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Abstract. We show how to build primes models in classes of
saturated models of abstract elementary classes (AECs) having a
well-behaved independence relation:

Theorem 0.1. Let K be an almost fully good AEC that is categor-
ical in LS(K) and has the LS(K)-existence property for domination
triples. For any λ > LS(K), the class of Galois saturated models of
K of size λ has prime models over every set of the form M ∪ {a}.

This generalizes an argument of Shelah, who proved the result
when λ is a successor cardinal.
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1. Introduction

Prime models (over sets) are a crucial ingredient in the proof of Mor-
ley’s categoricity theorem [Mor65]. Morley’s construction gives a pri-
mary model : a model whose universe can be enumerated so that the
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type of each element is isolated over the previous ones. This construc-
tion can be generalized to certain non-elementary context such as ho-
mogeneous model theory [She70] and even finitary abstract elementary
classes [HK06].

In general abstract elementary classes (AECs), it seems that the con-
struction breaks down due to the lack of even rudimentary compact-
ness: it is not clear how to define a usable generalization of the notion
of an isolated type. Shelah [She09, Section III.4] works around this
difficulty by assuming that the class satisfies an axiomatization of su-
perstable forking for its models of size λ (in Shelah’s terminology, K
has a successful good λ-frame) and uses domination to build for every
saturated M of size λ+ and every element a a saturated model N con-
taining M ∪ {a} and prime in the class of saturated models of K size
λ+. Here, saturation is defined in terms of Galois (orbital) types.

Shelah shows [She09, Chapter II] that the assumption of existence of
a successful good λ-frame follows from strong local hypotheses: cate-
goricity in λ, λ+, a medium number of models in λ++, and set-theoretic
hypotheses such as 2λ < 2λ

+
< 2λ

++
. In [Vas16a, Vasa], we showed that

successful good frames can also be built assuming that the class satis-
fies global hypotheses : amalgamation, categoricity in some high-enough
cardinal, and a locality property called full tameness and shortness. It
is known that amalgamation and the locality property both follow from
categoricity and a large cardinal axiom [MS90, Bon14b]. The global
hypotheses actually enable us to build the global generalization of a
successful good λ-frame: what we call an almost fully good indepen-
dence relation (see Definition 2.2). In this paper, we show that Shelah’s
construction of prime models generalizes to this global setup and λ+

can be replaced by a limit cardinal. Thus we obtain a general con-
struction of primes (in an appropriate class of saturated models) that
works assuming only the existence of a well-behaved independence no-
tion (this is Theorem 0.1 from the abstract).

Recently, [Vasd, Theorem 0.2] showed that assuming the global hy-
potheses above, existence of primes over every set of the form M ∪{a}
implies categoricity on a tail of cardinals. Unfortunately, we cannot
use the construction of prime models of this paper to deduce a new
categoricity transfer in the global framework: the catch is that we only
get existence of primes in the subclass of saturated models of K: Given
M and a with M saturated, we obtain N saturated that is prime over
M ∪ {a} in the class of saturated models. That is (roughly1), if N ′

1the precise statement uses Galois types, see Definition 2.13.
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contains M ∪ {a} and is saturated, then there exists a K-embedding
f : N → N ′ fixing M and a. We cannot conclude anything if M is not
saturated (even if we know it is λ-saturated for some λ < ‖M‖). This
contrasts sharply with the more uniform results from the first-order
context (in a totally transcendental theory, a prime model exists over
every set) and finitary AECs [HK11, Lemma 5.4] (in a simple ℵ0-stable
finitary AEC with the extension property, an f -primary model exists
over every set).

We can however use the construction of this paper to obtain that in
the global framework, categoricity on a tail of cardinals implies the
existence of primes. This gives a converse to [Vasd, Theorem 0.2] (we
asked if such a converse was true in [Vasd, Conjecture 5.22]). A full
proof will appear elsewhere (in the final version of one of [Vasd, Vasc,
Vasb]), but we state the result as an additional motivation:

Corollary 1.1. Let K be a fully LS(K)-tame and short AEC with
amalgamation. Write H1 := i

(2LS(K))
+ . Assume that K is categorical

in some cardinal λ ≥ H1. The following are equivalent:

(1) K is categorical in all λ′ ≥ H1.
(2) K≥H1 has primes over all sets of the form M ∪ {a}.

