q if and only if q ⊥ p.
(3) [She09a, Claim III.6.8.5] p and q are orthogonal if and only if

they are weakly orthogonal.

We will also use the following without comments:

Fact B.4 (Claim III.3.7 in [She09a]). If (a,M,N) is a prime triple,
then it is a uniqueness triple.

Some orthogonality calculus gives us a useful description of the types
in K¬∗p (recall Definition 5.7).

Lemma B.5. Let M ∈ Kλ and let p ∈ gS(M) be nonalgebraic. Let
N ∈ K¬∗p be of size λ such that the map a 7→ cNa is the identity (so
M ≤ N � L(K)). For any N0 ≤ N � L(K) with M ≤ N0 and any
q ∈ gS(N0;N), p ⊥ q.

Proof. Let p′ be the nonforking extension of p to N0. By Fact B.3, it
is enough to show that p′ is weakly orthogonal to q. Let (a,N0, N

′)
be a prime triple such that gtp(a/N0;N ′) = q and N ′ ≤ N (exists
since we are assuming that Kλ has primes). Then since p has a unique
extension to N it has a unique extension to N ′, which must be the
nonforking extension so p′ also has a unique extension to N ′. By Fact
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B.4, (a,N0, N
′) is a uniqueness triple and by Fact B.3 again, this suffices

to conclude that p′ and q are weakly orthogonal. �

The next lemma justifies the “uni-dimensional” terminology: if the
class is not uni-dimensional, then there are two orthogonal types.

Lemma B.6. If Kλ is not weakly uni-dimensional, there exists M ∈
Kλ and types p, q ∈ gS(M) such that p ⊥ q.

Proof. Assume Kλ is not weakly uni-dimensional. This means that
there exists M < M`, ` = 1, 2, all in Kλ such that for any c ∈
|M2|\|M |, gtp(c/M ;M2) has a unique extension to gS(M1). Pick any
c ∈ |M2|\|M | and let p := gtp(c/M ;M2). Then there is a natu-
ral expansion of M1 to K¬∗p. So pick any d ∈ |M1|\|M | and let
q := gtp(d/M ;M1). By Lemma B.5, p ⊥ q, as desired. �

We can now prove Fact 5.10. We restate it here for convenience:

Fact B.7. If Kλ is not weakly uni-dimensional, then there exists M ∈
Kλ and p ∈ gS(M) such that s � K¬∗p (the restriction of s to the
models in K¬∗p) is a type-full good λ-frame.

Proof. Assume Kλ is not weakly uni-dimensional. By Lemma B.6,
there exists M ∈ Kλ and types p, q ∈ gS(M) such that p ⊥ q.

Let s¬∗p := s � K¬∗p. We check that it is a type-full good λ-frame. For
ease of notation, we identify a model N ∈ K¬∗p and its reduct to K.
For N ≥ M , we write pN for the nonforking extension of p to gS(N),
and similarly for qN .

• K¬∗p is not empty, since (the natural expansion of) M is in it.
• (K¬∗p)λ is an AEC in λ (that is, its models of size λ behave

like an AEC, see [She09a, Definition II.1.18]) by the proof of
Proposition 5.9.
• Forking has many of the usual properties: monotonicity, invari-

ance, disjointness, local character, continuity, and transitivity
all trivially follow from the definition of K¬∗p.
• Forking has the uniqueness property: Let N ∈ K¬∗p have size
λ. Without loss of generality M ≤ N . Let N ′ ≥ N be in K¬p
of size λ and let r1, r2 ∈ gS(N ′) be nonforking over N and such
that r1 � N = r2 � N . Say r` = gtp(a`/N

′;N`). Now in K,
r1 = r2, and since Kλ has primes, the equality is witnessed by
an embedding f : M1 −→

