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Abstract. We give a short overview of the proof of Shelah’s even-
tual categoricity conjecture in universal classes with amalgamation
[Vasd].

1. Introduction

We sketch a proof of:

Theorem 1.1. Let K be a universal class with amalgamation. If K is
categorical in1 some λ > H2, then K is categorical in all λ′ ≥ H2.

The reader should see the introduction of [Vasd] for motivation and his-
tory. Note that (as stated there) the amalgamation hypothesis can be
removed assuming categoricity in cardinals of arbitrarily high cofinal-
ity. However this relies on hard arguments of Shelah [She09, Chapter
IV], so we do not discuss it. There are plans for a sequel where the
amalgamation hypothesis will be removed under categoricity in a single
cardinal of arbitrary cofinality (earlier versions actually claimed it but
the argument contained a mistake).

Note that this is not a self-contained argument, we simply attempt to
outline the proof and quote extensively from elsewhere. For another
exposition, see the upcoming [BVa].
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1Here and below, we write h(θ) := i(2θ)+ . We see universal classes as AECs so

that for K a universal class, LS(K) = |L(K)| + ℵ0. For K a fixed AEC, we write
H1 := h(LS(K)) and H2 := h(H1).
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We attempt to use as few prerequisites as possible and make what we
use explicit. We do not discuss generalizations to tame AECs with
primes [Vasc], although we end up using part of the proof there.

We assume familiarity with a basic text on AECs such as [Bal09] or
the upcoming [Gro]. We also assume the reader is familiar with the
definition of a good F -frame (see [She09, Chapter II] for the original
definition of a good λ-frame and [Vasa, Definition 2.21] for good F -
frames), and the definition of superstability (implicit in [SV99], but we
use the definition in [Vasb, Definition 10.1]). All the good frames we
will use are type-full, i.e. their basic types are the nonalgebraic types,
and we will omit the “type-full”.

This note was written while working on a Ph.D. thesis under the di-
rection of Rami Grossberg at Carnegie Mellon University and I would
like to thank Professor Grossberg for his guidance and assistance in my
research in general and in this work specifically. I thank John Baldwin
for early feedback on this note.

2. The proof

The argument depends on [She99], on the construction of a good frame
and related results in [Vasa], on Boney’s theorem on extending good
frames using tameness [Bon14] (the subsequent paper [BVb] is not
needed here), and on the Grossberg-VanDieren categoricity transfer
[GV06b]. The argument also depends on some results about unidimen-
sionality in III.2 of [She09] (these results have short full proofs, and have
appeared in other forms elsewhere, most notably in [GV06b, GV06a]).

There is a dependency on the Shelah-Villaveces theorem ([SV99, The-
orem 2.2.1]), which can be removed in case one is willing to assume
that cf(λ) > LS(K). This is reasonable if one is willing to assume that
K is categorical in unboundedly many cardinals: then by amalgama-
tion, the categoricity spectrum will contain a club, hence cardinals of
arbitrarily high cofinality.

Proof of Theorem 1.1. We proceed in several steps.

(1) Without loss of generality, K has joint embedding and no max-
imal models.

[Why? Let us define a relation ∼ on K by M ∼ N if and
only if M and N embed into a common extension. Using amal-
gamation, one can see that ∼ is an equivalence relation. Now
the equivalence classes 〈Ki : i ∈ I〉 of ∼ form disjoint AECs
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with amalgamation and joint embedding, and by the categoric-
ity assumption (recalling that the Hanf number for existence is
bounded by H1) there is a unique i ∈ I such that Ki has arbi-
trarily large models. Moreover (Ki)≥H1 = K≥H1 so it is enough
to work inside Ki.]

(2) K is LS(K)-superstable.
[Why? By [SV99, Theorem 2.2.1], or really the variation us-

ing amalgamation stated explicitly in [GV, Theorem 6.3]. Al-
ternatively, if one is willing to assume that cf(λ) > LS(K), one
can directly apply [She99, Lemma 6.3].]

(3) K is (< ℵ0)-tame.
[Why? See [Vasd, Section 3]2 (this does not use the categoric-

ity hypothesis).]
(4) K is stable in λ.

[Why? By [Vasa, Theorem 5.6], LS(K)-superstability and
LS(K)-tameness imply stability everywhere above LS(K).]

