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Abstract. We initiate a systematic investigation of the abstract elementary

classes that have amalgamation, satisfy tameness (a locality property for or-

bital types), and are stable (in terms of the number of orbital types) in some
cardinal. Assuming the singular cardinal hypothesis (SCH), we prove a full

characterization of the (high-enough) stability cardinals, and connect the sta-

bility spectrum with the behavior of saturated models.
We deduce (in ZFC) that if a class is stable on a tail of cardinals, then it

has no long splitting chains (the converse is known). This indicates that there

is a clear notion of superstability in this framework.
We also present an application to homogeneous model theory: for D a

homogeneous diagram in a first-order theory T , if D is both stable in |T | and
categorical in |T | then D is stable in all λ ≥ |T |.
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1. Introduction

1.1. Motivation and history. Abstract elementary classes (AECs) are partially
ordered classes K = (K,≤K) which satisfy several of the basic category-theoretic
properties of classes of the form (Mod(T ),�) for T a first-order theory. They
were introduced by Saharon Shelah in the late seventies [She87] and encompass
infinitary logics such as Lλ+,ω(Q) as well as several algebraic examples. One of
Shelah’s test questions is the eventual categoricity conjecture: an AEC categorical
in some high-enough cardinal should be categorical in all high-enough cardinals.

Toward an approximation, work of Makkai and Shelah [MS90] studied classes of
models of an Lκ,ω theory categorical in a high-enough cardinal, where κ is strongly
compact. They proved [MS90, 1.13] that such a class has (eventual) amalgamation,
joint embedding, and no maximal models. Thus one can work inside a monster
model and look at the corresponding orbital types. Makkai and Shelah established
that the orbital types correspond to certain syntactic types, implying in particular
that two orbital types are equal if all their restrictions of size less than κ are
equal. They then went on to develop some superstability theory and concluded
that categoricity in some high-enough successor implies categoricity in all high-
enough cardinals.

A common theme of recent work on AECs is to try to replace large cardinal hypothe-
ses with their model-theoretic consequences. For example, regardless of whether
there are large cardinals, many classes of interests have a monster model and satisfy
a locality property for their orbital types (see the introduction to [GV06] or the
list of examples in the recent survey [BV17b]). Toward that end, Grossberg and
VanDieren made the locality property isolated by Makkai and Shelah (and later also
used by Shelah in another work [She99]) into a definition: Call an AEC µ-tame if
its orbital types are determined by their µ-sized restrictions. Will Boney [Bon14b]
has generalized the first steps in the work of Makkai and Shelah to AECs, showing
that tameness follows from a large cardinal axiom (amalgamation also follows if
one assumes categoricity). Earlier, Shelah had shown that Makkai and Shelah’s
downward part of the transfer holds assuming amalgamation (but not tameness)
[She99] and Grossberg and VanDieren used Shelah’s proof (their initial motivation
for isolating tameness) to show that the upward part of the transfer holds in tame
AECs with amalgamation.

Recently, the superstability theory of tame AECs with a monster model has seen
a lot of development [Bon14a, Vas16b, BV17a, VV17, GV17] and one can say that
most of Makkai and Shelah’s work has been generalized to the tame context (see
also [Bal09, D.9(3)]). New concepts not featured in the Makkai and Shelah paper,
such as good frames and limit models, have also seen extensive studies (e.g. in the
previously-cited papers and in Shelah’s book [She09a]). The theory of superstability
for AECs has had several applications, including a full proof of Shelah’s eventual
categoricity conjecture in universal classes [Vas17b, Vas17c].

While we showed with Grossberg [GV17] that several possible definitions of super-
stability are all equivalent in the tame case, it was still open [GV17, 1.7] whether
stability on a tail of cardinals implied these possible definitions (e.g. locality of
forking).
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The present paper answers positively (see Corollary 4.24) by developing the theory
of strictly stable tame AECs with a monster model. We emphasize that this is not
the first paper on strictly stable AECs. In their paper introducing tameness [GV06],
Grossberg and VanDieren proved several fundamental results (see also [BKV06]).
Shelah [She99, §4,§5] has made some important contributions without even assum-
ing tameness; see also his work on universal classes [She09b, V.E]. Several recent
works [BG17, Vas16c, BV17a, BV] establish results on independence, the first sta-
bility cardinal, chains of saturated models, and limit models. The present paper
aims to put these papers together and improve some of their results using either the
superstability machinery mentioned above or (in the case of Shelah’s tameness-free
results) assuming tameness.

1.2. Outline of the main results. Fix an LS(K)-tame AEC K with a monster
model. Assume that K is stable (defined by counting Galois types) in some cardinal.
Let χ(K) be the class of regular cardinals χ such that for all high-enough stability
cardinals µ, any type over the union of a (µ, χ)-limit chain 〈Mi : i < χ〉 does not
µ-split over some Mi. When K is an elementary class, χ(K) is an end-segment
of cardinals whose minimum is κr(T ) (the least regular cardinal greater than or
equal to κ(T )). Note that in general we do not know whether χ(K) must be an
end segment of regular cardinals or whether it can have gaps (we can give a locality
condition implying that it is an end segment, see Corollary 2.8 and Theorem 3.7).

Using results from the theory of averages in tame AECs (developed in [BV17a,
GV17]), we show assuming the singular cardinal hypothesis (SCH1) that for all
high-enough cardinals µ, K is stable in µ if and only if cf(µ) ∈ χ(K) (see Corollary
4.22). The right to left direction is implicit in the author’s earlier work [Vas16b,
5.7] but the left to right direction is new.

A consequence of the proof of Corollary 4.22 is that stability on a tail implies that
χ(K) contains all regular cardinals (Corollary 4.24; note that this is in ZFC). Thus
we propose the following definition:

Definition 4.26. An LS(K)-tame AEC with a monster model is superstable if
χ(K) contains all regular cardinals.

Combining [GV17] with the results of the present paper, we obtain that Definition
4.26 is equivalent to many other potential candidate definitions of superstability
(such as stability on a tail, or the union of a chain of λ-saturated models to be λ-
saturated). Thus we believe that in the setup of tame AECs with a monster model,
this is the right definition.

The present paper also shows that χ(K) connects the stability spectrum with the
behavior of saturated models: assuming SCH, a stable tame AEC with a monster
model has a saturated model in a high-enough λ if and only if [λ = λ<λ or K
is stable in λ]. In ZFC, we deduce that having saturated models on a tail of
cardinals implies superstability (Corollary 5.9). We conclude with Theorem 6.3,
giving (in ZFC) several equivalent definitions of χ(K), in terms of uniqueness of
limit models, existence of saturated models, or the stability spectrum. Sections
7-11 adapt the study of strict stability from [She99] to the tame context and use a
weak continuity property for splitting (as assumed in [BV]) to improve on some of

1That is, for every infinite singular cardinal λ, λcf(λ) = 2cf(λ) + λ+.
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the results mentioned earlier. Note that while Section 11 contains the main results,
it depends on Sections 7-10 (which are more technical). Section 12 gives a quick
application to homogeneous model theory: categoricity in |T | and stability in |T |
imply stability in all λ ≥ |T |.
The reader may ask how SCH is used in the above results. Roughly, it makes
cardinal arithmetic well-behaved enough that for any big-enough cardinal λ, K will
either be stable in λ or in unboundedly many cardinals below λ. This is connected
to defining the locality cardinals in χ(K) using chains rather than as the least
cardinal κ for which every type does not fork over a set of size less than κ (indeed,
in AECs it is not even clear what exact form such a definition should take). Still
several results of this paper hold (in ZFC) for “most” cardinals, and the role of
SCH is only to deduce that “most” means “all”.

By a result of Solovay [Sol74], SCH holds above a strongly compact. Thus our
results which assume SCH hold also above a strongly compact. This shows that a
stability theory (not just a superstability theory) can be developed in the context
of the Makkai and Shelah paper, partially answering [She00, 6.15].

1.3. Future work. We believe that an important test question is whether the
aforementioned SCH hypothesis can be removed:

Question 1.1. Let K be an LS(K)-tame AEC with a monster model. Can one
characterize the stability spectrum in ZFC?

By the present work, the answer to Question 1.1 is positive assuming the existence
of large cardinals.

Apart from χ(K), several other cardinal parameters (λ(K), λ′(K), and µ̄(K)) are
defined in this paper. Under some assumptions, we can give loose bounds on these
cardinals (see e.g. Theorem 11.3) but focus on eventual behavior. We believe it is
a worthy endeavor (analog to the study of the behavior of the stability spectrum
below 2|T | in first-order) to try to say something more on these cardinals.

1.4. Notes. The background required to read this paper is a solid knowledge of
tame AECs (as presented for example in [Bal09]). Familiarity with [Vas16b] would
be very helpful. Results from the recent literature which we rely on can be used as
black boxes.

This paper was written while the author was working on a Ph.D. thesis under the
direction of Rami Grossberg at Carnegie Mellon University and he would like to
thank Professor Grossberg for his guidance and assistance in his research in general
and in this work specifically. The author also thanks John T. Baldwin and the
referee for valuable comments that helped improve the presentation of the paper.

Note that at the beginning of several sections, we make global hypotheses assumed
throughout the section. In the statement of the main results, these global hypothe-
ses will be repeated.

2. Preliminaries

2.1. Basic notation.
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Notation 2.1.

(1) We use the Hanf number notation from [Bal09, 4.24]: for λ an infinite
cardinal, write h(λ) := i(2λ)+ . When K is an AEC clear from context,

H1 := h(LS(K)).
(2) Let REG denote the class of regular cardinals.

2.2. Monster model, Galois types, and tameness. We say that an AEC K
has a monster model if it has amalgamation, joint embedding, and arbitrarily large
models. Equivalently, it has a (proper class sized) model-homogeneous universal
model C. When K has a monster model, we fix such a C and work inside it. Note
that for our purpose amalgamation is the only essential property. Once we have it,
we can partition K into disjoint pieces, each of which has joint embedding (see for
example [Bal09, 16.14]). Further, for studying the eventual behavior of K assuming
the existence of arbitrarily large models is natural.

We use the notation of [Vas16c] for Galois types. In particular, gtp(b̄/A;N) denotes
the Galois type of the sequence b̄ over the set A, as computed in N ∈ K. In case
K has a monster model C, we write gtp(b̄/A) instead of gtp(b̄/A;C). In this case,
gtp(b̄/A) = gtp(c̄/A) if and only if there exists an automorphism f of C fixing A
such that f(b̄) = c̄.

Observe that the definition of Galois types is completely semantic. Tameness is
a locality property for types isolated by Grossberg and VanDieren [GV06] that,
when it holds, allows us to recover some of the syntactic properties of first-order
types. For a cardinal µ ≥ LS(K), we say that an AEC K with a monster model
is µ-tame if whenever gtp(b/M) 6= gtp(c/M), there exists M0 ∈ K≤µ such that
M0 ≤K M and gtp(b/M0) 6= gtp(c/M0). When assuming tameness in this paper,
we will usually assume that K is LS(K)-tame. Indeed if K is µ-tame we can just
replace K by K≥µ. Then LS(K≥µ) = µ, so K≥µ will be LS(K≥µ)-tame.

Concepts such as stability and saturation are defined as in the first-order case but
using Galois type. For example, an AEC K with a monster model is stable in µ if
|gS(M)| ≤ µ for every M ∈ Kµ. For µ > LS(K), a model M ∈ K is µ-saturated if
every Galois type over a ≤K-substructure of M of size less than µ is realized in M .
In the literature, these are often called “Galois stable” and “Galois saturated”, but
we omit the “Galois” prefix since there is no risk of confusion in this paper.