N
N2, with M1 ≤ N1. Since N1 ∈ K¬∗p,

M1 ∈ K¬∗p, and so r1 = r2 also in K¬∗p (this is similar to the
proof of Proposition 5.14).
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• Forking has the extension property. Let N ∈ K¬∗p have size
λ. Without loss of generality, M ≤ N . Let r ∈ gS(N) be
nonalgebraic and let N ′ ≥ N be in K¬∗p of size λ. Let r′ ∈
gS(N ′) be the nonforking extension of r to N ′ (in K). Let
(a,N ′, N ′′) be a prime triple such that gtp(a/N ′;N ′′) = r′. By
Lemma B.5, r ⊥ p. Thus r′ is weakly orthogonal to pN ′ and
hence pN ′′ is the unique extension of pN ′ to N ′′. Now if p′ is an
extension of p to gS(N ′′), then p′ � N ′ = pN ′ as N ′ ∈ K¬∗p, so
p′ = pN ′′ by the previous sentence. This shows that N ′′ ∈ K¬∗p,
so as r′ ∈ gS(N ′;N ′′), r′ is a Galois type in K¬∗p, as desired.
• K¬∗p has λ-amalgamation: because (K¬∗p)λ has the type ex-

tension property and weak λ-amalgamation (as Kλ, and hence
(K¬∗p)λ, has primes, see the proof of Proposition 5.14), thus
one can apply Theorem 4.14.
• K¬∗p has λ-joint embedding: since any model contains a copy

of M , this is a consequence of λ-amalgamation over M .
• K¬∗p is stable in λ: because K¬∗p has “fewer” Galois types than
K, and K is stable in λ.
• (K¬∗p)λ has no maximal models: This is where we use the nega-

tion of weakly uni-dimensional. Let N ∈ K¬∗p be of size λ and
without loss of generality assume M ≤ N . Recall from above
that there is a nonalgebraic type q ∈ gS(M) such that p ⊥ q.
Let qN be the nonforking extension of q to N and let (a,N,N ′)
be a prime triple such that q = gtp(a/N ;N ′). As in the proof of
the extension property, N ′ ∈ K¬∗p. Moreover as a ∈ |N ′|\|N |,
N < N ′, as needed.
• s¬∗p is type-full: because s is.

• s¬∗p has full symmetry: Assume a
N

^
N0

N1, for N0, N1, N ∈ K¬∗p,

M ≤ N0 ≤ N1 ≤ N , and a ∈ |N |. Let b ∈ |N1|. Without loss of
generality, a /∈ |N1| (if a ∈ |N1|, then a ∈ |N0| by disjointness

and as b
N

^
N0

N0, N0 and N witness the full symmetry). By full

symmetry in s, there exists N ′0, N
′ ∈ K such that N ≤ N ′,

N0 ≤ N ′0 ≤ N ′, and b
N ′

^
N0

N ′0 (note that the first use of ^ was in

s¬∗p and the second in s, but since the first is just the restriction
of the first to models in K¬∗p, we do not make the difference).
Now let N ′′0 be such that N0 ≤ N ′′0 ≤ N ′0 and (a,N0, N

′′
0 ) is

a prime triple. Since r = gtp(a/N0;N ′′0 ) = gtp(a/N0;N) is
orthogonal to p (by Lemma B.5), we have that N ′′0 ∈ K¬∗p. By
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monotonicity, b
N ′

^
N0

N ′′0 . Now let (b,N ′′0 , N
′′) be a prime triple

with N ′′ ≤ N ′. By the same argument as before, N ′′ ∈ K¬∗p

and by monotonicity, b
N ′′

^
N0

N ′′0 . Since all the models are in K¬∗p,

this shows that the nonforking happens in s¬∗p, as needed.

