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Abstract. In the setup of abstract elementary classes satisfying a local ver-

sion of superstability, we prove the uniqueness property for µ-forking, a cer-

tain independence notion arising from splitting. This had been a longstanding
technical difficulty when constructing forking-like notions in this setup. As an

application, we show that the two versions of forking symmetry appearing in

the literature (the one defined by Shelah for good frames and the one defined
by VanDieren for splitting) are equivalent.
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1. Introduction

In the study of classification theory for abstract elementary classes (AECs), the
question of when a forking-like notion exists is central. The present paper is a
contribution to this problem.

To state our result more precisely, we first recall that there is a semantic notion of
type in AECs: for the rest of this introduction we fix an AEC K with amalgamation,
joint embedding, and arbitrarily large models. This allows us to fix a big universal
model-homogeneous1 monster model C and work inside it. For M ≤K C and a ∈ C,
let gtp(a/M) (the Galois, or orbital, type of a over M) be the orbit of a under the
automorphisms of C fixing M (Galois types can be defined without any assumptions
on K, but then the definition becomes more technical). Write gS(M) for the set of
all Galois types over M . The definitions of stability and saturation are as expected.
Two important results of Shelah are:
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1M is model-homogeneous if whenever M0 ≤K N0 are such that M0 ≤K M and ‖N0‖ < ‖M‖,
then N0 embeds inside M over M0.
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(1) [She09a, II.1.14] If M is saturated, then M is model-homogeneous.
(2) [She09a, II.1.16] If K is stable in µ and M ∈ Kµ, then there exists N ∈ Kµ

universal over M .

To motivate the main result of this paper, let us first consider the following conse-
quence:

Corollary 1.1. Let K be an AEC with amalgamation, joint embedding, and ar-
bitrarily large models. Let LS(K) < µ < λ be given. If K is categorical in λ, then
there is a relation “p does not µ-fork over M” defined for M ≤K N both saturated
models in Kµ and p ∈ gS(N) satisfying:

(1) The usual invariance and monotonicity properties.
(2) Existence-extension: for M ≤K N both saturated in Kµ, any p ∈ gS(M)

has a µ-nonforking extension to gS(N).
(3) Uniqueness2: for M ≤K N both saturated in Kµ, if p, q ∈ gS(N) do not

µ-fork over M and p �M = q �M , then p = q.
(4) Symmetry: forM saturated in Kµ and a, b ∈ C, the following are equivalent:

(a) There exists Ma saturated in Kµ containing a such that M ≤K Ma

and gtp(b/Ma) does not µ-fork over M .
(b) There exists Mb saturated in Kµ containing b such that M ≤K Mb

and gtp(a/Mb) does not µ-fork over M .
(5) Local character for universal chains: if δ < µ+ is a limit ordinal, 〈Mi : i ≤ δ〉

is an increasing continuous sequence of saturated models in Kµ with Mi+1

universal over Mi for all i < δ, then for any p ∈ gS(Mδ) there exists i < δ
such that p does not µ-fork over Mi.

We give a proof at the end of this introduction. Several remarks are in order.

First remark: we work only over models of a fixed cardinality, so we deal with a
(potentially) different nonforking relation for each cardinal µ. Note in particular
that the uniqueness property is for types over models of the same size, so there
are no obvious relationships between µ0-forking and µ1-forking (for LS(K) < µ0 <
µ1 < λ).

Second remark: we work only over saturated models. We do not know how to
generalize our result to all models of cardinality µ. It is worth mentioning that in
the setup of Corollary 1.1 the µ-saturated models are closed under unions [Vasa,
5.7(3)]. In fact they form an AEC with Löwenheim-Skolem-Tarski number µ.

Third remark: it is known (using an argument of Morley, see [She99, I.1.7(a)]) that
in the setup of Corollary 1.1, K is stable in µ. Moreover (5) can be seen as a version
of superstability: it is a replacement for “every type does not fork over a finite set”.
In fact (5) is equivalent to superstability if K is first-order axiomatizable [GV].

Fourth remark: if we strengthen condition (5) to:

(5+) Local character: if δ < µ+ is a limit ordinal, 〈Mi : i ≤ δ〉 is an increasing
continuous sequence of saturated models in Kµ, then for any p ∈ gS(Mδ)
there exists i < δ such that p does not µ-fork over Mi.