As in [She99, 4.3]:

Definition 2.2. Let K be an AEC with a monster model and let α be a non-
zero cardinal. We say that K has the α-order property if for every θ there exists
〈āi : i < θ〉 such that for all i < θ, `(āi) = α and for all i0 < i1 < θ, j0 < j1 < θ,
gtp(āi0 āi1/∅) 6= gtp(āj1 āj0/∅).

2.3. Independence relations. An abstract class (AC) is a partial order K =
(K,≤K) where K is a class of structures in a fixed vocabulary τ(K), K is closed
under isomorphisms, and M ≤K N implies M ⊆ N (the definition is due to Rami
Grossberg [Gro]).

In this paper, an independence relation will be a pair (K,^), where:
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(1) K is a coherent2 abstract class with amalgamation.
(2) ^ is a 4-ary relation so that:

(a) ^(M,A,B,N) implies M ≤K N , A,B ⊆ |N |, |A| ≤ 1. We write

A
N

^
M
B.

(b) ^ satisfies invariance, normality, and monotonicity (see [Vas16a, 3.6]
for the definitions).

(c) We also ask that ^ satisfies base monotonicity: if A
N

^
M0

B, M0 ≤K

M ≤K N , and |M | ⊆ B, then A
N

^
M
B.

Note that this definition differs slightly from that in [Vas16a, 3.6]: there additional
parameters are added controlling the size of the left and right hand side, and base
monotonicity is not assumed. Here, the size of the left hand side is at most 1 and
the size of the right hand side is not bounded. So in the terminology of [Vas16a],
we are defining a (≤ 1, [0,∞))-independence relation with base monotonicity.

When i = (K,^) is an independence relation and p ∈ gS(B;N) (we make use of
Galois types over sets, see [Vas16c, 2.16]), we say that p does not i-fork over M if

a
N

^
M
B for some (any) a realizing p in N . When i is clear from context, we omit it

and just say that p does not fork over M .

The following independence notion is central. It was introduced by Shelah in [She99,
3.2].

Definition 2.3. Let K be a coherent abstract class with amalgamation, let M ≤K

N , p ∈ gS(N), and let µ ≥ ‖M‖. We say that p µ-splits over M if there exists
N1, N2 ∈ K≤µ and f such that M ≤K N` ≤K N for ` = 1, 2, f : N1

∼=M N2, and
f(p � N1) 6= p � N2.

For λ an infinite cardinal, we write iµ-spl(Kλ) for the independence relation with
underlying class Kλ and underlying independence notion non µ-splitting.

2.4. Universal orderings and limit models. Work inside an abstract class K.
For M <K N , we say that N is universal over M (and write M <univ

K N) if for
any M ′ ∈ K with M ≤K M ′ and ‖M ′‖ = ‖M‖, there exists f : M ′ −→

M
N . For a

cardinal µ and a limit ordinal δ < µ+, we say that N is (µ, δ)-limit over M if there
exists an increasing continuous chain 〈Ni : i ≤ δ〉 such that N0 = M , Nδ = N , and
for any i < δ, Ni is in Kµ and Ni+1 is universal over Ni. For A ⊆ µ+ a set of limit
ordinals, we say that N is (µ,A)-limit over M if there exists γ ∈ A such that N
is (µ, γ)-limit over M . (µ,≥ δ)-limit means (µ, [δ, µ+) ∩ REG)-limit. We will use
without mention the basic facts about limit models in AECs: existence (assuming
stability and a monster model) and uniqueness when they have the same cofinality.
See [GVV16] for an introduction to the theory of limit models.

2.5. Locality cardinals for independence. One of the main object of study
of this paper is χ(K) (see Definition 4.6), which roughly is the class of regular

2that is, whenever M0 ⊆M1 ≤K M2 and M0 ≤K M2, we have that M0 ≤K M1.
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cardinals χ such that for any increasing continuous chain 〈Mi : i ≤ χ〉 where each
model is universal over the previous one and for any p ∈ gS(Mχ) there exists i < χ
such that p does not ‖Mi‖-split over Mi. Interestingly, we cannot rule out the
possibility that there are gaps in χ(K), i.e. although we do not have any examples,
it is conceivable that there are regular χ0 < χ1 < χ2 such that chains of length χ0

and χ2 have the good property above but chains of length χ1 do not). This is why
we follow Shelah’s approach from [She99] (see in particular the remark on top of
p. 275 there) and define classes of locality cardinals, rather than directly taking a
minimum (as in for example [GV06, 4.3]). We give a sufficient locality condition
implying that there are no gaps in χ(K) (see Theorem 3.7).

The cardinals κwk are already in [She99, 4.8], while κcont is used in the proof of the
Shelah-Villaveces theorem [SV99, 2.2.1], see also [BGVV17].

Definition 2.4 (Locality cardinals). Let i be an independence relation. Let R be
a partial order on K extending ≤K.

(1) κ(i, R) is the set of regular cardinals χ such that whenever 〈Mi : i < χ〉 is
an R-increasing chain3, N ∈ K is such that Mi ≤K N for all i < χ, and
p ∈ gS(

⋃
i<χ |Mi|;N), there exists i < χ such that p does not fork over Mi.

(2) κwk(i, R) is the set of regular cardinals χ such that whenever 〈Mi : i < χ〉
is an R-increasing chain, N ∈ K is such that Mi ≤K N for all i < χ, and
p ∈ gS(

⋃
i<χ |Mi|;N), there exists i < χ such that p � Mi+1 does not fork

over Mi.
(3) κcont(i, R) is the set of regular cardinals χ such that whenever 〈Mi : i < χ〉

is an R-increasing chain, N ∈ K is such that Mi ≤K N for all i < χ, and
p ∈ gS(

⋃
i<χ |Mi|;N), if p �Mi does not fork over M0 for all i < χ, then p

does not fork over M0.

When R is ≤K, we omit it. In this paper, R will mostly be <univ
K (see Section 2.4).

Remark 2.5. The behavior at singular cardinals has some interests (see for exam-
ple [BGVV17, 11(4)]), but we focus on regular cardinals in this paper.

Note that κwk(i, R) is an end segment of regular cardinals (so it has no gaps): if
χ0 < χ1 are regular cardinals and χ0 ∈ κwk(i, R), then χ1 ∈ κwk(i, R). In section 3
we will give conditions under which κ(i, R) and κcont(i, R) are also end segments.
In this case, the following cardinals are especially interesting (note the absence of
line under κ):

Definition 2.6. κ(i, R) is the least regular cardinal χ ∈ κ(i, R) such that for any
regular cardinals χ′ > χ, we have that χ′ ∈ κ(i, R). Similarly define κwk(i, R) and
κcont(i, R).

The following is given by the proof of [BGVV17, 11(1)]:

Fact 2.7. Let i = (K,^) be an independence relation. Let R be a partial order
on K extending ≤K.

We have that κwk(i, R) ∩ κcont(i, R) ⊆ κ(i, R).

3that is, MiRMj for all i < j < χ.
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Corollary 2.8. Let i = (K,^) be an independence relation. Let R be a partial
order on K extending ≤K. If κcont(i, R) = ℵ0 (i.e. κcont(i, R) contains all the regular
cardinals), then κ(i, R) = κwk(i, R) and both are end segments of regular cardinals.

Proof. Directly from Fact 2.7 (using that by definition κwk(i, R) is always an end
segment of regular cardinals). �

Remark 2.9. The conclusion of Fact 2.7 can be made into an equality assuming
that i satisfies a weak transitivity property (see the statement for splitting and
R =<univ

K in [Vas16b, 3.7]). This is not needed in this paper.

3. Continuity of forking

In this section, we aim to study the locality cardinals and give conditions under
which κcont contains all regular cardinals. We work in an AEC with amalgamation
and stability in a single cardinal µ:

Hypothesis 3.1.

(1) K is an AEC, µ ≥ LS(K).
(2) Kµ has amalgamation, joint embedding, and no maximal models in µ.

Moreover K is stable in µ.
(3) i = (Kµ,^) is an independence relation.

Remark 3.2. The results of this section generalize to AECs that may not have full
amalgamation in µ, but only satisfy the properties from [SV99]: density of amal-
gamation bases, existence of universal extensions, and limit models being amalga-
mation bases.

We will usually assume that i has the weak uniqueness property:

Definition 3.3. i has weak uniqueness if whenever M0 ≤K M ≤K N are all in Kµ

with M universal over M0, p, q ∈ gS(N) do not fork over M0, and p �M = q �M ,
then p = q.

The reader can think of i as non-µ-splitting (Definition 2.3), where such a property
holds [Van06, I.4.12]. We state a more general version:

Fact 3.4 (6.2 in [GV06]). iµ-spl(Kµ) has weak uniqueness. More generally, let
M0 ≤K M ≤K N all be in K≥µ with M0 ∈ Kµ. Assume that M is universal over
M0 and K is (µ, ‖N‖)-tame (i.e. types over models of size ‖N‖ are determined by
their restrictions of size µ).

Let p, q ∈ gS(N). If p, q both do not µ-split over M0 and p � M = q � M , then
p = q.

Interestingly, weak uniqueness implies a weak version of extension:

Lemma 3.5 (Weak extension). Let M0 ≤K M ≤K N all be in Kµ. Assume that
M is universal over M0. Let p ∈ gS(M) and assume that p does not fork over M0.

If i has weak uniqueness, then there exists q ∈ gS(N) extending p such that q does
not fork over M0.
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Proof. We first prove the result when M is (µ, ω)-limit over M0. In this case we can
write M = Mω, where 〈Mi : i ≤ ω〉 is increasing continuous with Mi+1 universal
over Mi for each i < ω.

Let f : N −−→
M1

M . Let q := f−1(p). Then q ∈ gS(N) and by invariance q does

not fork over M0. It remains to show that q extends p. Let qM := q � M . We
want to see that qM = p. By monotonicity, qM does not fork over M0. Moreover,
qM �M1 = p �M1. By weak uniqueness, this implies that qM = p, as desired.

In the general case (when M is only universal over M0), let M ′ ∈ Kµ be (µ, ω)-limit
over M0. By universality, we can assume that M0 ≤K M ′ ≤K M . By the special
case we have just proven, there exists q ∈ gS(N) extending p �M ′ such that q does
not fork over M0. By weak uniqueness, we must have that also q � M = p, i.e. q
extends p. �

We will derive continuity from weak uniqueness and the following locality property4,
a weakening of locality from [Bal09, 11.4]:

Definition 3.6. Let χ be a regular cardinal. We say that an AEC K with a monster
model is weakly χ-local if for any increasing continuous chain 〈Mi : i ≤ χ〉 with
Mi+1 universal over Mi for all i < χ, if p, q ∈ gS(Mχ) are such that p �Mi = q �Mi

for all i < χ, then p = q. We say that K is weakly (≥ χ)-local if K is weakly χ′-local
for all regular χ′ ≥ χ.

Note that any (< ℵ0)-tame AEC (such as an elementary class, an AEC derived
from homogeneous model theory, or even a universal class [Bon], see also [Vas17b,
3.7]) is weakly (≥ ℵ0)-local.

Theorem 3.7. Let χ < µ+ be a regular cardinal. If K is weakly χ-local and i has
weak uniqueness, then χ ∈ κcont(i, <univ

K ).

Proof. Let 〈Mi : i ≤ χ〉 be increasing continuous in Kµ with Mi+1 universal over
Mi for all i < χ. Let p ∈ gS(Mχ) and assume that p � Mi does not fork over M0

for all i < χ. Let q ∈ gS(Mχ) be an extension of p � M1 such that q does not
fork over M0. This exists by weak extension (Lemma 3.5). By weak uniqueness,
p �Mi = q �Mi for all i < χ. By weak χ-locality, p = q, hence p does not fork over
M0, as desired. �

In the rest of this paper, we will often look at µ-splitting. The following notation
will be convenient:

Definition 3.8. Define κ(Kµ, <
univ
K ) := κ(iµ-spl(Kµ), <univ

K ). Similarly define the
other variations in terms of κwk and κcont. Also define κ(Kµ, <

univ
K ) and its varia-

tions.

