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Introduction

Observation

Let λ be an uncountable cardinal.

I There is a unique Q-vector space with cardinality λ.

I There is a unique algebraically closed field of characteristic
zero with cardinality λ.

Definition ( Loś, 1954)

A class of structure (or a sentence, or a theory) is categorical in λ
if it has exactly one model of cardinality λ (up to isomorphism).

Question

If K is “reasonable”, can we say something about the class of
cardinals in which K is categorical?
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Introduction

Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K
is categorical in some λ ≥ ℵ1, then K is categorical in all λ′ ≥ ℵ1.

The proof led to classification theory, which has had a big impact.
What if K is not first-order axiomatizable? For example, what if K
is axiomatized by an infinitary logic?

Conjecture (Shelah, 197?)

If an Lω1,ω sentence is categorical in some λ ≥ iω1 , then it is
categorical in all λ′ ≥ iω1 .

Eventual version for AECs: If an AEC is categorical in some
high-enough cardinal, then it is categorical in all high-enough
cardinal.
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What is so hard about Shelah’s eventual categoricity
conjecture?

The lack of compactness.

I An arbitrary AEC may fail amalgamation.

I Even if an AEC has amalgamation, the right notion of type is
semantic (orbital), they need not be determined by their small
restrictions (i.e. be tame) [without large cardinals].

I Even if an AEC is tame, with amalgamation, categorical in
unboundedly-many cardinals, Morley’s proof does not
generalize (even if we have large cardinals). There is no
obvious well-behaved notion of an isolated type.
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Shelah’s eventual categoricity conjecture in universal
classes

Theorem (V.)

Let ψ be a universal Lω1,ω-sentence. If ψ is categorical in some
λ ≥ iiω1 , then ψ is categorical in all λ′ ≥ iiω1 .

This has a natural generalization to uncountable vocabularies using
the framework of universal classes (classes closed under
isomorphisms, substructures, and unions of chains). Set
h(µ) := i(2µ)+ :

Theorem (V.)

Let K be a universal class. If K is categorical in some
λ ≥ ih(|τ(K)|+ℵ0), then K is categorical in all λ′ ≥ ih(|τ(K)|+ℵ0).



Two general categoricity transfers

Let K be an AEC.

Theorem (Model theoretic version, V.)

Assume that K has amalgamation, is χ-tame, and has primes over
sets of the form Ma.

If K is categorical in some λ ≥ h(χ), then K is categorical in all
λ′ ≥ h(χ).

Corollary (Large cardinal version, V.)

Let κ > LS(K) be strongly compact. Assume that K has primes
over sets of the form Ma.

If K is categorical in some λ ≥ h(κ), then K is categorical in all
λ′ ≥ h(κ).



Questions to explore

I How do these results compare to earlier ones?

I What is the role of large cardinals?

I How is the “primes” hypothesis used?

I How does being a universal class help?

I What classes have primes?



Amalgamation

Definition

An AEC K has amalgamation if whenever M0 ≤K M`, ` = 1, 2,
there exists N ∈ K and f` : M` −−→

M0

N.

M1
f1
// N

M0

OO

// M2

f2

OO

Amalgamation can fail in general AECs, even in universal classes.

Theorem (Kolesnikov and Lambie-Hanson, 2015)

For every α < ω1, there exists a universal class in a countable
vocabulary that has amalgamation up to iα but fails
amalgamation starting at iω1 .
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Orbital (Galois) types and tameness

Definition

For K an AEC:

I (Shelah) (a,M0,M1)Eat(b,M0,M2) if there exists N with:

M1
f1
// N

M0

[a]

OO

[b]
// M2

f2

OO

and f1(a) = f2(b). Let E be the transitive closure of Eat and
tp(a/M0;M1) := [(a,M0,M1)]E .

I (Grossberg-VanDieren) For χ ≥ LS(K), K is χ-tame if
whenever tp(a/M0;M1) 6= tp(b/M0;M2), there exists
N ≤K M0 with ‖N‖ ≤ χ and tp(a/N;M1) 6= tp(b/N;M2).
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Primes

Definition (Shelah)

An AEC K has primes if for any (orbital) type p over M0, there
exists a triple (a,M0,M1) such that p = tp(a/M0;M1) and
whenever p = tp(b/M0;M2), there exists f : M1 −−→

M0

M2 with

f (a) = b.