2This can also be described as “types over saturated models are stationary”.
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(note the difference with (5): we do not require that Mi+1 be universal over Mi)
then we have arrived to Shelah’s definition of a (type-full) good µ-frame [She09a,
Definition II.2.1]. Good frames are the main concept in Shelah’s books [She09a,
She09b] on classification theory for AECs. They have several applications, including
the author’s proof of the eventual categoricity conjecture for universal classes [Vasb,
Vas17]. Thus the existence question for them is important.

Fifth remark: if we add to the assumptions of Corollary 1.1 that Galois types over
saturated models of size µ are determined by their restrictions to model of size χ,
for some χ < µ (this is called weak tameness in the literature), then the conclusion
is known (see [VV17, 6.4] and [Vasa, 5.7(1)]) and one can strengthen (5) to (5+),
i.e. one gets a good µ-frame. It is known how to derive eventual weak tameness
from categoricity in a high-enough cardinal, thus the conclusion also holds if µ is
“high-enough” (µ ≥ i(2LS(K))

+ suffices) [Vasa, 5.7(5)]. However we are interested

in arbitrary, potentially small, µ. In this case the conclusion of Corollary 1.1 is
new.

Sixth remark: we actually prove a more local statement than Corollary 1.1: let us
take a step back and explain how Corollary 1.1 is proven. As is customary, we first
study an independence notion called µ-splitting [She99, 3.2]: For M ≤K N both in
Kµ, p ∈ gS(N) µ-splits over M if there exists N1, N2 ∈ Kµ with M ≤K N` ≤K N
for ` = 1, 2 and f : N1

∼=M N2 such that f(p � N1) 6= p � N2. In the context
of Corollary 1.1, Shelah and Villaveces (see Fact 2.2) have shown that µ-splitting
satisfies (5). µ-splitting also satisfies weak analogs of uniqueness and extension (see
Fact 2.5).

The weak uniqueness statement is the following: if M0 ≤K M ≤K N are all
in Kµ, M is universal over M0, p, q ∈ gS(N) both do not µ-split over M0 and
p � M = q � M , then p = q. Thus it is natural to define forking by “shifting”
splitting by a universal model (this is already implicit in [She99] but is defined
explicitly for the first time in [Vas16b, 3.8]). Let us say that p ∈ gS(N) does not
µ-fork over M if there exists M0 ≤K M such that M is universal over M0 and p
does not µ-split over M0 (see Definition 2.4; it can be shown that any reasonable
forking-like notion must be µ-forking over saturated models [Vas16a, 9.7]). In the
setup of Corollary 1.1, it was known that µ-forking satisfies all the conditions there
except (3) (for symmetry, this is a recent result of the author [Vasa, 5.7(1)], relying
on joint work with VanDieren [VV17]).

Let us describe the problem in proving uniqueness: let M ≤K N both be saturated
in Kµ and p, q ∈ gS(N) be not µ-forking over M with p � M = q � M . Thus we
have witnesses Mp,Mq such that M is universal over both Mp and Mq, p does not
µ-split over Mp and q does not µ-split over Mq. If we knew that Mp and Mq were
the same (or at least had a common extension over which M is still universal), then
we could use the weak uniqueness described in the previous paragraph. However
we do not know how the witnesses fit together, so we are stuck. This causes several
technical difficulties, forcing for example the witnesses to be carried over in the
study of towers in [SV99, Van06, GVV16, Van16, VV17]. In this paper, we prove
the uniqueness property.

This implies for example that the equivalence relation≈ defined in [SV99, Definition
3.2.1] is just equality (Shelah and Villaveces ask if this is the case in the remarks
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after [SV99, 3.2.2]). Thus the machinery of strong types introduced there can
essentially be dispensed with (see also the discussion in [GVV16, Section 3]). The
result also sheds light on [Bal09, Exercise 12.9] (the “transitivity” of splitting). It
is pointed out in [Bal] that there is an error in this exercise, since the natural proof
does not work. We are still unable to prove transitivity directly, but the result
of this paper shows how to bypass it: work with µ-nonforking (over limit models)
instead of µ-splitting. Then transitivity will follow directly from existence-extension
and the uniqueness proven in this paper.

We now state our local uniqueness result more precisely. Let us say that an AEC K
is µ-superstable if Kµ is nonempty, has amalgamation, joint embedding, no maximal
models, is stable in µ, and µ-splitting satisfies (5) (see Definition 2.1). The main
result of this paper is:

Theorem 2.16. If K is µ-superstable, then µ-forking has the uniqueness property
over limit models in Kµ.