The background required to read this paper is a basic knowledge of
AECs (for example Chapters 4-12 of Baldwin’s book [Bal09]). Some
familiarity with good frames and their generalizations (in particular
the beginning of [Vasa], [Vasa, Section 11], and Shelah’s construction of
primes [She09, Section III.4]) would be helpful but we state all the nec-
essary definitions here. We rely on a few results from [Jar16, Vasa, VV]
but they are used as black boxes: little understanding of the material
there is needed.

This paper was written while working on a Ph.D. thesis under the
direction of Rami Grossberg at Carnegie Mellon University and I would
like to thank Professor Grossberg for his guidance and assistance in my
research in general and in this work specifically. I also thank a referee
for suggestions that helped refocus the topic of the paper and improve
its presentation.

2. Background

We give some background on independence that will be used in the next
section. We assume familiarity with the basics of AECs as laid out in
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e.g. [Bal09] or the forthcoming [Gro]. We will use the notation from
the preliminaries of [Vas16b]. All throughout this section, we assume:

Hypothesis 2.1. K is an AEC with amalgamation.

This will mostly be assumed throughout the paper (Hypothesis 3.1 im-
plicitly implies it by Definition 2.2.(1b)). Note however that assuming
high-enough categoricity and a large cardinal axiom, it will hold on a
tail [Bon14b].

We will work use a global forking-like independence notion that has the
basic properties of forking in a superstable first-order theory. This is a
stronger notion than Shelah’s good frame [She09, Chapter II] because
in good frames forking is only defined for types of length one. We invite
the reader to consult [Vasa] for more explanations and motivations on
global and local independence notions.

Definition 2.2 (Definition 8.1 in [Vasa] and Definition A.2 in [Vasd]).
i = (K,^) is an almost fully good independence relation if:

(1) K is an AEC satisfying the following structural assumptions:
(a) K<LS(K) = ∅ and K 6= ∅.
(b) K has amalgamation, joint embedding, and no maximal

models.
(c) K is stable in all cardinals.

(2) (a) i is a (< ∞,≥ LS(K))-independence relation (see [Vasa,
Definition 3.6]). That is, ^ is a relation on quadruples
(M,A,B,N) with M ≤ N and A,B ⊆ |N | satisfying in-

variance, monotonicity, and normality. We write A
N

^
M
B

instead of ^(M,A,B,N), and we also say gtp(ā/B;N)

does not fork over M for ran(ā)
N

^
M
B.

(b) i has base monotonicity, disjointness (A
N

^
M
B implies A ∩

B ⊆ |M |), symmetry, uniqueness (whenever M ≤ N and
p, q ∈ gS<∞(N) do not fork over M and are such that
p � M = q � M , then p = q), and the local character
properties:

(i) If p ∈ gSα(M), there exists M0 ≤ M with ‖M0‖ ≤
|α|+ LS(K) such that p does not fork over M0.

(ii) If 〈Mi : i ≤ δ〉 is increasing continuous, p ∈ gSα(Mδ)
and cf(δ) > α, then there exists i < δ such that p
does not fork over Mi.
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(c) i has the following weakening of the extension property: for
any M ≤ N and any p ∈ gSα(M), there exists q ∈ gSα(N)
that extends p and does not fork over M provided at least
one of the following conditions hold:

(i) M is saturated.
(ii) ‖M‖ = LS(K).
(iii) α ≤ LS(K).

(d) i has the left and right (≤ LS(K))-witness properties: A
N

^
M
B

if and only if for all A0 ⊆ A and B0 ⊆ B with |A0|+ |B0| ≤

LS(K), we have that A0

N

^
M
B0.

(e) i has full model continuity: For all limit ordinals δ, if for
` < 4, 〈M `

i : i ≤ δ〉 are increasing continuous such that for

all i < δ, M0
i ≤M `

i ≤M3
i for ` = 1, 2 and M1

i

M3
i

^
M0
i

M2
i , then

M1
δ

M3
δ

^
M0
δ

M2
δ .

We say that K is almost fully good if there exists ^ such that (K,^)
is almost fully good2.