We have checked all the properties and therefore s¬∗p is a type-full good
λ-frame. �

Appendix C. Independence in universal classes

We investigate the properties of independence in universal classes (more
generally in AECs admitting intersections). Recall that [Vas16a, The-
orem 15.6] showed that a fully tame and short AEC with amalgama-
tion categorical in unboundedly many cardinals eventually admits a
well-behaved independence notion. We want to specialize this result
to AECs admitting intersections and prove more properties of forking
there. Here, we prove that the independence relation satisfies the ax-
ioms of [BGKV16] (partially answering Question 7.1 there). Moreover
it has a finite character property (Theorem C.7) and can be extended to
an independence relation over sets (Theorem C.14). A simple corollary
is the disjoint amalgamation property (Corollary C.6).

While none of the results are used in this paper, we believe they shed
further light on how the existence a closure operator helps in the struc-
tural analysis of an AEC. Since several classes of interests to algebraists
admit intersections, we believe the existence of a well-behaved indepen-
dence notion there is likely to have further applications.

By Fact A.3 or Corollary A.16, it is reasonable to assume:

Hypothesis C.1.

(1) K locally admits intersections.
(2) i = (K,^) is an almost fully good independence relation (see

Definition A.1).

Our goal is to prove that i is actually fully good, i.e. extension holds.
Note that if we knew that K was categorical above the Löwenheim-
Skolem-Tarski number, we could use the categoricity transfer of Section
5. However here we do not make any categoricity assumption and our
approach is easier: we study how the closure operator interacts with
independence. The key lemma is:
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Lemma C.2. If A
N

^
M0

B, then clN(A)
N

^
M0

clN(B).

Proof. By normality, without loss of generality |M0| ⊆ A,B. Using

symmetry, it is enough to show that A
N

^
M0

clN(B). By the witness prop-

erty and finite character of the closure operator, we can assume without
loss of generality that |A| ≤ LS(K). Therefore by extension there exists

N ′ ≥ N and M ≥M0 such that M ≤ N ′, M contains B, and A
N ′

^
M0

M .

By definition, clN(B) = clN
′
(B) is contained in M , so A

N ′

^
M0

clN(B), so

A
N

^
M0

clN(B). �

An abstract way of stating Lemma C.2 is via domination triples (recall
Definition A.17).

Lemma C.3. Let M ≤ N and let a ∈ |N |\|M |. Then (a,M, clN({a}∪
|M |)) is a domination triple.

Proof. Directly from Lemma C.2. �

In our framework, domination triples are the same as the uniqueness
triples of [She09a, Definition II.5.3] by Fact A.18, thus we get:

Theorem C.4. i has extension. Hence it is a fully good independence
relation.

Proof. Let µ ≥ LS(K) and let s := pre(i≤1 � Kµ). By Lemma C.3 and
Fact A.18 s has the so-called existence property for uniqueness triples
(see [She09a, Definition II.5.3]). By Section II.6 of [She09a] (and the
results of section 12 in [Vas16a]) s induces an independence relation i′

for types of length at most µ over models of size µ that is well-behaved
(i.e. it has all of the properties of a fully good independence relation
except full model continuity and disjointness). By the canonicity of
such relations (see the proofs of Corollary 5.19 and Theorem 6.13 in
[BGKV16]), i′ must be the same as i≤µ � Kµ, the restriction of i to size
µ. Thus for all µ ≥ LS(K), i has extension for types of length at most
µ over models of size µ. By the proof of [Vas16a, Lemma 14.13], this
suffices to conclude that i has extension. �

Remark C.5. The proof shows that instead of the AEC admitting
intersections, it is enough to assume that for each µ, the restriction of i
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to a good frame in µ has the existence property for uniqueness triples.
Unfortunately the proof in [Vas16a, Section 11] only works when the
frame is restricted to the saturated models of size µ.

Corollary C.6. K has disjoint amalgamation.

Proof. Because i has existence, extension and disjointness. �

Another consequence of having a closure operator is:

Theorem C.7 (Finite character of independence). A
N

^
M0

B if and only

if for all finite A0 ⊆ A and B0 ⊆ B, A0

N

^
M0

B0. That is, i has the

(< ℵ0)-witness property.