Recall that M is limit if it is the union of an increasing continuous chain in Kµ

of the form 〈Mi : i ≤ δ〉, δ < µ+ limit and Mi+1 universal over Mi for all i < δ.
Limit models are a replacement for saturated models in a local context where we
only know information about models of a single cardinality (see [GVV16] for an
introduction to the theory of limit models). The proof of Theorem 2.16 proceeds
by contradiction: if uniqueness fails, then we can build a tree of failures and this
contradicts stability.

With Theorem 2.16 stated, we can now give a full proof of Corollary 1.1:

Proof of Corollary 1.1. By Fact 2.2, K is µ-superstable. By [Vasa, 5.7], saturated
models in Kµ are the same as limit models. Therefore Theorem 2.16 applies. We
have that µ-forking (from Definition 2.4) satisfies (5). By Fact 2.5, it also satisfies
(2) and it is clear that it satisfies (1). By Theorem 2.16, it satisfies (2). Finally, by
[Vasa, 5.7(1)] it satisfies (4). �

As an application of Theorem 2.16, we can show that the symmetry property for
splitting introduced by VanDieren in [Van16] (which in essence is a symmetry prop-
erty for µ-forking with certain uniformity requirements on the witnesses) is the same
as the symmetry property given in the statement of Corollary 1.1: see Corollary
2.18. Thus the “hierarchy of symmetry properties” described in [VV17, §4] col-
lapses: all the properties there are equivalent. This answers (the first part of)
[VV17, Question 4.13] and gives further evidence that symmetry is a natural prop-
erty to study in this local context. We do not know whether symmetry follows from
µ-superstability. We also do not know whether in Theorem 2.16 we can assume only
stability in µ (and amalgamation, etc.) rather than superstability.

Another open problem would be to study the properties of the weak kind of good
frames derived in Corollary 1.1. They are called H-almost good frames by Shelah
(see [She09b, VII.5.9] and [She]). There has been some work on almost (not H-
almost) good frames (see [She09b, VII.5], [JS]), where in addition to (5) a continuity
property is required for all chains (i.e. given an increasing union of types where all
the elements do not fork over a common model, the union of the chain does not
fork over this model). In particular, conditions are given under which almost good
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frames are good frames. It would be interesting to know whether similar statements
hold for H-almost good frames.

This paper was written while the author was working on a Ph.D. thesis under the
direction of Rami Grossberg at Carnegie Mellon University and he would like to
thank Professor Grossberg for his guidance and assistance in his research in general
and in this work specifically. The author also thanks the referee for comments that
helped improve the presentation of this paper.

2. The main theorem

For the rest of this paper, we assume that the reader has some basic familiarity
with AECs ([Bal09, Chapters 4-12] should be more than enough). We work inside
a fixed AEC K.

The following definition is implicit already in [She99] and is studied in several papers
including [SV99, Van06, GVV16, Van16, VV17]. It is given the name superstability
for the first time in [Gro02, 7.12].

Definition 2.1. K is µ-superstable if:

(1) µ ≥ LS(K) and Kµ 6= ∅.
(2) Kµ has amalgamation, joint embedding, and no maximal models.
(3) K is stable in µ.
(4) K has no long µ-splitting chains: for any limit ordinal δ < µ+, any increas-

ing continuous chain 〈Mi : i ≤ δ〉 with Mi+1 universal over Mi ∈ Kµ for all
i < δ, and any p ∈ gS(Mδ), there exists i < δ such that p does not µ-split
over Mi.

A justification for this rather technical definition is the fact that it follows from
categoricity. This is proven (with slightly different hypotheses) in [SV99, 2.2.1].
For an exposition and complete proof, see [BGVV17].

Fact 2.2. Assume that K has amalgamation and no maximal models. Let LS(K) ≤
µ < λ. If K is categorical in λ, then K is µ-superstable.

From now on, we assume that K is µ-superstable (we will repeat this hypothesis at
the beginning of important statements). We fix a “monster model” C ∈ Kµ+ that
is universal and model-homogeneous and work inside it.

Remark 2.3. We could work in the more general setup of [SV99] (with only den-
sity of amalgamation bases, existence of universal extensions, limit models being
amalgamation bases, and no long splitting chains), but we prefer to avoid techni-
calities.