Remark 2.3. In [Vasa, Theorem 15.1], it was shown that AECs with
amalgamation that satisfy a locality condition (full tameness and short-
ness) and are categorical in a high-enough cardinal are (on a tail) almost
fully good. The threshold cardinals were improved in [Vasd, Appendix
A]. We use the name “almost” fully good because we do not assume
the full extension property, only the weakening above. The problem is
that it is not known how to get the full extension property with the
aforementioned hypotheses (see the discussion in Section 15 of [Vasa]).

We will use (in the proof of Fact 3.3) that almost fully good AECs
are tame (a locality property for types introduced by Grossberg and
VanDieren [GV06]). Recall that K is µ-tame (for µ ≥ LS(K)) if for
any distinct p, q ∈ gS(M) there exists M0 ∈ K≤LS(K) with M0 ≤ M
such that p � M0 6= q � M0. Using local character and uniqueness (see
e.g. [GK, p. 15]) we have:

Fact 2.4. If K is almost fully good, then K is LS(K)-tame.

We will also make use of limit models (see [GVV] for history and mo-
tivation). We will use a global definition, where we permit the limit

2the relation ^ is in fact unique [BGKV16].
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model and the base to have different sizes. This extra generality is
used: in (4) in Lemma 3.4, M `

i and M `
i+1 may have different sizes.

Definition 2.5. Let M0 ≤ M be models in K≥LS(K). M is limit over
M0 if there exists a limit ordinal δ and a strictly increasing continuous
sequence 〈Ni : i ≤ δ〉 such that N0 = M0, Nδ = M , and for all i < δ,
Ni+1 is universal over Ni.

We say that M is limit if it is limit over some M ′ ≤M .

We will use the following notation to describe classes of saturated mod-
els:

Definition 2.6. For λ > LS(K), Kλ-sat is the class of λ-saturated
(according to Galois types) models in K≥λ. We order Kλ-sat with the
strong substructure relation induced from K.

In an almost fully good AEC, classes of λ-saturated models are well-
behaved and limit models are saturated. This is a combination of
results of Shelah [She09, Chapter II] and VanDieren [Van16], and is
key in the construction of prime models of the next section.

Fact 2.7. Assume that K is almost fully good. Then:

(1) If M,N ∈ K are limit and ‖M‖ = ‖N‖, then M ∼= N . In
particular (if ‖M‖ > LS(K)), M and N are saturated.

(2) For any λ > LS(K), Kλ-sat is an AEC with LS(Kλ-sat) = λ.
Moreover, Kλ-sat is almost fully good.

Proof. Let i be an almost fully good independence relation on K.

(1) Let M,N ∈ K be limit models with λ := ‖M‖ = ‖N‖. First,
by a back and forth argument we can assume that M is limit
over some M0 ∈ Kλ and N is limit over some N0 ∈ Kλ (see
[VV, Proposition 3.1]). Next, note that the restriction of i to
types of length one and models of size λ induces a good λ-frame
(see [She09, Chapter II]). The result now follows from [She09,
Lemma II.4.8] (see [Bon14a, Theorem 9.2] for a detailed proof).

(2) We prove the result when λ is a successor cardinal, and the re-
sult for λ limit easily follows (the moreover part is also straight-
forward to check). So assume that λ = µ+. Note that K is µ-
superstable in the sense of [Van16, Definition 5] (because non-
forking implies nonsplitting, see the proof of [VV, Fact 4.8.(2)]).
Similarly, K is µ+-superstable. By the first part, limit models
of cardinality µ+ are unique. Therefore we can apply [Van16,
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Theorem 22] which tells us that the union of an increasing chain
of µ+-saturated models is µ+-saturated. That LS(Kµ+-sat) = µ+

follows from stability and the other axioms of an AEC are
straightforward to check.

�

Remark 2.8. Fact 2.7.(2) is an improvement on the threshold cardinal
in [BV] (where it is shown that that Kλ-sat is an AEC for all λ ≥
i

(2LS(K))
+).

Domination will be the notion replacing isolation in this paper’s con-
struction of prime models:

Definition 2.9. Let i = (K,^) be an almost fully good independence
relation. (a,M,N) is a domination triple if M ≤ N , a ∈ |N |\|M |, and

for any N ′ ≥ N and any B ⊆ |N ′|, if a
N ′

^
M
B, then N

N ′

^
M
B.