Note that any independence relation with weak uniqueness is extended by non-
splitting. This is essentially observed in [BGKV16, 4.2] but we give a full proof
here for the convenience of the reader.

Lemma 3.9. Assume that i has weak uniqueness.

4In an earlier version, we derived continuity without any locality property but our argument
contained a mistake.
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(1) Let M0 ≤K M1 ≤K M all be in Kµ such that M1 is universal over M0 and
M is universal over M1. Let p ∈ gS(M). If p does not fork over M0, then
p does not µ-split over M1.

(2) κ(i, <univ
K ) ⊆ κ(Kµ, <

univ
K ), and similarly for κwk and κcont.

Proof.

(1) Let N1, N2 ∈ Kµ and f : N1
∼=M1 N2 be such that M1 ≤K N` ≤K M

for ` = 1, 2. We want to see that f(p � N1) = p � N2. By monotonicity,
p � N` does not fork over M0 for ` = 1, 2. Consequently, f(p � N1) does
not fork over M0. Furthermore, f(p � N1) �M1 = p �M1 = (p � N2) �M1.
Applying weak uniqueness, we get that f(p � N1) = p � N2.

(2) Follows from the first part.

�

4. The stability spectrum of tame AECs

For an AEC K with a monster model, we define the stability spectrum of K, Stab(K)
to be the class of cardinals µ ≥ LS(K) such that K is stable in µ. We would like
to study it assuming tameness. From earlier work, the following is known about
Stab(K) in tame AECs:

Fact 4.1. Let K be an LS(K)-tame AEC with a monster model.

(1) [Vas16c, 4.13] If Stab(K) 6= ∅, then min(Stab(K)) < H1 (recall Notation
2.1).

(2) [GV06, 6.4]5 If µ ∈ Stab(K) and λ = λµ, then λ ∈ Stab(K).
(3) [BKV06, 1] If µ ∈ Stab(K), then µ+ ∈ Stab(K).
(4) [Vas16b, 5.5] If 〈µi : i < δ〉 is strictly increasing in Stab(K) and cf(δ) ∈

κ(Kµ0
, <univ

K ), then supi<δ µi ∈ Stab(K) (see Definition 3.8).

Let us say that K is stable if Stab(K) 6= ∅. In this case, it is natural to give a name
to the first stability cardinal:

Definition 4.2. For K an AEC with a monster model, let λ(K) := min(Stab(K))
(if Stab(K) = ∅, let λ(K) :=∞).

At the end of this section, we will define K to be superstable if for all high-enough
µ, κ(Kµ, <

univ
K ) contains all regular cardinals (Definition 4.23). A byproduct of

the work here is Corollary 4.24, showing that this is equivalent to being stable on a
tail and hence justifying the “superstable” terminology. For now we more generally
study the (possibly strictly) stable setup.

From Fact 4.1, if K is an LS(K)-tame AEC with a monster model, then λ(K) <∞
implies that λ(K) < H1.

We will also rely on the following basic facts:

5Grossberg and VanDieren’s proof shows that the assumption there that µ > H1 can be
removed, see [Bal09, Theorem 12.10].
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Fact 4.3 (3.12 in [BGKV16]). Let K be an LS(K)-tame AEC with a monster
model. For M ≤K N , p ∈ gS(N), µ ∈ [‖M‖, ‖N‖], p µ-splits over M if and only if
p ‖M‖-splits over M .

Fact 4.4 (3.3 in [She99]). Let K be an AEC with a monster model. Assume that
K is stable in µ ≥ LS(K). For any M ∈ K≥µ and any p ∈ gS(M), there exists
M0 ≤K M with M0 ∈ Kµ such that p does not µ-split over M0.

It is natural to look at the sequence 〈κ(Kµ, <
univ
K ) : µ ∈ Stab(K)〉 (recall Definition

3.8). From [Vas16b, §4], we have that:

Fact 4.5. Let K be an LS(K)-tame AEC with a monster model. If µ < λ are both
in Stab(K), then κ(Kµ, <

univ
K ) ⊆ κ(Kλ, <

univ
K ).

Thus we define:

Definition 4.6. For K an LS(K)-tame AEC with a monster model, let χ(K) :=⋃
µ∈Stab(K) κ(Kµ(K), <

univ
K ). Let χ(K) be the least regular cardinal χ such that

χ′ ∈ χ(K) for any regular χ′ ≥ χ. Set χ(K) := ∅ and χ(K) :=∞ if λ(K) =∞.

Remark 4.7. By Fact 4.4, χ(K) ≤ λ(K)+. Assuming continuity of splitting, we
can prove that χ(K) ≤ λ(K) (see Theorem 11.3).

Remark 4.8. If K comes from a first-order theory, then χ(K) is the set of regular
cardinals greater than or equal to κr(T ), see Corollary 4.18.

Fact 4.4 implies more generally that [λ(K),∞) ∩ REG ⊆ κ(Kµ, <
univ
K ) for any

stability cardinal µ. Thus we can let λ′(K) be the first place where the sequence
of κ(Kµ, <

univ
K ) stabilizes. One can think of it as the first “well-behaved” stability

cardinal.

Definition 4.9. For K an LS(K)-tame AEC with a monster model, let λ′(K)
be the least stability cardinal λ such that κ(Kµ, <

univ
K ) ⊆ κ(Kλ, <

univ
K ) for all

µ ∈ Stab(K). When λ(K) =∞, we set λ′(K) =∞.

We do not know whether λ′(K) = λ(K). In fact, while we know that λ′(K) < ∞
if λ(K) < ∞, we are unable to give any general bound at all on λ′(K). Assuming
continuity of splitting, we can show that λ′(K) < h(λ(K)) (see Theorem 11.3).

In this section, we prove what we can on χ(K) without assuming continuity of
splitting. Section 11 will prove more assuming continuity of splitting.

We will use the following fact, whose proof relies on the machinery of averages for
tame AECs:

Fact 4.10 (5.15,5.16 in [BV17a]). Let K be an LS(K)-tame AEC with a monster
model.

There exists a stability cardinal χ0 < H1 such that for any µ > µ0 ≥ χ0, if:

(1) K is stable in unboundedly many cardinals below µ.
(2) K is stable in µ0 and cf(δ) ∈ κ(Kµ0

, <univ
K )

then whenever 〈Mi : i < δ〉 is an increasing chain of µ-saturated models, we have
that

⋃
i<δMi is µ-saturated.
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The following is the key result.

Theorem 4.11. Let K be an LS(K)-tame AEC with a monster model. Let χ0 <
H1 be as given by Fact 4.10. For any µ > χ0, if K is stable in µ and in unboundedly
many cardinals below µ, then cf(µ) ∈ κ(Kµ, <

univ
K ).

The proof of Theorem 4.11 will use the lemma below, which improves on [GV17,
3.17].

Lemma 4.12. Let K be an LS(K)-tame AEC with a monster model. Let δ be a
limit ordinal and let 〈Mi : i ≤ δ〉 be an increasing continuous sequence. If Mδ is
(LS(K) + δ)+-saturated, then for any p ∈ gS(Mδ), there exists i < δ such that p
does not ‖Mi‖-split over Mi.

Proof. Assume for a contradiction that p ∈ gS(Mδ) is such that p ‖Mi‖-splits
over Mi for every i < δ. Then for every i < δ there exists N i

1, N
i
2, fi such that

Mi ≤K N i
` ≤K M , ` = 1, 2, fi : N i

1
∼=Mi

N i
2, and fi(p � N i

1) 6= p � N i
2. By tameness,

there exists M i
1 ≤K N i

1,M
i
2 ≤K N i

2 both in K≤LS(K) such that fi[M
i
1] = M i

2 and

fi(p �M i
1) 6= p �M i

2.

Let N ≤K M have size µ := LS(K) + δ and be such that M i
` ≤K N for ` = 1, 2

and i < δ.

Since Mδ is µ+-saturated, there exists b ∈ |Mδ| realizing p � N . Let i < δ be such
that b ∈ |Mi|. By construction, we have that fi(p �M i

1) 6= p �M i
2 but on the other

hand p � M i
` = gtp(b/M i

` ;M) and fi(p � M i
1) = gtp(b/M i

2;M), since fi(b) = b (it
fixes Mi). This is a contradiction. �

Before proving Theorem 4.11, we show that Fact 4.10 implies saturation of long-
enough limit models:

Theorem 4.13. Let K be an LS(K)-tame AEC with a monster model. Let χ0 <
H1 be as given by Fact 4.10. Let µ > µ0 ≥ χ0 be such that K is stable in µ0, µ,
and in unboundedly many cardinals below µ.

Then any (µ, κ(Kµ0 , <
univ
K ) ∩ µ+)-limit model (see Section 2.4) is saturated. In

particular, there is a saturated model of cardinality µ.

Proof. Assume for simplicity that µ is limit (if µ is a successor cardinal, the proof
is completely similar). Let γ := cf(µ) and let 〈µi : i < γ〉 be increasing cofinal
in µ such that K is stable in µi for all i < γ. By Fact 4.1(3), K is stable in
µ+
i for all i < γ. Let δ ∈ κ(Kµ0

, <univ
K ) ∩ µ+. By Fact 4.10, for all i < γ, the

union of a chain of µi-saturated models of length δ is µi-saturated. It follows that
the (µ, δ)-limit model is saturated. Indeed, for each fixed i < γ, we can build an
increasing continuous chain 〈Mj : j ≤ δ〉 such that for all j < δ, Mj ∈ Kµ, Mj+1 is
universal over Mj , and Mj+1 is µi-saturated. By what has just been observed, Mδ

is µi-saturated, and is a (µ, δ)-limit model. Now apply uniqueness of limit models
of the same length.

To see the “in particular” part, assume again that µ is limit (if µ is a successor, the
(µ, µ)-limit model is saturated). Then without loss of generality, µ0 > λ(K), so by
Fact 4.4, λ(K)+ ∈ κ(Kµ0 , <

univ
K ). Thus the (µ, λ(K)+)-limit model is saturated.

�
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Proof of Theorem 4.11. Let µ > χ0 be such that K is stable in µ and in unbound-
edly many cardinals below µ. Let δ := cf(µ).

By Theorem 4.13, there is a saturated model M of cardinality µ. Using that
K is stable in unboundedly many cardinals below µ, one can build an increasing
continuous resolution 〈Mi : i ≤ δ〉 such that Mδ = M and for i < δ, Mi ∈ K<µ,
Mi+1 is universal over Mi. By a back and forth argument, this shows that M is
(µ, δ)-limit. By Lemma 4.12, δ ∈ κ(Kµ, <

univ
K ), as desired. �

Corollary 4.14. Let K be an LS(K)-tame AEC with a monster model. Let χ0 be
as given by Fact 4.10. For any µ ≥ λ′(K)+χ+

0 such that K is stable in unboundedly
many cardinals below µ, the following are equivalent:

(1) K is stable in µ.
(2) cf(µ) ∈ χ(K).

Proof. (1) implies (2) is by Theorem 4.11 and (2) implies (1) is by Facts 4.1(3),(4).
�

It is natural to ask whether Corollary 4.14 holds for arbitrary high-enough µ’s (i.e.
without assuming stability in unboundedly many cardinals below µ). At present,
the answer we can give is sensitive to cardinal arithmetic: Fact 4.1 does not give
us enough tools to answer in ZFC. There is however a large class of cardinals on
which there is no cardinal arithmetic problems. This is already implicit in [Vas16b,
§5].