The following is the main object of study of this paper:

Definition 2.4 (3.8 in [Vas16b]). For M ≤K N both in Kµ, p ∈ gS(N) does not
µ-fork over (M0,M) if M is universal over M0 and p does not µ-split over M0. We
say that p does not µ-fork over M if it does not µ-fork over (M0,M) for some M0.

Since µ is always clear from context, we will omit it: we will say “p does not fork”
and “p does not split” instead of “p does not µ-fork” and “p does not µ-split”.
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It is clear that forking has the basic invariance and monotonicity properties (see
[Vas16b, 3.9]). The following are implicit in [She99] and stated explicitly in [Van06,
I.4.10, I.4.12]. We will use them without much comments.

Fact 2.5. Let M0 ≤K M ≤K N ≤K N ′ all be in Kµ.

(1) Extension: If p ∈ gS(N) does not fork over (M0,M), then there exists an
extension q ∈ gS(N ′) of p that does not fork over (M0,M).

(2) Weak uniqueness: If p, q ∈ gS(N) do not fork over (M0,M) and p � M =
q �M , then p = q.

We now state a weak version of the conjugation property that types enjoy in good
frames [She09a, III.1.21]. This will be key in the proof of the main theorem.

Definition 2.6. Let M,M ′ ∈ Kµ, p ∈ gS(M), p′ ∈ gS(M ′). Let A ⊆ |M | ∩ |M ′|.
We say that p and p′ are conjugate over A if there exists f : M ∼=A M ′ such that
p′ = f(p).

Fact 2.7 (Conjugation property). Let δ < µ+ be a limit ordinal. Let M0,M,N ∈
Kµ, with M0 ≤K M ≤K N . Assume that M is (µ, δ)-limit over M0 and N is
(µ, δ)-limit over M . If p ∈ gS(N) does not fork over (M0,M), then p and p � M
are conjugate over M0.

Proof. Since M is limit over M0, there exists M1 ∈ Kµ such that M0 ≤K M1 ≤K

M , M1 is universal over M0, and M is (µ, δ)-limit over M1. Note that then also
N is (µ, δ)-limit over M1. Using uniqueness of limit models of the same length,
pick f : N ∼=M1

M . Let q := f(p). We claim that q = p � M . Note that by
invariance q does not fork over (M0, f [M ]), hence (by monotonicity) over (M0,M1).
By assumption and monotonicity, also p �M does not fork over (M0,M1). Since f
fixes M1, p �M1 = q �M1, so using weak uniqueness q = p �M , as desired. �

Remark 2.8. We do not know here that limit models of different lengths are
isomorphic.

The next fact says that certain increasing chains of types have least upper bounds.
The proof combines the “no long µ-splitting chains” clause in the definition of µ-
superstability together with the extension and weak uniqueness properties described
earlier

Fact 2.9. Assume that K is µ-superstable. Let δ < µ+ be a limit ordinal and
let 〈Mi : i ≤ δ〉 be increasing continuous in Kµ with Mi+1 universal over Mi for
all i < δ. Suppose we are given an increasing chain of types 〈pi : i < δ〉 such
that pi ∈ gS(Mi) for all i < δ. Then there exists a unique pδ ∈ gS(Mδ) such that
pδ �Mi = pi for all i < δ.

Proof. Without loss of generality, δ is regular. If δ = ω, the conclusion is given by
a straightforward direct limit argument [Bal09, 11.1], so assume that δ > ω. Using
no long splitting chains, for each limit i < δ there exists ji < i such that pi does
not split over Mji . By Fodor’s lemma, there exists a stationary S ⊆ δ and a j < δ
such that pi does not split over Mj for all i ∈ S. Since S is unbounded and the pi’s
are increasing, pi does not split over Mj for all i ∈ [j, δ). Let q ∈ gS(Mδ) be an
extension of pj+1 that does not split over Mj . By weak uniqueness, q �Mi = pi for
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all i ∈ [j + 1, δ). This proves existence and uniqueness is similar: any q′ ∈ gS(Mδ)
extending all the pi’s must be nonsplitting over Mj , so use weak uniqueness. �

Recall that our goal is to prove uniqueness of nonforking extension. To this end,
we define a type to be bad if it witnesses a failure of uniqueness. We then close this
definition under nonforking extensions.

Definition 2.10. Let M ∈ Kµ be limit. We define by induction on n < ω what it
means for a type p ∈ gS(M) to be n-bad :

(1) p is 0-bad if there exists a limit model N ∈ Kµ with M ≤K N and q1, q2 ∈
gS(N) such that:
(a) Both q1 and q2 extend p.
(b) q1 6= q2.
(c) Both q1 and q2 do not fork over M .