Remark 2.10. This is a variation on Shelah’s uniqueness triples [She09,
Definition II.5.3]. In fact by [Vasa, Lemma 11.7], uniqueness triples and
domination triples coincide in our framework (this will be used in the
proof of Fact 3.3, although an understanding of the exact definition of
uniqueness triples is not needed for this paper).

A key property is the existence property for domination triples3:

Definition 2.11. Let i = (K,^) be an almost fully good independence
relation and let λ ≥ LS(K). We say that i has the λ-existence property
for domination triples if for every M ∈ Kλ and every nonalgebraic
p ∈ gS(M), there exists a domination triple (a,M,N) so that p =
gtp(a/M ;N).

The existence property for domination triples is a reasonable hypoth-
esis: if the independence relation does not have it, we can restrict
ourselves to a subclass of saturated models (see the moreover part of
Fact 2.7.(2)).

Fact 2.12 (Lemma 11.12 in [Vasa]). Let i = (K,^) be an almost
fully good independence relation. For every λ > LS(K), i � Kλ-sat (the
restriction of i to λ-saturated models) has the λ-existence property for
domination triples.

3This is analogous to Shelah’s definition of a weakly successful good λ-frame
[She09, Definition III.1.1] which means the frame has the existence property for
uniqueness triples.
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Finally, we recall the definition of prime models in the framework of
abstract elementary classes. This does not need amalgamation and
is due to Shelah [She09, Section III.3]. While it is possible to define
what it means for a model to be prime over an arbitrary set (see [Vasd,
Definition 5.1]), here we focus on primes over sets of the form M ∪{a}.
The technical point in the definition is that since we are not working
inside a monster model, how M ∪ {a} is embedded matters. Thus we
use a formulation in terms of Galois types: instead of saying that N is
prime over M ∪ {a}, we say that (a,M,N) is a prime triple:

Definition 2.13. Let K be an AEC (not necessarily with amalgama-
tion).

(1) A prime triple is (a,M,N) such that M ≤ N , a ∈ |N |\|M |
and for every N ′ ∈ K, a′ ∈ |N ′| such that gtp(a/M ;N) =
gtp(a′/M ;N ′), there exists f : N −→

M
N ′ so that f(a) = a′.

(2) We say that K has primes if for M ∈ K and every nonalgebraic
p ∈ gS(M), there exists a prime triple representing p, i.e. there
exists a prime triple (a,M,N) so that p = gtp(a/M ;N).

(3) We define localizations such as “Kλ has primes” or “Kλ-satλ has
primes” in the natural way (in the second case, we ask that all
models in the definition be saturated).

3. Building primes over saturated models

We show that in almost fully good AECs, there exists primes among
the saturated models (see Definition 2.13). For models of successor
size, this is shown in [She09, Claim III.4.9] (or in [Jar] with slightly
weaker hypotheses). We generalizes Shelah’s proof to limit sizes here.
This is the core of the paper. Throughout this section, we assume:

Hypothesis 3.1.

(1) K is an almost fully good AEC, as witnessed by i = (K,^).
(2) K is categorical in LS(K).
(3) i has the LS(K)-existence property for domination triples (see

Definition 2.11).

We consider theses hypotheses reasonable: Remark 2.3 gives conditions
under which an AEC is almost fully good and Fact 2.12 shows that we
can then restrict it to a subclass of saturated models to obtain the
existence property for domination triples and categoricity in LS(K).

Note that Hypothesis 3.1.(3) is used in the proof of Fact 3.3. We do
not know whether it follows from the other two hypotheses.
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We start by showing that domination triples are closed under unions.
This is a key consequence of full model continuity.

Lemma 3.2. Let 〈Mi : i < δ〉, 〈Ni : i < δ〉 be increasing and as-
sume that (a,Mi, Ni) are domination triples for all i < δ. Then
(a,

⋃
i<δMi,

⋃
i<δNi) is a domination triple.