(in the diagram below, a = b):

M1

f ""
M0a

OO

// M2

In universal classes the closure of M0a to a substructure gives a
prime model over M0a.
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Earlier approximations to SECC

Theorem

Let K be an AEC with amalgamation.

I (Shelah 1999) If K is categorical in some successor
λ ≥ ih(LS(K)), then K is categorical in all λ′ ∈ [ih(LS(K)), λ].

I (Grossberg-VanDieren 2006) If K is χ-tame and categorical in
some successor λ > χ+, then K is categorical in all λ′ ≥ λ.

I (Shelah 2009; assuming an unpublished claim)

Assume 2λ < 2λ
+

for all cardinals λ. If K is categorical in
some λ ≥ h(ℵLS(K)+), then K is categorical in all
λ′ ≥ h(ℵLS(K)+).
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Earlier approximations to SECC, with large cardinals

Theorem (Makkai-Shelah, Boney)

If κ > LS(K) is strongly compact, then K is (< κ)-tame (in fact
fully (< κ)-tame and short).

Theorem (Makkai-Shelah, Boney)

If κ > LS(K) is strongly compact and K is categorical in some
λ ≥ h(κ), then K≥κ has amalgamation.

Therefore SECC with categoricity in a successor follows from the
existence of a proper class of strongly compact cardinals.



Categoricity in universal classes

Theorem (V.)

If a universal class K is categorical in some λ ≥ ih(|τ(K)|+ℵ0), then
K is categorical in all λ′ ≥ ih(|τ(K)|+ℵ0).

1. Does not assume that the categoricity cardinal is a successor.

2. Does not assume amalgamation or tameness.

3. Does not use large cardinals.

4. Does not assume any cardinal arithmetic hypotheses (or any
unpublished claims). Is proven entirely in ZFC.

We do assume that K is a universal class.
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“Niceness” should follow from categoricity

Question (Grossberg)

Does eventual amalgamation follow from high-enough categoricity?

Question (Grossberg-VanDieren)

Does tameness follow from high-enough categoricity?

Question

Does the eventual existence of primes follow from high-enough
categoricity?

In the presence of large cardinals, the first questions/conjectures
become theorems, sometimes with (too) short proofs! The third is
open, even with large cardinals.

They also become theorems in universal classes.
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Categoricity in universal classes, step one

Theorem (V.)

Let K be a universal class. If K is categorical in some
λ ≥ ih(|τ(K)|+ℵ0), then there exists an ordering ≤ such that:

1. K∗ := (K ,≤) is an AEC with χ := LS(K∗) < h(|τ(K )|+ ℵ0).

2. K∗≥χ has amalgamation, is χ-tame, and has primes.

This uses Shelah’s classification theory for universal classes, and
more.

Shelah’s eventual categoricity conjecture for universal classes then
follows from the categoricity transfer for tame AECs with
amalgamation and primes.



Justifying the “primes” hypothesis

Theorem (V.)

Let K be a χ-tame AEC with amalgamation and primes.

If K is categorical in some λ ≥ h(χ), then K is categorical in all
λ′ ≥ h(χ).

This gives another proof of (the eventual version of) Morley’s
theorem, Shelah’s generalization to uncountable languages, and
the categoricity conjecture for homogeneous model theory.

There is also a converse:

Theorem (V.)

Let K be a fully χ-tame and short AEC with amalgamation.

If K is categorical in all λ′ ≥ h(χ), then K≥h(χ) has primes.
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Justifying the “primes” hypothesis

Definition (Baldwin-Shelah)

An AEC K admits intersections if for any N ∈ K and A ⊆ |N|, the
set

clN(A) :=
⋂
{|M| : M ≤K N,A ⊆ |M|}

is the universe of a ≤K-substructure of N.

Universal classes admit intersections. Any AEC which admits
intersections has primes.



A proof sketch

Let K be a χ-tame AEC with amalgamation and primes. Let µ < λ
both be “high-enough” categoricity cardinals. We show that K is
categorical in µ+.

1. K is “good” in µ.

2. AFSOC that K is not categorical in µ+. Then a type p over a
model of size µ is omitted by a model of size µ+.

3. K¬p, the class of models omitting p, is an AEC and it is
“good” in µ. Further, K¬p is tame and has primes.

4. Goodness transfers up (uses tameness and primes): K¬p is
“good” also above µ.

5. By “goodness”, K¬p has a model of cardinality λ.

6. This contradicts categoricity in λ (the model there is
saturated).
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