Definition 4.15. A cardinal µ is θ-closed if λθ < µ for all λ < µ. We say that µ
is almost θ-closed if λθ ≤ µ for all λ < µ.

Lemma 4.16. Let K be an LS(K)-tame AEC with a monster model. If µ is
almost λ(K)-closed, then either µ = µλ(K) and K is stable in µ, or K is stable in
unboundedly many cardinals below µ.

Proof. If µλ(K) = µ, then K is stable in µ by Fact 4.1(2). Otherwise, µ is λ(K)-

closed. Thus for any µ0 < µ, µ1 := µ
λ(K)
0 is such that µ1 < µ and µ

λ(K)
1 = µ1,

hence K is stable in µ1. Therefore K is stable in unboundedly many cardinals
below µ. �

We have arrived to the following application of Corollary 4.14:

Corollary 4.17 (Eventual stability spectrum for closed cardinals). Let K be an
LS(K)-tame AEC with a monster model. Let χ0 < H1 be as given by Fact 4.10.
Let µ be almost λ(K)-closed with µ ≥ λ′(K) + χ+

0 . Then K is stable in µ if and
only if cf(µ) ∈ χ(K).

Proof. If K is stable in unboundedly many cardinals below µ, this is Corollary
4.14. Otherwise by Lemma 4.16, K is stable in µ and µλ(K) = µ. In particular,
cf(µ) > λ(K), so by Fact 4.4, cf(µ) ∈ χ(K). �

Corollary 4.18. Let K be the class of models of a first-order stable theory T
ordered by �. Then χ(K) is an end-segment and χ(K) = κr(T ) (the least regular
cardinal greater than or equal to κ(T )).
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Proof. Let χ be a regular cardinal and let µ := iχ(λ′(K)). If χ ≥ κ(T ), µ =

µ<κ(T ) so by the first-order theory K is stable in µ. By Corollary 4.17, χ ∈ χ(K).

Conversely, if χ ∈ χ(K) then by Corollary 4.17, K is stable in µ, hence µ = µ<κ(T ),
so χ ≥ κ(T ). �

Note that the class of almost λ(K)-closed cardinals forms a club, and on this class
Corollary 4.17 gives a complete (eventual) characterization of stability. We do not
know how to analyze the cardinals that are not almost λ(K)-closed in ZFC. Using
hypotheses beyond ZFC, we can see that all big-enough cardinals are almost λ(K)-
closed. In particular, Fact 4.20 below shows that under SCH (and hence above a
strongly compact) all high-enough cardinals are almost λ(K)-closed. Thus (Corol-
lary 4.22) in this setup we have a full characterization of the stability spectrum.

For ease of notation, we define the following function:

Definition 4.19. For µ an infinite cardinal, θ(µ) is the least cardinal θ such that
any λ ≥ θ is almost µ-closed. When such a θ does not exist, we write θ(µ) =∞.

If λ is a strong limit cardinal, then 2λ = λcf(λ) and so if 2λ > λ+ we have that
λ+ is not almost cf(λ)-closed. Foreman and Woodin [FW91] have shown that it
is consistent with ZFC and a large cardinal axiom that 2λ > λ+ for all infinite
cardinals λ. Therefore it is possible that θ(ℵ0) =∞ (and hence θ(µ) =∞ for any
infinite cardinal µ). However, we have:

Fact 4.20. Let µ be an infinite cardinal.

(1) If SCH holds, then θ(µ) = 2µ.
(2) If κ > µ is strongly compact, then θ(µ) ≤ κ.

Proof. The first fact follows from basic cardinal arithmetic (see [Jec03, 5.22]), and
the third follows from a result of Solovay (see [Sol74] or [Jec03, 20.8]). �

The following easy lemma will be used in the proof of Theorem 5.8:

Lemma 4.21. Let K be an LS(K)-tame AEC with a monster model. If µ >
θ(λ(K)) and µ is limit, then K is stable in unboundedly many cardinals below µ.

Proof. Let µ0 ∈ [θ(λ(K)), µ). As µ is limit, µ+
0 < µ and µ+

0 is almost λ(K)-closed.

In particular, µ
λ(K)
0 ≤ µ+

0 . By Fact 4.1(2), K is stable in either µ0 or µ+
0 , as

needed. �

Corollary 4.22. Let K be an LS(K)-tame AEC with a monster model and let
χ0 < H1 be as given by Fact 4.10. For any µ ≥ λ′(K) + χ+

0 + θ(λ(K)), K is stable
in µ if and only if cf(µ) ∈ χ(K).

Proof. By Corollary 4.17 and the definition of θ(λ(K)). �

A particular case of Theorem 4.11 derives superstability from stability in a tail of
cardinals. The following concept is studied already in [She99, 6.3].

Definition 4.23. An AEC K is µ-superstable if:

(1) µ ≥ LS(K).
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(2) Kµ is non-empty, has amalgamation, joint embedding, and no maximal
models.

(3) K is stable in µ.
(4) κ(Kµ, <

univ
K ) = ℵ0 (i.e. κ(Kµ, <

univ
K ) consists of all the regular cardinals).

This definition has been well-studied and has numerous consequences in tame AECs,
such as the existence of a well-behaved independence notion (a good frame), the
union of a chain of λ-saturated being λ-saturated, or the uniqueness of limit models
(see for example [GV17] for a survey and history). Even though in tame AECs
Definition 4.23 is (eventually) equivalent to all these consequences [GV17], it was
not known whether it followed from stability on a tail of cardinals (see [GV17, 1.7]).
We show here that it does (note that this is a ZFC result).

Corollary 4.24. Let K be an LS(K)-tame AEC with a monster model. The
following are equivalent.

(1) χ(K) = ℵ0 (i.e. χ(K) consists of all regular cardinals).
(2) K is λ′(K)-superstable.
(3) K is stable on a tail of cardinals.

The proof uses that µ-superstability implies stability in every µ′ ≥ µ (this is a
straightforward induction using Fact 4.1, see [Vas16b, 5.6]). We state a slightly
stronger version:

Fact 4.25 (10.10 in [Vas16a]). Let K be a µ-tame AEC with amalgamation. If K
is µ-superstable, then K is µ′-superstable for every µ′ ≥ µ.

Proof of Corollary 4.24. If (1) holds, then (2) holds by definition of χ(K). By Fact
4.25, this implies stability in every µ ≥ λ′(K), so (3). Now if (3) holds then by
Corollary 4.14 we must have that χ(K) = ℵ0, so (1) holds. �

Corollary 4.24 and the author’s earlier work with Grossberg [GV17] justify the
following definition for tame AECs:

Definition 4.26. Let K be an LS(K)-tame AEC with a monster model. We say
that K is superstable if χ(K) = ℵ0.

5. The saturation spectrum

Theorem 4.13 shows that there is a saturated model in many stability cardinals. It
is natural to ask whether this generalizes to all stability cardinals, and whether the
converse is true, as in the first-order case. We show here that this holds assuming
SCH, but prove several ZFC results along the way. Some of the proofs are inspired
from the ones in homogeneous model theory (due to Shelah [She75], see also the
exposition in [GL02]).

The following is standard and will be used without comments.

Fact 5.1. Let K be an AEC with a monster model. If LS(K) < µ ≤ λ = λ<µ,
then K has a µ-saturated model of cardinality λ.
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In particular, K has a saturated model in λ if λ = λ<λ.

We turn to studying what we can say about λ when K has a saturated model in λ.

Theorem 5.2. Let K be an LS(K)-tame AEC with a monster model. Let LS(K) <
λ. If K has a saturated model of cardinality λ and K is stable in unboundedly many
cardinals below λ, then K is stable in λ.

Proof. By Fact 4.1(3), we can assume without loss of generality that λ is a limit
cardinal. Let δ := cf(λ). Pick 〈λi : i ≤ δ〉 strictly increasing continuous such that
λδ = λ, λ0 ≥ LS(K), and i < δ implies that K is stable in λi+1. Let M ∈ Kλ be
saturated and let 〈Mi : i ≤ δ〉 be an increasing continuous resolution of M such
that for each i < δ, Mi ∈ Kλi and Mi+2 is universal over Mi+1.

Claim: For any p ∈ gS(M), there exists i < δ such that p does not λ-split over Mi.

Proof of Claim: If δ > λ1, then the result follows from Facts 4.3 and 4.4. If δ ≤ λ1,
then this is given by Lemma 4.12. †Claim

Now assume for a contradiction that K is not stable in λ and let 〈pi : i < λ+〉 be
distinct members of gS(M) (the saturated model must witness instability because
it is universal). By the claim, for each i < λ+ there exists ji < δ such that p
does not λ-split over Mji . By the pigeonhole principle, without loss of generality
ji = j0 for each i < λ+. Now |gS(Mj0)| ≤ |gS(Mj0+2)| = ‖Mj0+2‖ < λ, so by the
pigeonhole principle again, without loss of generality pi � Mj0+2 = pj � Mj0+2 for
all i < j < λ+. By weak uniqueness of non-λ-splitting and tameness, this implies
that pi = pj , a contradiction. �

We have not used the full strength of the assumption that K is stable in unbound-
edly many cardinals below λ. For example, the same argument as in Theorem 5.2
proves:

Theorem 5.3. Let K be an LS(K)-tame AEC with a monster model. Let LS(K) <
λ and let M ∈ Kλ be a saturated model. If λ is singular and strong limit, then K
is stable in λ.

We can also prove in ZFC that existence of a saturated model at a cardinal λ < λ<λ

implies that the class is stable. We first recall the definition of another locality
cardinal:

Definition 5.4 (4.4 in [GV06]). For K a LS(K)-tame AEC with a monster model,
define µ̄(K) to be the least cardinal µ > LS(K) such that for any M ∈ K and any
p ∈ gS(M), there exists M0 ∈ K<µ with M0 ≤K M such that p does not ‖M0‖-split
over M0. Set µ̄(K) =∞ if there is no such cardinal.

We have that stability is equivalent to boundedness of µ̄(K):

Theorem 5.5. Let K be an LS(K)-tame AEC with a monster model. The follow-
ing are equivalent:

(1) K is stable.
(2) µ̄(K) < H1.
(3) µ̄(K) <∞.
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Proof. (1) implies (2) is because by Fact 4.4, µ̄(K) ≤ λ(K)+ and by Fact 4.1(1),
λ(K)+ < H1. (2) implies (3) is trivial. To see that (3) implies (1), let µ := µ̄(K).
Pick any λ0 ≥ LS(K) such that λ0 = λ<µ0 (e.g. λ0 = 2µ), and pick any λ > λ0 such
that λλ0 = λ (e.g. λ = 2λ0). We claim that K is stable in λ. Let M ∈ Kλ, and
extend it to M ′ ∈ Kλ that is µ-saturated. It is enough to see that |gS(M ′)| = λ, so
without loss of generality M = M ′. Suppose that |gS(M)| > λ and let 〈pi : i < λ+〉
be distinct members. By definition of µ, for each i < λ+ there exists Mi ∈ K<µ

such that Mi ≤K M and p does not ‖Mi‖-split over Mi. Since λ = λ<µ, we
can assume without loss of generality that Mi = M0 for all i < λ+. Further,
|gS(M0)| ≤ 2<µ ≤ λ<µ0 = λ0, so we can pick M ′0 ≤K M with M ′0 ∈ Kλ0

such that
M ′0 is universal over M0. As λ = λλ0 , we can assume without loss of generality
that pi � M ′0 = pj � M ′0. By tameness and weak uniqueness of non-splitting, we
conclude that pi = pj , a contradiction. �

We will use that failure of local character of splitting allows us to build a tree of
types, see the proof of [GV06, 4.6].