Proof. For ease of notation, we work inside a monster model C and

write A^
M
B for A

C

^
M
B. Let Mδ :=

⋃
i<δMi, Nδ :=

⋃
i<δNi. Assume

that a^
Mδ

N with Mδ ≤ N (by extension for types of length one, we

can assume this without loss of generality). By local character, for all
sufficiently large i < δ, a^

Mi

N . By definition of domination triples,

Ni^
Mi

N . By full model continuity, Nδ^
Mδ

N . �

The conclusion of the next fact is a key step in Shelah’s construction of
a successor frame in [She09, Chapter II]. The fact says that if M0 ≤M1

are of the same successor size, then their resolutions satisfy a natural
independence property on a club. In the framework of this paper, this
is due to Jarden [Jar16]. To give the reader a feeling for the difficulties
encountered, we first explain in the proof how the (straightforward)
first-order argument fails to generalize.

Fact 3.3. For every µ ≥ LS(K), for every M0 ≤ M1 both in Kµ+ , if
〈M `

i : i < µ+〉 are increasing continuous resolutions of M ` and all are

limit models4 in Kµ, ` = 0, 1, then the set of i < µ+ so that M0
M1

^
M0
i

M1
i

is a club.

Proof. Let us first see how the first-order argument would go. By local

character, for every i < µ+, there exists ji < µ+ such that M1
i

M1

^
M0
ji

M0.

Pick i∗ < µ+ such that ji < i∗ for every i < i∗. Using symmetry and the
fact that forking is witnessed by a formula (this is where we use the

first-order theory), it is then straightforward to see that M0
M1

^
M0
i∗

M1
i∗ .

Thus i∗ has the desired property, and the argument shows we can find
a closed unbounded subset of such i∗. Here however we do not have

4And hence if µ > LS(K) are saturated (Fact 2.7.(1)).
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that forking is witnessed by a formula, or even a finite set (we only
have the LS(K)-witness property, see Definition 2.2.(2d)).

Full model continuity (Definition 2.2.(2e)) seems to be the replace-
ment we are looking for, but in the argument above we do not have
that M0

ji
≤ M1

i so cannot use it! It is open whether the appropriate
generalization of full model continuity holds here.

On to the actual proof. We show the result when µ = LS(K). Once
this is done, if µ > LS(K) we can apply the “µ = LS(K)” case to
the class Kµ-sat (by Fact 2.7.(2) it is an almost fully good AEC and
LS(Kµ-sat) = µ).

We now want to apply [Jar16, Theorem 7.8]. The conclusion there
is that for any model M0,M1 ∈ Kµ+ , M0 ≤NF

µ+ M1 if and only if

M0 ≤ M1, where M0 ≤NF
µ+ M1 is defined to hold if and only if there

exists increasing continuous resolutions of M0 and M1 as here. Let us
check that the hypotheses of [Jar16, Theorem 7.8] are satisfied. First,
amalgamation in LS(K)+ and LS(K)-tameness hold (by definition of
an almost fully good AEC and Fact 2.4). Second, [Jar16, Hypothe-
sis 6.5] holds: K is categorical in LS(K), has a semi-good LS(K)-frame
(this is weaker than the existence of an almost fully good independence
relation, in fact the frame will be good), satisfies the conjugation prop-
erty (by [She09, III.1.21] which tells us that conjugation holds in any
good LS(K)-frame categorical in LS(K)), and has the existence prop-
erty for uniqueness triples by Hypothesis 3.1.(3) and Remark 2.10.
Therefore the hypotheses of Jarden’s theorem are satisfied so its con-
clusion holds. �

We can now generalize the proof of [She09, Claim III.4.3] to limit cardi-
nals. Roughly, it tells us that every nonalgebraic type over a saturated
model has a resolution into domination triples.

Lemma 3.4. Let λ > LS(K) and let δ := cf(λ). Let M0 ∈ Kλ be
saturated and let p ∈ gS(M0) be nonalgebraic. Then there exists a
saturated M1 ∈ Kλ, an element a ∈ |M1|, and increasing continuous
resolutions 〈M `

i : i ≤ δ〉 of M `, ` = 0, 1 such that for all i < δ:

(1) p = gtp(a/M0;M1).
(2) a ∈ |M1

0 |.
(3) p does not fork over M0

0 .
(4) For ` = 0, 1, M `

i ∈ K[LS(K),λ) and M `
i+1 is limit over M `

i .
(5) (a,M0

i ,M
1
i ) is a domination triple.
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Proof. For ` = 0, 1, we first choose by induction 〈N `
i : i ≤ λ〉 increasing

continuous and an element a that will satisfy some weaker require-
ments. In the end, we will rename the N `

i ’s to get the desired M `
i ’s and

M1. We require that for all i < λ:

(i) N0
0 ≤M0 and p does not fork over N0

0 .
(ii) a ∈ |N1

0 | and p � N0
0 = gtp(a/N0

0 ;N1
0 ).