Proof. By symmetry it is enough to show that if A0

N

^
M0

B for all finite

A0 ⊆ A, then A
N

^
M0

B. For each finite A0 ⊆ A, let MA0 := clN(|M0| ∪

A0). Let M := clN(|M0| ∪ B). By Lemma C.2, MA0

N

^
M0

M for each

finite A0 ⊆ A. Let MA := clN(|M0| ∪ A). It is easy to see that
〈MA0 | A0 ∈ [A]<ℵ0〉 is a directed system with union MA. Therefore by

full model continuity, MA

N

^
M0

M , and so A
N

^
M0

B. �

Remark C.8. One can check that (K,≤,^, cl) satisfies the axiomatic
framework AxFri1 from [She09b, Chapter V.B].

For the next two results, we drop our hypotheses.

Theorem C.9. Let K be a fully (< LS(K))-tame and short AEC with
amalgamation. Assume further that K locally admits intersections.

If K is categorical in a µ ≥ h(LS(K)), then there exists λ < h(LS(K))
such that K≥λ is fully good. Moreover the independence relation has
the (< ℵ0)-witness property.

Proof. Combine Corollary A.16, Theorem C.4, and Theorem C.7. �

Remark C.10. If K is not categorical but only superstable (see Defi-
nition A.6), then we can generalize the result (using [Vas16a, Theorem
15.1]) provided that for all λ, Kλ-sat (the class of λ-saturated models
in K) locally admits intersections.
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C.1. Set bases. We end by showing that it is possible to extend the
independence relation to define forking not only over models but also
over sets. In the terminology of [HL02], K is simple (note that the
paper gives an example due to Shelah of a class that has a fully good
independence relation, yet is not simple).

For our arguments to work, we have to assume that K admits inter-
sections, i.e. not just locally. To see that this is not a big loss, recall
that if K is categorical in unboundedly many cardinals and has amal-
gamation, then the models in the categoricity cardinals are saturated,
so for M ∈ LS(K), KM will also be categorical in unboundedly many
cardinals.

Hypothesis C.11. K admits intersections.

Definition C.12. Let N ∈ K and A,B,C ⊆ |N |. Define B
N

^
A
C to

hold if and only if clN(AB)
N

^
clN (A)

clN(AC).

We define properties such as invariance, monotonicity, etc. just as for
the model-based version of independence.

Remark C.13. When A ≤ N , this agrees with the previous definition
of independence.

Theorem C.14.

(1) ^ has invariance, left and right monotonicity, base monotonic-
ity, and normality.

(2) ^ has symmetry, finite character (i.e. the (< ℵ0)-witness prop-
erty), existence and transitivity.

(3) ^ has extension.
(4) Let N ∈ K and let 〈Bi : i < δ〉 be an increasing chain of sets.

Let Bδ :=
⋃
i<δ Bi and assume Bδ ⊆ |N |. Let p ∈ gSα(B;N).

If cf(δ) > α, then there exists i < δ such that p does not fork
over Bi.

(5) If p ∈ gSα(B;N), there exists A ⊆ B such that p does not fork
over A and |A| < |α|+ + ℵ0.

Proof.

(1) Easy.
(2) Easy.
(3) By transitivity and extension of i.
(4) By local character for i.
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(5) By finite character, it is enough to show it when α < ω. Work
by induction on λ := |B|. If λ < ℵ0, take A = B and use
the existence property. If λ ≥ ℵ0, write B =

⋃
i<λBi, where

|Bi| < λ for all i < λ. By the previous result, there exists i < λ
such that p does not fork over Bi. Now apply the induction
hypothesis and transitivity.

�

Remark C.15. Thus in this framework types of finite length really
do not fork over a finite set. This removes the need for a special chain
version of local character (i.e. if 〈Mi : i ≤ δ〉 is increasing continuous,
p<ω ∈ gS(Mδ), there exists i < δ such that p does not fork over Mi).
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