Fact 5.6. Let K be an LS(K)-tame AEC with a monster model. Let LS(K) < µ,
with µ a regular cardinal. If µ̄(K) > µ, then there exists an increasing continuous
tree 〈Mη : η ∈ ≤µ2〉, and tree of types 〈pη : η ∈ ≤µ2〉, and sets 〈Aη : η ∈ ≤µ2〉 such
that for all η ∈ <µ2:

(1) Mη ∈ K<µ.
(2) pη ∈ gS(Mη).
(3) Aη ⊆ |Mηa0| ∩ |Mηa1|.
(4) |Aη| ≤ LS(K).
(5) pηa0 � Aη 6= pηa1 � Aη.

Theorem 5.7. Let K be an LS(K)-tame AEC with a monster model. Let LS(K) <
λ < λ<λ. If K has a saturated model of cardinality λ, then µ̄(K) ≤ λ+. In
particular, K is stable.

Proof. The last sentence is Theorem 5.5. Now suppose for a contradiction that
µ̄(K) > λ+.

Claim: 2<λ = λ.

Proof of Claim: Suppose not and let µ < λ be minimal such that 2µ > λ. Then µ
is regular so let 〈Mη : η ∈ ≤µ2〉, 〈pη : η ∈ ≤µ2〉, and 〈Aη : η ∈ ≤µ2〉 be as given by
Fact 5.6. Since 2<µ ≤ λ, we can use universality of M to assume without loss of
generality that Mη ≤K M for each η ∈ <µ2. By continuity of the tree, Mη ≤K M
for each η ∈ µ2. Since M is saturated, it realizes all types over Mη, for each η ∈ µ2.
By construction of the tree, each of these types has a different realization so in
particular, 2µ ≤ λ, a contradiction. †Claim

Now if there exists µ < λ such that 2µ = λ, then 2µ
′

= λ for all µ′ ∈ [µ, λ),
hence λ = λ<λ, which we assumed was not true. Therefore λ is strong limit. Since
λ < λ<λ, this implies that λ is singular. By Theorem 5.3, K is stable in λ. By Fact
4.4, µ̄(K) ≤ λ+, as desired. �
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We have arrived to the following. Note that we need some set-theoretic hypotheses
(e.g. assuming SCH, θ(H1) = 2H1 , see Fact 4.20) to get that θ(H1) <∞ otherwise
the result holds vacuously.

Corollary 5.8. Let K be an LS(K)-tame AEC with a monster model. Let χ0 < H1

be as given by Fact 4.10. Let λ > χ0 + θ(λ(K)) (recall Definition 4.19). The
following are equivalent:

(1) K has a saturated model of cardinality λ.
(2) λ = λ<λ or K is stable in λ.

Proof. First assume (2). If λ = λ<λ, we get a saturated model of cardinality λ using
Fact 5.1, so assume that K is stable in λ. If λ is a successor, the (λ, λ)-limit model
is saturated, so assume that λ is limit. By Lemma 4.21, K is stable in unboundedly
many cardinals below λ. By Theorem 4.13, K has a saturated model of cardinality
λ.

Now assume (1) and λ < λ<λ. By Theorem 5.7, K is stable. By Lemma 4.16,
either K is stable in λ, or there are unboundedly many stability cardinals below λ.
In the former case we are done and in the latter case, we can use Theorem 5.2. �

When K is superstable (i.e. χ(K) = ℵ0, see Definition 4.26), we obtain a charac-
terization in ZFC.

Corollary 5.9. Let K be an LS(K)-tame AEC with a monster model. The fol-
lowing are equivalent:

(1) K is superstable.
(2) K has a saturated model of size λ for every λ ≥ λ′(K) + LS(K)+.
(3) There exists µ such that K has a saturated model of size λ for every λ ≥ µ.

Proof. (1) implies (2) is known (use Corollary 4.24 to see that K is λ′(K)-superstable,
then apply [VV17, 6.10] together with [Van16a]), and (2) implies (3) is trivial. Now
assume (3). By Theorem 5.7, K is stable. We prove by induction on λ ≥ µλ(K)

that K is stable in λ. This implies superstability by Corollary 4.24.

If λ = µλ(K), then λλ(K) = λ so K is stable in λ (see Fact 4.1(2)). Now if λ > µλ(K),
then by the induction hypothesis K is stable in unboundedly many cardinals below
λ, hence the result follows from Theorem 5.2. �

6. Characterizations of stability

In [GV17], Grossberg and the author characterize superstability in terms of the
behavior of saturated, limit, and superlimit models. We show that stability can be
characterized analogously. In fact, we are able to give a list of statements equivalent
to “χ ∈ χ(K)”.

Remark 6.1. Another important characterization of superstability in [GV17] was
solvability: roughly, the existence of an EM blueprint generating superlimit models.
We do not know if there is a generalization of solvability to stability. Indeed it
follows from the proof of [SV99, 2.2.1] that even an EM blueprint generating just
universal (not superlimit) models would imply superstability (see also [BGVV17]).
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We see the next definition as the “stable” version of a superlimit model. Very
similar notions appear already in [She87].

Definition 6.2. Let K be an AEC. For χ a regular cardinal, M ∈ K≥χ is χ-
superlimit if:

(1) M has a proper extension.
(2) M is universal in K‖M‖.
(3) For any increasing chain 〈Mi : i < χ〉, if i < χ implies M ∼= Mi, then

M ∼=
⋃
i<χMi.

In [GV17], it was shown that one of the statements below holds for all χ if and only
if all of them hold for all χ. The following characterization is a generalization to
strictly stable AECs, where χ is fixed at the beginning.

Theorem 6.3. Let K be a (not necessarily stable) LS(K)-tame AEC with a mon-
ster model. Let χ be a regular cardinal. The following are equivalent:

(0) χ ∈ χ(K).
(1) For unboundedly many H1-closed stability cardinals µ, cf(µ) = χ.
(2) For unboundedly many cardinals µ, there exists a saturated (µ, χ)-limit

model.
(3) For unboundedly many µ, the union of any increasing chain of µ-saturated

models of length χ is µ-saturated.
(4) For unboundedly many stability cardinals µ, there is a χ-superlimit model

of cardinality µ.
(5) For unboundedly many H1-closed cardinals µ with cf(µ) = χ, there is a

saturated model of cardinality µ.

Proof. We first show that each of the conditions implies that K is stable. If (0)
holds, then by definition of χ(K) we must have that K is stable. If (2) holds, then
there exists in particular limit models and this implies stability. Also (1) and (4)
imply stability by definition. If (5) holds, then we have stability by Theorem 5.7.
Finally, assume that (3) holds. Build an increasing continuous chain of cardinals
〈µi : i ≤ χ〉 such that χ + LS(K) < µ0, for each i ≤ χ any increasing chain of
µi-saturated models of length χ is µi-saturated, and 2µi < µi+1 for all i < χ. Let
µ := µχ. Build an increasing chain 〈Mi : i < χ〉 such that Mi+1 ∈ K2µi and Mi+1

is µi-saturated. Now by construction M :=
⋃
i<χMi is in Kµ and is saturated.

Since cf(µ) = χ, we have that µ < µχ ≤ µ<µ. By Theorem 5.7, K is stable. We
have shown that we can assume without loss of generality that K is stable.

We now show that (3) is equivalent to (4). Indeed, if we have a χ-superlimit at a
stability cardinal µ, then it must be saturated and witnesses that the union of an
increasing chain of µ-saturated models of length χ is µ-saturated. Conversely, we
have shown in the first paragraph of this proof how to build a saturated model in
a cardinal µ such that the union of an increasing chain of µ-saturated models of
length χ is µ-saturated. Such a saturated model must be a χ-superlimit.

We also have that (4) implies (2), as it is easy to see that a χ-superlimit model in a
stability cardinal µ must be unique and also a (µ, χ)-limit model. Also, (0) implies
(3) (Fact 4.10) and (2) implies (0) (Lemma 4.12). Therefore (0), (2), (3), (4) are
all equivalent.
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Now, (0) implies (5) (Theorem 4.13). Also, (5) implies (1): Let µ be H1-closed
such that cf(µ) = χ and there is a saturated model of cardinality µ. By Lemma
4.16, either K is stable in µ or stable in unboundedly many cardinals below µ. In
the latter case, Theorem 5.2 implies that K is stable in µ. Thus K is stable in µ,
hence (1) holds.

It remains to show that (1) implies (0). Let µ be an H1-closed stability cardinal
of cofinality χ. By the proof of Lemma 4.16, K is stable in unboundedly many
cardinals below µ. By Theorem 4.11, χ ∈ χ(K), so (0) holds. �

7. Indiscernibles and bounded equivalence relations

We review here the main tools for the study of strong splitting in the next section:
indiscernibles and bounded equivalence relations. All throughout, we assume:

Hypothesis 7.1. K is an AEC with a monster model.

Remark 7.2. By working more locally, the results and definitions of this section
could be adapted to the amalgamation-less setup (see for example [Vas17a, 2.3]).

Definition 7.3 (Indiscernibles, 4.1 in [She99]). Let α be a non-zero cardinal, θ be
an infinite cardinal, and let 〈āi : i < θ〉 be a sequence of distinct elements each of
length α. Let A be a set.

(1) We say that 〈āi : i < θ〉 is indiscernible over A in N if for every n < ω,
every i0 < . . . < in−1 < θ, j0 < . . . < jn−1 < θ, gtp(āi0 . . . āin/A) =
gtp(āj0 . . . ājn/A). When A = ∅, we omit it and just say that 〈āi : i < θ〉 is
indiscernible.

(2) We say that 〈āi : i < θ〉 is strictly indiscernible if there exists an EM
blueprint Φ (whose vocabulary is allowed to have arbitrary size) an auto-
morphism f of C so that, letting N ′ := EMτ(K)(θ,Φ):

(a) For all i < θ, b̄i := f(āi) ∈ α|N ′|.
(b) If for i < θ, b̄i = 〈bi,j : j < α〉, then for all j < α there exists a unary

τ(Φ)-function symbol ρj such that for all i < θ, bi,j = ρN
′

j (i).
(3) Let A be a set. We say that 〈āi : i < θ〉 is strictly indiscernible over A

if there exists an enumeration ā of A such that 〈āiā : i < θ〉 is strictly
indiscernible.

Any strict indiscernible sequence extends to arbitrary lengths: this follows from a
use of first-order compactness in the EM language. The converse is also true. This
follows from the more general extraction theorem, essentially due to Morley:

Fact 7.4. Let I := 〈āi : i < θ〉 be distinct such that `(āi) = α for all i < θ. Let A
be a set. If θ ≥ h(LS(K) + |α|+ |A|), then there exists J := 〈b̄i : i < ω〉 such that
J is strictly indiscernible over A and for any n < ω there exists i0 < . . . < in−1 < θ
such that gtp(b̄0 . . . b̄n−1/A) = gtp(āi0 . . . āin−1

/A).

Fact 7.5. Let〈āi : i < θ〉 be indiscernible over A, with `(āi) = α for all i < θ. The
following are equivalent:

(1) For any infinite cardinal λ, there exists 〈b̄i : i < λ〉 that is indiscernible over
A and such that b̄i = āi for all i < θ.
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(2) For all infinite λ < h(θ + |A| + |α| + LS(K)) (recall Notation 2.1), there
exists 〈b̄i : i < λ〉 as in (1).

(3) 〈āi : i < θ〉 is strictly indiscernible over A.

We want to study bounded equivalence relations: they are the analog of Shelah’s
finite equivalence relations from the first-order setup but here the failure of com-
pactness compels us to only ask for the number of classes to be bounded (i.e. a
cardinal). The definition for homogeneous model theory appears in [HS00, 1.4].