(iii) For ` = 0, 1, N `
i ∈ K|i|+LS(K) and N0

i ≤ N1
i .

(iv) gtp(a/N0
i ;N1

i ) does not fork over N0
0 .

(v) If i is odd, and ` = 0, 1, then N `
i+1 is limit over N `

i .
(vi) If i is even and (a,N0

i , N
1
i ) is not a domination triple, then

N1
i

N1
i+1

/̂
N0
i

N0
i+1.

This is possible. First pick N0
0 ∈ KLS(K) such that N0

0 ≤M0 and p does

not fork over N0
0 . This is possible by local character. Now pick N1

0 ∈
KLS(K) such that N0

0 ≤ N1
0 and there is a ∈ |N1

0 | with gtp(a/N0
0 ;N1

0 ) =
p � N0

0 . This takes care of the case i = 0. For i limit, take unions. Now
assume that i = j + 1 is a successor. We consider several cases:

• If j is even and (a,N0
j , N

1
j ) is not a domination triple, then there

must exist witnesses N0
j+1, N

1
j+1 ∈ KLS(K)+|j| such that N0

j ≤

N0
j+1, N

0
j+1 ≤ N1

j+1, N
1
j ≤ N1

j+1, a
N1
j+1

^
N0
j

N0
j+1 but N1

j

N1
j+1

/̂
N0
j

N0
j+1.

This satisfies all the conditions (we know that gtp(a/N0
j ;N1

j )

does not fork over N0
0 , so by transitivity also gtp(a/N0

j+1;N
1
j+1)

does not fork over N0
0 ).

• If j is even and (a,N0
j , N

1
j ) is a domination triple, take N `

j+1 :=

N `
j , for ` = 0, 1.

• If j is odd, pick N0
i ∈ KLS(K)+|j| limit over N0

j and N1
i limit over

N0
i and N1

j so that gtp(a/N0
i ;N1

i ) does not fork over N0
0 . This

is possible by the extension property for types of length one.

This is enough. By the odd stages of the construction, and basic prop-

erties of universality, for all i < λ, ` = 0, 1, N `
i+2 is universal over N `

i .
Thus for ` = 0, 1 and i ≤ λ a limit ordinal, N `

i is limit. In particular,
by Fact 2.7.(1), N `

λ is saturated. By uniqueness of saturated models,
N0
λ
∼=N0

0
M0. By uniqueness of the nonforking extension, without loss

of generality N0
λ = M0. Now let C be the set of limit i < λ such that

(a,N0
i , N

1
i ) is a domination triple. We claim that C is a club:
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• C is closed by Lemma 3.2.
• C is unbounded: given α < λ, let µ := |α|+ LS(K). Let Eµ be

the set of i < µ+ such that i is limit and N0
µ+

N1
µ+

^
N0
i

N1
i . By Fact

3.3, Eµ is a club. The even stages of the construction imply that
for i ∈ Eµ, (a,N0

i , N
1
i ) is a domination triple. In other words,

Eµ ⊆ C. Now pick β ∈ Eµ\(α + 1). We have that α < β and
β ∈ Eµ ⊆ C. This completes the proof that C is unbounded.

Let 〈αi : i < δ〉 (recall that δ = cf(λ)) be a cofinal strictly increasing
continuous sequence of elements of C. For i < δ, ` = 0, 1, let M `

i :=
N `
αi

and let M1 := M1
λ (note that M1 is saturated by what has been

observed above). This works: Clauses (1), (2), (3) are straightforward
to check using the monotonicity and uniqueness properties of forking.
Clause (5) holds by definition of C. As for (4), we have observed above
that for ` = 0, 1, for all i < λ, N `

i+2 is universal over N `
i . Hence for all

limit ordinals i < j < λ, N `
j is limit over N `

i . In particular because C

contains only limit ordinals, for all i < δ, N `
αi+1

is limit over N `
αi

, as
desired. �

In [She09, Claim III.4.9], Shelah observes that triples as in the conclu-
sion of Lemma 3.4 are prime triples. For the convenience of the reader,
we include the proof here. We will use the following fact which follows
from the uniqueness property of forking and some renaming.