(2) For n < ω, p is (n + 1)-bad if there exists a limit model M0 ∈ Kµ with
M0 ≤K M such that p �M0 is n-bad and p does not fork over M0.

(3) p is bad if p is n-bad for some n < ω.

The following is an easy consequence of the definition (in fact the definition is
tailored exactly to make this work):

Remark 2.11. Let M ≤K N both be limit in Kµ. If p ∈ gS(N) does not fork over
M and p �M is bad, then p is bad.

We now proceed to develop some the theory of bad types. In the end, we will
conclude that this contradicts stability in µ, hence there cannot be any bad types.
The next two lemmas are crucial: bad types are closed under unions of universal
chains, and any bad type has two distinct bad extensions.

Lemma 2.12. Assume that K is µ-superstable. Let δ < µ+ be a limit ordinal.
Let 〈Mi : i ≤ δ〉 be an increasing continuous chain of limit models in Kµ with Mi+1

limit over Mi for all i < δ. Let 〈pi : i ≤ δ〉 be an increasing chain of types, with
pi ∈ gS(Mi) for all i < δ. If pi is bad for all i < δ, then pδ is bad.

Proof. Since there are no long splitting chains, there exists i < δ such that pδ does
not fork over Mi. By assumption, p �Mi is bad, so by Remark 2.11 pδ is also bad,
as desired. �

Lemma 2.13. Assume that K is µ-superstable. Let M ∈ Kµ be a limit model.
If p ∈ gS(M) is bad, then there exists a limit model N in Kµ with M ≤K N and
q1, q2 ∈ gS(N) such that:

(1) Both q1 and q2 extend p.
(2) q1 6= q2.
(3) Both q1 and q2 are bad.

Proof. By definition, p is n-bad for some n < ω. We proceed by induction on n.

• If n = 0, this is the definition of being 0-bad (note that q1 and q2 from
Definition 2.10 are bad because they are nonforking extensions of the bad
type p, see Remark 2.11)
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• If n = m + 1, let M0 ∈ Kµ be a limit model such that M0 ≤K M , p does
not fork over M0, and p � M0 is m-bad. Pick M ′0 such that p does not
fork over (M ′0,M0). Let M ′1 be (µ, ω)-limit over M ′0 with M ′1 ≤K M0. By
monotonicity, p does not fork over (M ′0,M

′
1). Let M∗ be (µ, ω)-limit over

M (hence over M ′1). Let q ∈ gS(M∗) be an extension of p that does not
fork over (M ′0,M), hence over (M ′0,M

′
1). By Fact 2.7, q and p � M ′1 are

conjugate over M ′0. Now by the induction hypothesis, there exists a limit
model N∗ extending M0 and two distinct bad extensions of p �M0 to N∗.
These are also extensions of p �M ′1, so the result follows from the fact that
q and p �M ′1 are conjugate over M ′0.

�

The following nominally stronger version of Lemma 2.13 (where N is fixed first) is
the one that we will use to show that there are no bad types:

Lemma 2.14. Assume that K is µ-superstable. Let M be a limit model in Kµ

and let N be limit over M . If p ∈ gS(M) is bad, then there exists q1, q2 ∈ gS(N)
such that:

(1) Both q1 and q2 extend p.
(2) q1 6= q2.
(3) Both q1 and q2 are bad.

Proof. By Lemma 2.13, there exists N ′ ∈ Kµ limit with M ≤K N ′ and q′1, q
′
2 ∈

gS(N ′) distinct bad extensions of p. Use universality of N to pick f : N ′ −→
M

N .

For ` = 1, 2, let q′′` := f(q′`). Clearly, q′′1 , q′′2 are still distinct bad extensions of p.
Now for ` = 1, 2, let q` ∈ gS(N) be an extension of q′′` that does not fork over f [N ′]
(use no long splitting chains and extension). Then q1 and q2 are as desired (they
are bad because they are nonforking extensions of the bad types q′′1 , q

′′
2 , see Remark

2.11). �

Lemma 2.15. If K is µ-superstable, then there are no bad types.