Definition 7.6. Let α be a non-zero cardinal and let A be a set. An α-ary invariant
equivalence relation on A is an equivalence relation E on αC such that for any
automorphism f of C fixing A, b̄Ec̄ if and only if f(b̄)Ef(c̄).

Definition 7.7. Let α be a non-zero cardinal, A be a set, and E be an α-ary
invariant equivalence relation on A.

(1) Let c(E) be the number of equivalence classes of E.
(2) We say that E is bounded if c(E) <∞ (i.e. it is a cardinal).
(3) Let SEα(A) be the set of α-ary bounded invariant equivalence relations over

A (S stands for strong).

Remark 7.8.

|SEα(A)| ≤ |2gS
α+α(A)| ≤ 22

|A|+LS(K)+α

The next two results appear for homogeneous model theory in [HS00, §1]. The main
difference here is that strictly indiscernible and indiscernibles need not coincide.

Lemma 7.9. Let E ∈ SEα(A). Let I be strictly indiscernible over A. For any
ā, b̄ ∈ I, we have that āEb̄.

Proof. Suppose not, say ¬(āEb̄). Fix any infinite cardinal λ ≥ |J|. By Theorem
7.5, I extends to a strictly indiscernible sequence J over A of cardinality λ. Thus
c(E) ≥ λ. Since λ was arbitrary, this contradicts the fact that E was bounded. �

Lemma 7.10. Let A be a set and α be a non-zero cardinal. Let E be an α-ary
invariant equivalence relation over A. The following are equivalent:

(1) E is bounded.
(2) c(E) < h(|A|+ α+ LS(K)).

Proof. Let θ := h(|A| + α + LS(K)). If c(E) < θ, E is bounded. Conversely if
c(E) ≥ θ then we can list θ non-equivalent elements as I := 〈āi : i < θ〉. By Fact
7.4, there exists a strictly indiscernible sequence over A 〈b̄i : i < ω〉 reflecting some
of the structure of I. In particular, for i < j < ω, ¬(b̄iEb̄j). By Lemma 7.9, E
cannot be bounded. �

The following equivalence relation will play an important role (see [HS00, 4.7]):

Definition 7.11. For all A and α, let Emin,A,α :=
⋂

SEα(A).

By Remark 7.8 and a straightforward counting argument, we have that Emin,A,α ∈
SEα(A).
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8. Strong splitting

We study the AEC analog of first-order strong splitting. It was introduced by
Shelah in [She99, 4.11]. In the next section, the analog of first-order dividing will
be studied. Shelah also introduced it [She99, 4.8] and showed how to connect
it with strong splitting. After developing enough machinery, we will be able to
connect Shelah’s results on the locality cardinals for dividing [She99, 5.5] to the
locality cardinals for splitting.

All throughout this section, we assume:

Hypothesis 8.1. K is an AEC with a monster model.

Definition 8.2. Let µ be an infinite cardinal, A ⊆ B, p ∈ gS(B). We say that p
(< µ)-strongly splits over A if there exists a strictly indiscernible sequence 〈āi : i <
ω〉 over A with `(āi) < µ for all i < ω such that for any b realizing p, gtp(bā0/A) 6=
gtp(bā1/A). We say that p explicitly (< µ)-strongly splits over A if the above holds
with ā0ā1 ∈ <µB.

µ-strongly splits means (≤ µ)-strongly splits, which has the expected meaning.

Remark 8.3. For µ < µ′, if p [explicitly] (< µ)-strongly splits over A, then p
[explicitly] (< µ′)-strongly splits over A.

Lemma 8.4 (Base monotonicity of strong splitting). Let A ⊆ B ⊆ C and let
p ∈ gS(C). Let µ > |B\A| be infinite. If p (< µ)-strongly splits over B, then p
(< µ)-strongly splits over A.

Proof. Let 〈āi : i < ω〉 witness the strong splitting over B. Let c̄ be an enumeration
of B\A. The sequence 〈āic̄ : i < ω〉 is strictly indiscernible over A. Moreover,
for any b realizing p, gtp(bc̄ā0/A) 6= gtp(bc̄ā1/A) if and only if gtp(bā0/Ac̄) 6=
gtp(bā1/Ac̄) if and only if gtp(bā0/B) 6= gtp(bā1/B), which holds by the strong
splitting assumption. �

Lemma 8.4 motivates the following definition:

Definition 8.5. For λ ≥ LS(K)), we let iλ-strong-spl(Kλ) be the independence
relation whose underlying class is K′ and whose independence relation is non λ-
strong-splitting.

Next, we state a key characterization lemma for strong splitting in terms of bounded
equivalence relations. This is used in the proof of the next result, a kind of unique-
ness of the non-strong-splitting extension. It appears already for homogeneous
model theory in [HS00, 1.12].

Definition 8.6. Let N ∈ K, A ⊆ |N |, and µ be an infinite cardinal. We say that
N is µ-saturated over A if any type in gS<µ(A) is realized in N .

Lemma 8.7. Let N ∈ K and let A ⊆ |N |. Assume that N is (ℵ1 + µ)-saturated
over A. Let p := gtp(b/N). The following are equivalent.

(1) p does not explicitly (< µ)-strongly split over A.
(2) p does not (< µ)-strongly split over A.
(3) For all α < µ, all c̄, d̄ in α|N |, c̄Emin,A,αd̄ implies gtp(bc̄/A) = gtp(bd̄/A).
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Proof. If p explicitly (< µ)-strongly splits over A, then p (< µ)-strongly splits over
A. Thus (2) implies (1).

If p (< µ)-splits strongly over A, let I = 〈āi : i < ω〉 witness it, with āi ∈ α|C| for all
i < ω. By Lemma 7.9, ā0Emin,A,αā1. However by the strong splitting assumption
gtp(bā0/A) 6= gtp(bā1/A). This proves (3) implies (2).

It remains to show that (1) implies (3). Assume (1). Assume c̄, d̄ are in α|N |
such that c̄Emin,A,αd̄. Define an equivalence relation E on α|C| as follows: b̄0Eb̄1
if and only if b̄0 = b̄1 or there exists n < ω and 〈Ii : i < n〉 strictly indiscernible
over A such that b̄0 ∈ I0, b̄1 ∈ In−1 and for all i < n − 1, Ii ∩ Ii+1 6= ∅ (this
idea already appears in the proof of [She90, I.1.11(3)]; sometimes n is called the
Kim-Pillay distance between b̄0 and b̄1). E is an invariant equivalence relation over
A. Moreover if 〈āi : i < θ〉 are in different equivalence classes and θ is sufficiently
big, we can extract a strictly indiscernible sequence from it which will witness that
all elements are actually in the same class. Therefore E ∈ SEα(A).

Since c̄Emin,A,αd̄, we have that c̄Ed̄ and without loss of generality c̄ 6= d̄. Let
〈Ii : i < n〉 witness the finite Kim-Pillay distance. By saturation, we can assume
without loss of generality that Ii is in |M | for all i < n. Now use the failure of
explicit strong splitting to argue that gtp(bc̄/A) = gtp(bd̄/A). �

Lemma 8.8 (Toward uniqueness of non strong splitting). Let M ≤K N and let
A ⊆ |M |. Assume that N is (ℵ1 + µ)-saturated over A and for every α < µ,
c̄ ∈ α|N |, there is d̄ ∈ α|M | such that d̄Emin,A,αc̄.

Let p, q ∈ gS(N) not (< µ)-strongly split over A. If p � M = q � M , then
p � B = q � B for every B ⊆ |N | with |B| < µ.

Proof. Say p = gtp(a/N), q = gtp(b/N). Let c̄ ∈ <µ|N |. We want to see that
gtp(a/c̄) = gtp(b/c̄). We will show that gtp(ac̄/A) = gtp(bc̄/A). Pick d̄ in M such
that c̄Emin,A,αd̄. Then by Lemma 8.7, gtp(ac̄/A) = gtp(ad̄/A). Since p � M =
q � M , gtp(ad̄/A) = gtp(bd̄/A). By Lemma 8.7 again, gtp(bd̄/A) = gtp(bc̄/A).
Combining these equalities, we get that gtp(ac̄/A) = gtp(bc̄/A), as desired. �

9. Dividing

Hypothesis 9.1. K is an AEC with a monster model.

The following notion generalizes first-order dividing and was introduced by Shelah
[She99, 4.8].

Definition 9.2. Let A ⊆ B, p ∈ gS(B). We say that p divides over A if there
exists an infinite cardinal θ and a strictly indiscernible sequence 〈b̄i : i < θ〉 over A
as well as 〈fi : i < θ〉 automorphisms of C fixing A such that b̄0 is an enumeration
of B, fi(b̄0) = āi for all i < θ, and 〈fi(p) : i < θ〉 is inconsistent.

It is clear from the definition that dividing induces an independence relation:

Definition 9.3. For λ ≥ LS(K), we let idiv(Kλ) be the independence relation
whose underlying class is K′ and whose independence relation is non-dividing.

The following fact about dividing was proven by Shelah in [She99, 5.5(2)]:
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Fact 9.4. Let µ1 ≥ µ0 ≥ LS(K). Let α < µ+
1 be a regular cardinal. If K is stable

in µ1 and µα1 > µ1, then α ∈ κwk(idiv(Kµ0)) (recall Definition 2.4).

To see when strong splitting implies dividing, Shelah considered the following prop-
erty:

Definition 9.5. K satisfies (∗)µ,θ,σ if whenever 〈āi : i < δ〉 is a strictly indiscernible
sequence with `(āi) < µ for all i < δ, then for any b̄ with `(b̄) < σ, there exists
u ⊆ δ with |u| < θ such that for any i, j ∈ δ\u, gtp(āib̄/∅) = gtp(āj b̄/∅).

Fact 9.6 (4.12 in [She99]). Let µ∗ := LS(K) + µ + σ. If K does not have the
µ∗-order property (recall Definition 2.2), then (∗)µ+,h(µ∗),σ+ holds.

Lemma 9.7. Let A ⊆ B. Let p ∈ gS(B). Assume that (∗)|B|+,θ,σ holds for some
infinite cardinals θ and σ.

If p explicitly |B|-strongly splits over A, then p divides over A.

Proof. Let µ := |B|. Let 〈āi : i < ω〉 witness the explicit strong splitting (so
`(āi) = µ for all i < ω and ā0 ∈ µB). Increase the indiscernible to assume without
loss of generality that ā0 enumerates B and increase further to get 〈āi : i < θ+〉.
Pick 〈fi : i < θ+〉 automorphisms of C fixing A such that f0 is the identity and
fi(ā0ā1) = āiāi+1 for each i < θ+. We claim that 〈āi : i < θ+〉, 〈fi : i < θ+〉
witness the dividing over A.

Indeed, suppose for a contradiction that b realizes fi(p) for each i < θ+. In partic-
ular, b realizes f0(p) = p. By (∗)µ+,θ,σ, there exists i < θ+ such that gtp(bāi/A) =

gtp(bāi+1/A). Applying f−1i to this equation, we get that gtp(cā0/A) = gtp(cā1/A),

where c := f−1i (b). But since b realizes fi(p), c realizes p. This contradicts the
strong splitting assumption. �

We have arrived to the following result:

Lemma 9.8. Let µ1 ≥ µ0 ≥ LS(K) be such that K is stable in both µ0 and µ1.
Assume further that K does not have the µ0-order property.

Let α < µ+
0 be a regular cardinal. If µα1 > µ1, then:

α ∈ κwk(iµ0-strong-spl(Kµ0
), <univ

K )

Proof. By Fact 9.6, (∗)µ+
0 ,h(µ0),µ

+
0

holds.