Fact 3.5 (Lemma 12.6 in [Vasa]). For ` < 2, i < 4, let M `
i ∈ K be

such that for i = 1, 2, M `
0 ≤M `

i ≤M `
3.

If M `
1

M`
3

^
M`

0

M `
2 for ` < 2, fi : M1

i
∼= M2

i for i = 0, 1, 2, and f0 ⊆ f1,

f0 ⊆ f2, then f1 ∪ f2 can be extended to f3 : M1
3 → M2

4 , for some M2
4

with M2
3 ≤M2

4 .

We can now give a proof of Theorem 0.1 from the abstract. For the
convenience of the reader we restate Hypothesis 3.1 here.

Theorem 3.6. Let K be an almost fully good AEC that is categorical
in LS(K) and has the LS(K)-existence property for domination triples.

For any λ > LS(K), Kλ-satλ has primes (see Definition 2.13). That is,
for any saturated M ∈ Kλ and any nonalgebraic p ∈ gS(M), there
exists a triple (a,M,N) such that M ≤ N , N ∈ Kλ is saturated,
p = gtp(a/M ;N), and whenever p = gtp(b/M ;N ′) with N ′ ∈ Kλ
saturated, there exists f : N −→

M
N ′ such that f(a) = b.
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Proof. Let M ∈ Kλ be saturated and let p ∈ gS(M) be nonalgebraic.
We must find a triple (a,M,N) such that M ≤ N , N ∈ Kλ is saturated,
p = gtp(a/M ;N), and (a,M,N) is a prime triple among the saturated
models of size λ.

Set M0 := M and let δ := cf(λ). Let M1, a, 〈M `
i : i ≤ δ〉 be as

described by the statement of Lemma 3.4. Recall (this is key) that
‖M `

i ‖ < λ for any i < δ. We show that (a,M0,M1) is as desired.
By assumption, M0 ≤ M1, p = gtp(a/M0;M1), and M1 ∈ Kλ is
saturated. It remains to show that (a,M0,M1) is a prime triple in
Kλ-satλ . Let M ′ ∈ Kλ-satλ , a′ ∈ |M ′| be given such that gtp(a′/M0;M ′) =
gtp(a/M0;M1). We want to build f : M1 −−→

M0
M ′ so that f(a) = a′.

We build by induction an increasing continuous chain of embeddings
〈fi : i ≤ δ〉 so that for all i ≤ δ:

(1) fi : M1
i −−→

M0
i

M ′.

(2) fi(a) = a′.

This is enough since then f := fδ is as required. This is possible: for
i = 0, we use that M ′ is saturated, hence realizes p � M0

0 , so there
exists f0 : M1

0 −−→
M0

0

M ′ witnessing it, i.e. f0(a) = a′. At limits, we take

unions. For i = j + 1 successor, let µ := ‖M1
j ‖+ ‖M0

i ‖. Pick Nj ≤M ′

with Nj ∈ Kµ and Nj containing both fj[M
1
j ] and M0

i .

By assumption, p does not fork over M0
0 and by assumption p =

gtp(a′/M0;M ′), so by monotonicity of forking, a′
Nj

^
M0
j

M0
j+1. We know

that (a,M0
j ,M

1
j ) is a domination triple, hence applying fj and using in-

variance, (a′,M0
j , fj[M

1
j ]) is a domination triple. Therefore fj[M

1
j ]

Nj

^
M0
j

M0
j+1.

By a similar argument, we also have M1
j

M1
j+1

^
M0
j

M0
j+1. By Fact 3.5, the

map fj ∪ idM0
j+1

can be extended to a K-embedding g : Mα
j+1 → N ′j for

some N ′j ≥ Nj of size µ. Since µ < λ and M ′ is saturated, there exists
h : N ′j −→

Nj
M ′. Let fj+1 := h ◦ g. �
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