(5) The model of size λ is saturated.
[Why? Use stability to build a µ+-saturated model of size λ

for each µ < λ. Now apply categoricity.]
(6) K is categorical in H2.

[Why? By the proof of [She99, II.1.6], or see [Bal09, 14.8].]
(7) K has a good H2-frame.

[Why? By [Vasa, Theorem 7.3] which tells us how to con-
struct a good frame at a categoricity cardinal assuming tame-
ness and superstability below it.]

(8) For M ∈ KH2 , p ∈ gS(M), let K¬∗p be defined as in [Vasd,
Definition 5.7]: roughly, it is the class of N so that p has a
unique extension to gS(N) (so in particular p is omitted in N),
but we add constant symbols for M to the language to make it
closed under isomorphisms. Then K¬∗p is a universal class.

[Why? That it is closed under substructure is clear. That
it is closed under unions of chains is because universal classes
are (< ℵ0)-tame, so if a type has two distinct extensions over
the union of a chain, it must have two distinct extension over
an element of the chain. Here is an alternate, more general,
argument: KH2 is ℵ0-local (by the existence of the good frame),
so using tameness it is not hard to see that K≥H2 is ℵ0-local.
Now proceed as before.]

(9) If K is not categorical in H+
2 , then there exists M ∈ KH2 and

p ∈ gS(M) so that K¬∗p has a good H2-frame.

2The main idea there is due to Will Boney, see [Bon].
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[Why? See [Vasc, Theorem 2.15]3: it shows that if KH2 is
weakly unidimensional (a property that Shelah introduces in
III.2 of [She09] and shows is equivalent to categoricity in H+

2 ),
then the good H2-frame that K has, restricted to K¬∗p (for a
suitable p) is a good H2-frame. The definition of weak unidi-
mensionality is essentially the negation of the fact that there
exists two types p ⊥ q (for a notion of orthogonality defined
using prime models).]

(10) If K is not categorical in H+
2 , K¬∗p above has arbitrarily large

models.
[Why? By Theorem 2.1 below (recalling thatK¬∗p is a univer-

sal class), K¬∗p has a good (≥ H2)-frame. Part of the definition
of such a frame requires existence of a model in every cardinal
µ ≥ H2.

(11) If K is not categorical in H+
2 , the model of size λ is not satu-

rated. This contradicts (5) above, therefore K is categorical in
H+

2 .
[Why? Take M ∈ K¬∗p of size λ (exists by the previous step).

Then M omits p and the domain of p has size H2 < λ.]
(12) K is categorical in all λ′ ≥ H2.

[Why? We know that K is categorical in H2 and H+
2 , so

apply the upward transfer of Grossberg and VanDieren [GV06b,
Theorem 0.1].

�

To complete the proof, we need the following:

Theorem 2.1. Let K be a universal class. Let λ ≥ LS(K). If K has
a good λ-frame, then K has a good (≥ λ)-frame.

Proof.

(1) K is λ-tame for types of length two.
[Why? See [Vasd, Section 3].]

(2) K has weak amalgamation: if4 gtp(a1/M ;N1) = gtp(a2/M ;N2),
there exists N ′1 ≤ N1 containing a1 and M and N ≥ N ′1,
f : N2 −→

M
N so that f(a2) = a1.

3The original argument in [Vasd] is harder, as it requires building a global inde-
pendence relation.

4Since we do not assume amalgamation, Galois types are defined using the tran-
sitive closure of atomic equivalence, see e.g. [She09, Definition II.1.9].
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[Why? By the isomorphism characterization of Galois types
in AECs which admit intersections, see [BS08, Lemma 2.6] or
[Vasd, Proposition 2.17]. More explicitly, set N ′1 := clN1(a1M),
where clN1 denotes closure under the functions of N1. Then
chase the definition of equality of Galois types.]

(3) K has amalgamation.
[Why? By [Vasd, Theorem 4.15].]

(4) K has a good (≥ λ)-frame.
[Why? By Boney’s upward frame transfer [Bon14] which tells

us that amalgamation, λ-tameness for types of length two, and
a good λ-frame imply that the frame can be extended to a good
(≥ λ)-frame.]

�
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