Now let 〈Mi : i < α〉 be <univ
K -increasing in Kλ. Let p ∈ gS(

⋃
i<αMi). By Fact

9.4, there exists i < α such that p �Mi+1 does not divide over Mi. By Lemma 9.7,
p � Mi+1 does not explicitly λ-strongly split over Mi. By Lemma 8.7 (recall that
Mi+1 is universal over Mi), p �Mi+1 does not λ-strongly split over Mi. �

Our aim in the next section will be to show that non-strong splitting has weak
uniqueness. This will allow us to apply the results of Section 3 and (assuming
enough locality) replace κwk by κ.
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10. Strong splitting in stable tame AECs

Hypothesis 10.1. K is an LS(K)-tame AEC with a monster model.

Why do we assume tameness? Because we would like to exploit the uniqueness of
strong splitting (Lemma 8.8), but we want to be able to conclude p = q, and not
just p � B = q � B for every small B. This will allow us to use the tools of Section
3.

Definition 10.2. For µ ≥ LS(K), let χ∗(µ) ∈ [µ+, h(µ) be the least cardinal χ∗

such that whenever A has size at most µ and α < µ+ then c(Emin,A,α) < χ∗ (it
exists by Lemma 7.10).

The following is technically different from the µ-forking defined in [Vas16b, 4.2]
(which uses µ-splitting), but it is patterned similarly.

Definition 10.3. For p ∈ gS(B), we say that p does not µ-fork over (M0,M) if:

(1) M0 ≤K M , |M | ⊆ B.
(2) M0 ∈ Kµ.
(3) M is χ∗(µ)-saturated over M0.
(4) p does not µ-strongly split over M0.

We say that p does not µ-fork over M if there exists M0 such that p does not µ-fork
over (M0,M).

The basic properties are satisfied:

Lemma 10.4.

(1) (Invariance) For any automorphism f of C, p ∈ gS(B) does not µ-fork over
(M0,M) if and only if f(p) does not µ-fork over (f [M0], f [M ]).

(2) (Monotonicity) Let M0 ≤K M ′0 ≤K M ≤K M ′, |M ′| ⊆ B. Assume that
M0,M

′
0 ∈ Kµ and M is χ∗(µ)-saturated over M ′0

Let p ∈ gS(B) be such that p does not µ-fork over (M0,M). Then:
(a) p does not µ-fork over (M ′0,M).
(b) p does not µ-fork over (M0,M

′).

Proof. Invariance is straightforward. We prove monotonicity. Assume thatM0,M
′
0,M,M ′, B, p

are as in the statement. First we have to show that p does not µ-fork over (M ′0,M).
We know that p does not µ-strongly split over M0. Since M ′0 ∈ Kµ, Lemma 8.4
implies that p does not µ-strongly split over M ′0, as desired.

Similarly, it follows directly from the definitions that p does not µ-fork over (M0,M
′).
�

This justifies the following definition:

Definition 10.5. For λ ≥ LS(K), we write iµ-forking(Kλ) for the independence
relation with class Kλ and independence relation induced by non-µ-forking.

We now want to show that under certain conditions iµ-forking(Kλ) has weak unique-
ness (see Definition 3.3). First, we show that when two types do not fork over the
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same sufficiently saturated model, then the “witness” M0 to the µ-forking can be
taken to be the same.

Lemma 10.6. Let M be χ∗(µ)-saturated. Let |M | ⊆ B. Let p, q ∈ gS(B) and
assume that both p and q do not µ-fork over M . Then there exists M0 such that
both p and q do not µ-fork over (M0,M).

Proof. Say p does not fork over (Mp,M) and q does not fork over (Mq,M). Pick
M0 ≤K M of size µ containing both Mp and Mq. This works since M is χ∗(µ)-
saturated and χ∗(µ) > µ. �

Lemma 10.7. Let µ ≥ LS(K). Let M ∈ K≥µ and let B be a set with |M | ⊆ B.
Let p, q ∈ gS(B) and assume that p �M = q �M .

(1) (Uniqueness over χ∗-saturated models) If M is χ∗(µ)-saturated and p, q do
not µ-fork over M , then p = q.

(2) (Weak uniqueness) Let λ > χ∗(µ) be a stability cardinal. Let M0 ≤K M
be such that M0,M ∈ Kλ and M is universal over M0. If p, q do not µ-fork
over M0, then p = q. In other words, iµ-forking(Kλ) has weak uniqueness.

Proof.

(1) By Lemma 10.6, we can pick M0 such that both p and q do not µ-fork over
(M0,M). By Lemma 8.8, p = q.

(2) Using stability, we can build M ′ ∈ Kλ that is χ∗(µ)-saturated with M0 ≤K

M ′. Without loss of generality (using universality of M over M0), M ′ ≤K

M . By base monotonicity, both p and q do not µ-fork over M ′. Since
p �M = q �M , we also have that p �M ′ = q �M ′. Now use the first part.

�

The following theorem is the main result of this section, so we repeat its global
hypotheses here for convenience.

Theorem 10.8. Let K be an LS(K)-tame AEC with a monster model.

Let µ0 ≥ LS(K) be a stability cardinal. Let λ > χ∗(µ0) be another stability

cardinal. For any µ1 ≥ µ0, if K is stable in µ1 then µ
<κwk(Kλ,<

univ
K )

1 = µ1 (recall
Definition 3.8).

The proof will use the following fact (recall from Hypothesis 10.1 that we are
working inside the monster model of a tame AEC):

Fact 10.9 (4.13 in [Vas16c]). The following are equivalent:

(1) K is stable.
(2) K does not have the LS(K)-order property.

Proof of Theorem 10.8. We prove that for any regular cardinal α < λ+, if µα1 > µ1

then α ∈ κwk(Kλ, <
univ
K ). This suffices because the least cardinal α such that

µα1 > µ1 is regular.



TOWARD A STABILITY THEORY OF TAME AECS 27

Note that by definition κwk(Kλ, <
univ
K ) is an end segment of regular cardinals. Note

also that by Lemma 10.7, i := iµ0-forking(Kλ) has weak uniqueness and thus we can
use the results from Section 3 also on i.

By Fact 4.3 and 4.4, µ+
0 ∈ κ(Kλ, <

univ
K ). Therefore we may assume that α < µ+

0 .

By Fact 10.9, K does not have the LS(K)-order property. By Lemma 9.8, α ∈
κwk(iµ0-strong-spl(Kµ0

), <univ
K ). As in [Vas16b, §4], this implies that α ∈ κwk(iµ0-forking(Kλ), <univ

K

). But by Lemma 3.9, this means that α ∈ κwk(Kλ, <
univ
K ). �

11. Stability theory assuming continuity of splitting

In this section, we will assume that splitting has the weak continuity property
studied in Section 3:

Definition 11.1. For K an AEC with a monster model, we say that splitting has
weak continuity if for any µ ∈ Stab(K), κcont(Kµ, <

univ
K ) = ℵ0.

Recall that Theorem 3.7 shows that splitting has weak continuity under certain
locality hypotheses. In particular, this holds in any class from homogeneous model
theory and any universal class.

Assuming continuity and tameness, we have that χ(K) is an end-segment of regular
cardinals (see Corollary 2.8). Therefore χ(K) is simply the minimal cardinal in
χ(K). We have the following characterization of χ(K):

Theorem 11.2. Let K be a stable LS(K)-tame AEC with a monster model.

If splitting has weak continuity, then χ(K) is the maximal cardinal χ such that for
any µ ≥ LS(K), if K is stable in µ then µ = µ<χ.

Proof. First, let µ ≥ LS(K) be a stability cardinal. By Theorem 10.8 (recalling
Corollary 2.8), µ<χ(K) = µ.

Conversely, consider the cardinal µ := iχ(K)(λ
′(K)). By Fact 4.1, K is stable in

µ. However cf(µ) = χ(K) so µχ(K) > µ. In other words, there does not exist a
cardinal χ > χ(K) such that µ<χ = µ. �

Still assuming continuity, we deduce an improved bound on χ(K) (compared to
Remark 4.7) and an explicit bound on λ′(K):

Theorem 11.3. Let K be a stable LS(K)-tame AEC with a monster model and
assume that splitting has weak continuity.

(1) χ(K) ≤ λ(K) < H1.
(2) λ(K) ≤ λ′(K) < h(λ(K)) < iH1

.

Proof.

(1) That λ(K) < H1 is Fact 4.1. Now by Theorem 11.2, λ(K)<χ(K) = λ(K)
and hence χ(K) ≤ λ(K).

(2) Let λ′ be the least stability cardinal above χ∗(λ(K)) (see Definition 10.2).
We have that λ′ < h(λ(K)). We claim that λ′(K) ≤ λ′. Indeed by Theorem

10.8, for any stability cardinal µ, we have that µ<κ(Kλ′ ,<
univ
K ) = µ. We
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know that χ(K) is the maximal cardinal with that property, but on the
other hand we have that χ(K) ≤ κ(Kλ′ , <

univ
K ) by definition. We conclude

that χ(K) = κ(Kλ′ , <
univ
K ), as desired.

�

Theorem 11.3 together with Corollary 4.24 partially answers [GV17, 1.8], which
asked whether the least µ such that K is µ-superstable must satisfy µ < H1. We
know now that (assuming continuity of splitting) µ ≤ λ′(K) < iH1 , so there is
a Hanf number for superstability but whether it is H1 (rather than iH1

) remains
open.

We also obtain an analog of Corollary 4.22:

Corollary 11.4. Let K be an LS(K)-tame AEC with a monster model and assume
that splitting has weak continuity. For any µ ≥ λ′(K) + θ(λ(K)), K is stable in µ
if and only if µ = µ<χ(K).

Proof. The left to right direction follows from Theorem 11.2 and the right to left
direction is by Fact 4.1 and the definition of θ(λ(K)) (recalling that µ = µ<χ(K)

implies that cf(µ) ≥ χ(K)). �

We emphasize that for the right to left directions of Corollary 4.22 to be nontrivial,
we need θ(λ(K)) <∞, which holds under various set-theoretic hypotheses by Fact
4.20. This is implicit in [Vas16b, §5]. The left to right direction is new and does
not need the boundedness of θ(λ(K)) (Theorem 11.2).

11.1. On the uniqueness of limit models. It was shown in [BV] that continuity
of splitting implies a nice local behavior of limit models in stable AECs:

Fact 11.5 (Theorem 1 in [BV]). Let K be an AEC and let µ ≥ LS(K). Assume
that Kµ has amalgamation, joint embedding, no maximal models, and is stable in
µ. If:

(1) δ ∈ κ(Kµ, <
univ
K ) ∩ µ+.

(2) κcont(Kµ, <
univ
K ) = ℵ0.

(3) K has (µ, δ)-symmetry.

Then whenever M0,M1,M2 ∈ Kµ are such that both M1 and M2 are (µ,≥ δ)-limit
over M0 (recall Section 2.4), we have that M1

∼=M0
M2.

We will not need to use the definition of (µ, δ)-symmetry, only the following fact,
which combines [BV, 18] and the proof of [Van16a, 2].

Fact 11.6. Let K be an AEC and let µ ≥ LS(K). Assume that Kµ has amal-
gamation, joint embedding, no maximal models, and is stable in µ. Let δ < µ+

be a regular cardinal. If whenever 〈Mi : i < δ〉 is an increasing chain of saturated
models in Kµ+ we have that

⋃
i<δMi is saturated, then K has (µ, δ)-symmetry.

We can conclude that in tame stable AECs with weak continuity of splitting, any
two big-enough (≥ χ(K))-limits are isomorphic.
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Theorem 11.7. Let K be an LS(K)-tame AEC with a monster model. Assume
that splitting has weak continuity.