Proof. Suppose for a contradiction that there is a limit model M in Kµ and a bad
type p ∈ gS(M). Fix an increasing continuous chain 〈Mi : i ≤ µ〉 with M0 = M
and Mi+1 limit over Mi for all i < µ. We build a tree of types 〈pη : η ∈ ≤µ2〉
satisfying:

(1) p<> = p.
(2) For all η ∈ ≤µ2, pη ∈ gS(M`(η)).

(3) For all ν ≤ η ∈ ≤µ2, pη is an extension of pν .
(4) For all η ∈ ≤µ2, pη is bad.
(5) For all η ∈ <µ2, pηa0 6= pηa1.

This is enough: The requirements give that for all η, ν ∈ µ2, η 6= ν implies pη 6= pν .
Therefore |gS(Mµ)| = 2µ > µ, contradicting stability.

This is possible: We proceed by induction on `(η). The base case has already been
specified. At limits, we use Fact 2.9 and Lemma 2.12. At successors, we use Lemma
2.14. �
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Theorem 2.16 (Uniqueness of forking). Assume that K is µ-superstable. Let
M ≤K N both be limits in Kµ. Let p, q ∈ gS(N). If p � M = q � M and both p
and q do not fork over M , then p = q.

Proof. Otherwise, this would mean that p � M is 0-bad, contradicting Lemma
2.15. �

2.1. The hierarchy of symmetry properties collapses. In [VV17, §4], VanDieren
and the author defined several variations of the symmetry property (we have high-
lighted the differences between each, see the previously-cited paper for more moti-
vation):

Definition 2.17.

(1) K has uniform µ-symmetry if for any limit models N,M0,M in Kµ where
M is limit overM0 andM0 is limit overN , if gtp(b/M) does not µ-split over M0,

a ∈ |M |, and gtp(a/M0) does not µ-fork over (N,M0), there existsMb ∈ Kµ

containing b and limit over M0 so that gtp(a/Mb) does not µ-fork over
(N,M0).

(2) K has weak uniform µ-symmetry if for any limit models N,M0,M in Kµ

whereM is limit overM0 andM0 is limit overN , if gtp(b/M) does not µ-fork over M0,

a ∈ |M |, and gtp(a/M0) does not µ-fork over (N,M0), there existsMb ∈ Kµ

containing b and limit over M0 so that gtp(a/Mb) does not µ-fork over
(N,M0).

(3) K has non-uniform µ-symmetry if for any limit models M0,M in Kµ where
M is limit over M0, if gtp(b/M) does not µ-split over M0, a ∈ |M |, and

gtp(a/M0) does not µ-fork over M0, there exists Mb ∈ Kµ containing b and
limit over M0 so that gtp(a/Mb) does not µ-fork over M0.

(4) K has weak non-uniform µ-symmetry if for any limit models M0,M in Kµ

where M is limit over M0, if gtp(b/M) does not µ-fork over M0, a ∈ |M |,
and gtp(a/M0) does not µ-fork over M0, there exists Mb ∈ Kµ containing
b and limit over M0 so that gtp(a/Mb) does not µ-fork over M0.

In [VV17, §4], it was shown that the uniform variation corresponds to the symmetry
property for splitting introduced by VanDieren in [Van16] and the weak non-uniform
variation corresponds to the symmetry property of good frames (over limit models).
It was also proven that (1)⇔ (2)⇒ (3)⇒ (4). Using Theorem 2.16, it is now easy
to show that all these properties are equivalent.

Corollary 2.18. If K is µ-superstable, then uniform µ-symmetry is equivalent to
weak non-uniform µ-symmetry.

Proof. We show that weak non-uniform µ-symmetry implies weak uniform µ-symmetry,
which is known to be equivalent to uniform µ-symmetry [VV17, 4.6]. So assume
that we are given N,M0,M, a, b as in the definition of weak uniform µ-symmetry.
Let Mb be as given by the definition of weak non-uniform µ-symmetry. We know
that gtp(a/Mb) does not µ-fork over M0, but we really want to conclude that it
does not µ-fork over (N,M0).

By assumption, gtp(a/M0) does not µ-fork over (N,M0). Therefore by extension
there is a′ such that gtp(a/M0) = gtp(a′/M0) and gtp(a′/Mb) does not µ-fork
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over (N,M0). We have that gtp(a/Mb), gtp(a′/Mb) both do not µ-fork over M0

therefore by uniqueness (Theorem 2.16), gtp(a/Mb) = gtp(a′/Mb). In particular,
gtp(a/Mb) does not µ-fork over (N,M0), as desired. �
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