Let χ0 < H1 be as given by Fact 4.10. Then for any stability cardinal µ ≥ λ′(K)+χ0

and any M0,M1,M2 ∈ Kµ, if both M1 and M2 are (µ,≥ χ(K))-limit over M0, then
M1
∼=M0

M2.

Proof. By Fact 4.10, we have that the union of an increasing chain of saturated mod-
els in Kµ+ of length χ(K) is saturated. Therefore by Fact 11.6, K has (µ, χ(K))-
symmetry. Now apply Fact 11.5. �

We deduce the following improvement on Theorem 4.13 in case splitting has weak
continuity:

Corollary 11.8. Let K be an LS(K)-tame AEC with a monster model. Assume
that splitting has weak continuity.

Let χ0 < H1 be as given by Fact 4.10. For any stability cardinal µ ≥ λ′(K) + χ0,
there is a saturated model of cardinality µ.

Proof. There is a (µ, χ(K))-limit model of cardinality µ, and it is saturated by
Theorem 11.7. �

In Fact 4.10, it is open whether Hypothesis (1) can be removed. We aim to show
that it can, assuming continuity of splitting and SCH. We first revisit an argument
of VanDieren [Van16b] to show that one can assume stability in λ instead of stability
in unboundedly many cardinals below λ.

Lemma 11.9. Let K be an LS(K)-tame AEC with a monster model. Let µ >
LS(K). Assume that K is stable in both LS(K) and µ. Let 〈Mi : i < δ〉 be
an increasing chain of µ-saturated models. If cf(δ) ∈ κ(KLS(K), <

univ
K ) and the

(µ, δ)-limit model is saturated, then
⋃
i<δMi is µ-saturated.

Let us say a little bit about the argument. VanDieren [Van16b] shows that su-
perstability in λ and µ := λ+ combined with the uniqueness of limit models in λ+

implies that unions of chains of λ+-saturated models are λ+-saturated. One can use
VanDieren’s argument to prove that superstability in unboundedly many cardinals
below µ implies that unions of chains of µ-saturated models are µ-saturated, and
this generalizes to the stable case too. However the case that interests us here is
when K is stable in µ and not necessarily in unboundedly many cardinals below
(the reader can think of µ as being the successor of a singular cardinal of low co-
finality). This is where tameness enters the picture: by assuming stability e.g. in
LS(K) as well as LS(K)-tameness, we can transfer the locality of splitting upward
and the main idea of VanDieren’s argument carries through (note that continuity
of splitting is not needed). Still several details have to be provided, so a full proof
is given here.

Proof of Lemma 11.9. For M0 ≤K M ≤K N , let us say that p ∈ gS(N) does not
fork over (M0,M) if M is ‖M0‖+-saturated over M0 (recall Definition 8.6) and
M0 ∈ KLS(K). Say that p does not fork over M if there exists M0 so that it does
not fork over (M0,M).
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Without loss of generality, δ = cf(δ) < µ. Let Mδ :=
⋃
i<δMi. Let N ≤K Mδ

with N ∈ K<µ. Let p ∈ gS(N). We want to see that p is realized in Mδ. We may
assume without loss of generality that Mi ∈ Kµ for all i ≤ δ. Let q ∈ gS(Mδ) be
an extension of p.

Since δ ∈ κ(KLS(K), <
univ
K ), using [Vas16b, §4] there exists i < δ such that q does

not fork over Mi. This means there exists M0
i ≤K Mi such that M0

i ∈ KLS(K) and q

does not fork over (M0
i ,Mi). Without loss of generality, i = 0. Let µ0 := LS(K)+δ.

Build 〈Ni : i ≤ δ〉 increasing continuous in Kµ0 such that M0
0 ≤K N0, N ≤K Nδ,

and for all i ≤ δ, Ni ≤K Mi. Without loss of generality, N = Nδ.

We build an increasing continuous directed system 〈M∗i , fi,j : i ≤ j < δ〉 such that
for all i < δ:

(1) M∗i ∈ Kµ.
(2) Ni ≤K M∗i ≤K Mi.
(3) fi,i+1 fixes Ni.
(4) M∗i+1 is universal over M∗i .

This is possible. Take M∗0 := M0. At i limit, take M∗∗i to be the a direct limit of
the system fixing Ni and let g : M∗∗i −−→

Ni
Mi (remember that Mi is saturated). Let

M∗i := g[M∗∗i ], and define the fj,i’s accordingly. At successors, proceed similarly
and define the fi,j ’s in the natural way.

This is enough. Let (M∗δ , fi,δ)i<δ be a direct limit of the system extending Nδ
(note: we do not know that M∗δ ≤K Mδ). We have that M∗δ is a (µ, δ)-limit model,
hence is saturated. Now find a saturated C ∈ Kµ containing Mδ ∪M∗δ and such
that for each i < δ, there exists f∗i,δ an automorphism of C extending fi,δ such that

f∗i,δ[Nδ] ≤K M∗δ . This is possible since M∗δ is universal over M∗i for each i < δ. Let

N∗ ≤K M∗δ be such that N∗ ∈ Kµ0 and |Nδ| ∪
⋃
i<δ |f∗i,δ[Nδ]| ⊆ |N∗|.

Claim: For any saturated M̂ ∈ Kµ with Mδ ≤K M̂ , there exists q̂ ∈ gS(M̂)
extending q and not forking over (M0

0 , N0).

Proof of Claim: We know that M0 is saturated. Thus there exists f : M0
∼=N0 M̂ .

Let q̂ := f(q � M0). We have that q̂ ∈ gS(M̂) and q̂ does not fork over (M0
0 , N0).

Further, q̂ � N0 = q � N0. By uniqueness of nonforking (see [Vas16b, 5.3]), q̂ �M =
q. †Claim

By the claim, there exists q̂ ∈ gS(C) extending q and not forking over (M0
0 , N0).

Because M∗δ is (µ+
0 , µ)-limit, there exists M∗∗ ∈ Kµ saturated such that N∗ ≤K

M∗∗ ≤K M∗δ and M∗δ is universal over M∗∗.

Since M∗δ is universal over M∗∗, there is b∗ ∈ M∗δ realizing q̂ � M∗∗. Fix i < δ
and b ∈M∗i such that fi,δ(b) = b∗. We claim that b realizes p (this is enough since
by construction M∗i ≤K Mi ≤K Mδ). We show a stronger statement: b realizes
q̂ � M ′, where M ′ := (f∗i,δ)

−1[M∗∗]. This is stronger because N∗ ≤K M∗∗ so by

definition of N∗, N ≤K (f∗i,δ)
−1[N∗] ≤K M ′. Work inside C. Since q̂ does not fork

over (M0
0 , N0), also q̂ �M∗∗ = gtp(b∗/M∗∗) does not fork over (M0

0 , N0). Therefore
gtp(b/M ′) does not fork over (M0

0 , N0). Moreover, gtp(b/N0) = gtp(b∗/N0) = q̂ �
N0, since fi,δ fixes N0. By uniqueness, gtp(b/M ′) = q̂ � M ′. In other words, b
realizes q̂ �M ′, as desired. �
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Remark 11.10. It is enough to assume that amalgamation and the other structural
properties hold only in K[LS(K),µ].

We have arrived to the second main result of this section. Note that the second
case below is already known (Fact 4.10), but the others are new.

Theorem 11.11. Let K be an LS(K)-tame AEC with a monster model. Assume
that splitting has weak continuity.

Let χ0 < H1 be as given by Fact 4.10. Let λ > λ′(K) + χ0 and let 〈Mi : i < δ〉
be an increasing chain of λ-saturated models. If cf(δ) ≥ χ(K), then

⋃
i<δMi is

λ-saturated provided that at least one of the following conditions hold:

(1) K is stable in λ.
(2) K is stable in unboundedly many cardinals below λ.
(3) λ ≥ θ(λ(K)) (recall Definition 4.19).
(4) SCH holds and λ ≥ 2λ(K).

Proof.

(1) We check that the hypotheses of Lemma 11.9 hold, with K, µ there standing
for K≥λ′(K), λ here. By definition and assumption, K is stable in both

λ′(K) and λ. Furthermore, cf(δ) ∈ κ(Kλ′(K), <
univ
K ) by definition of λ′(K)

and χ(K). Finally, any two (λ,≥ cf(δ))-limit models are isomorphic by
Theorem 11.7.

(2) If λ is a successor, then K is also stable in λ by Fact 4.1(3) so we can
use the first part. If λ is limit, then we can use the first part with each
stability cardinal µ ∈ (λ′(K) + χ0, λ) to see that the union of the chain
is µ-saturated. As λ is limit, this implies that the union of the chain is
λ-saturated.

(3) By definition of θ(λ(K)), λ is almost λ(K)-closed. By Lemma 4.16, either
K is stable in λ or K is stable in unboundedly many cardinals below λ, so
the result follows from the previous parts.

(4) This is a special case of the previous part, see Fact 4.20.

�

12. Applications to existence and homogeneous model theory

We present here the following application of Lemma 4.12:

Theorem 12.1. Let K be an AEC and let λ ≥ LS(K). Assume that K has
amalgamation in λ, no maximal models in λ, is stable in λ, and is categorical in λ.
Let µ ≤ λ be a regular cardinal.

If K is (< µ)-tame, then K is λ-superstable (recall Definition 4.23). In particular,
it has a model of cardinality λ++.

Remark 12.2. Here, (< µ)-tameness is defined using Galois types over sets, see
[Vas16c, 2.16].

Theorem 12.1 can be seen as a partial answer to the question “what stability-
theoretic properties in λ imply the existence of a model in λ++?” (this question is
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in turn motivated by the problem [She09a, I.3.21] of whether categoricity in λ and
λ+ should imply existence of a model in λ++). It is known that λ-superstability is
enough [Vas16a, 8.9]. Theorem 12.1 shows that in fact λ-superstability is implied
by categoricity, amalgamation, no maximal models, stability, and tameness.

Before proving Theorem 12.1, we state a corollary to homogeneous model theory
(see [She70] or the exposition in [GL02]). The result is known in the first-order
case [She90, VIII.0.3] but to the best of our knowledge, it is new in homogeneous
model theory.

Corollary 12.3. Let D be a homogeneous diagram in a first-order theory T . If D
is both stable and categorical in |T |, then D is stable in all λ ≥ |T |.

Proof. Let KD be the class of D-models of T . It is easy to check that it is an
(< ℵ0)-tame AEC with a monster model. By Theorem 12.1, KD is |T |-superstable.
Now apply Fact 4.25. �

Proof of Theorem 12.1. The “in particular” part is by the proof of [Vas16a, 8.9],
which shows that λ-superstability implies no maximal models in λ+. We now prove
that K is λ-superstable. For this it is enough to show that κ(Kλ, <

univ
K ) = ℵ0.

So let δ < λ+ be a regular cardinal. We want to see that δ ∈ κ(Kλ, <
univ
K ). We

consider two cases:

• Case 1: δ < λ. Let 〈Mi : i ≤ δ〉 be <univ
K -increasing continuous in Kλ and

let p ∈ gS(Mδ). Then by categoricity Mδ is (λ, δ+ + µ)-limit, so the proof
of Lemma 4.12 directly gives that there exists i < δ such that p does not
λ-split over Mi.
• Case 2: δ = λ. Note first that this means λ is regular. By [She99, I.3.3(2)],
λ ∈ κwk(Kλ, <

univ
K ). By assumption, K is (< λ)-tame, thus it is weakly

λ-local (recall Definition 3.6). By Theorem 3.7, λ ∈ κcont(Kλ, <
univ
K ). By

Fact 2.7, δ = λ ∈ κ(Kλ, <
univ
K ), as desired.

�
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