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A puzzle
If six students come to a party, then three of them all know each
other, or three of them all do not know each other.

More formally
and generally:

Theorem (Ramsey, 1930)

For any natural number k , there exists a natural number n such
that:

n→ (k)2

The notation is due to Erdős and Rado. It means: for any set X
with at least n elements and any coloring F of the unordered pairs
from X in two colors, there exists H ⊆ X with |H| = k so that F is
constant on the pairs from H (we call H a homogeneous set for F ).

If k = 3, n = 6 suffices. If k = 5, the optimal value of n is not
known.
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An infinite variation on the puzzle

If an infinite number of students come to a party, then
infinitely-many all know each other or infinitely-many all do not
know each other.

More formally:

Theorem (Ramsey, 1930)

ℵ0 → (ℵ0)2

Said differently, for any set X with |X | ≥ ℵ0 and any coloring F of
the unordered pairs from X , there exists H ⊆ X so that |H| = ℵ0
and F is constant on the unordered pairs from H.

The theorem does not say that |X | = |H|: it does not rule out a
party with uncountably-many students where all friends/strangers
groups (= homogeneous sets) are countable.
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Ramsey’s dream

For any infinite cardinal λ, if λ students come to a party, then
there is a group of λ-many that all know each other or a group of
λ-many that all do not know each other. That is:

λ→ (λ)2

This is wrong for most cardinals λ.
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Counterexamples to Ramsey’s dream

Proposition (Sierpiński)

|R| 6→ (|R|)2.

Proposition (Erdős-Kakutani)

|R| 6→ (3)ℵ0

Proof.

Take F ({x , y}) = some rational between x and y . A set H
homogeneous for F cannot contain three elements!

In the reals, a countable set allows one to distinguish
uncountably-many points. There are however many structures
where this is not the case.
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|R| 6→ (|R|)2.

Proposition (Erdős-Kakutani)
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|R| 6→ (|R|)2.

Proposition (Erdős-Kakutani)
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Ramsey’s dream in the complex field

Proposition

If F is a coloring of the unordered pairs of complex numbers in two
colors such that F ({f (x), f (y)}) = F ({x , y}) for any field
automorphism f of C, then F has a homogeneous set of cardinality
|C|.

Proof.

Any transcendence basis for C does the job.

This proves |C| → |C|2 but “relativized to C” (for colorings
preserved by automorphisms).
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Types
A category K has amalgamation if any diagram of the form
B ← A→ C can be completed to a commuting square (no
universal property required – this is much weaker than pushouts).

Definition

Given a concrete category K with amalgamation and an object A

of K, a type over A is just a pair (x ,A
f−→ B), with x ∈ B. Two

types (x ,A
f−→ B), (y ,A

g−→ C ) are considered the same if there
exists maps h1, h2 so that h1(x) = h2(y) and the following diagram
commutes:

B D

A C

h1

f

g

h2
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Types in fields, linear orders, and graphs

Essentially, one can think of types over a fixed base A as the orbits
of an automorphism group fixing A.

For example in the category of fields, e
1
3 and e

1
2 have the same

type over Q but not the same type over Q(e).

In the category of fields, there are at most max(|A|,ℵ0) types over
every object A (just one type for the transcendental element).

In the category of linear orders, there are |R| types over Q. In
general, types correspond to Dedekind cuts.

In the category of graphs with induced subgraph embeddings, there
are at least 2|V (G)| types over any graph G .
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Definition (Stability)

A concrete category K is stable in λ if there are at most λ-many
types over any object of cardinality λ. Stable means stable in an
unbounded class.

I The category of graphs with induced subgraph embeddings
and the category of linear orders are unstable. The category
of fields is stable (in all cardinals).

I (Eklof 1971, Mazari-Armida) The category of R-modules with
embeddings is always stable, and stable in all cardinals if and
only if R is Noetherian.

I (Kucera and Mazari-Armida) The category of R-modules with
pure embeddings is always stable, and stable in all cardinals if
and only if R is pure-semisimple.
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Ramsey’s dream in stable AECs

Theorem (V.)

If K is an abstract elementary class with amalgamation and K is
stable in λ, then:

λ+
K−→

(
λ+

)
λ

Here λ+ is the cardinal right after λ.

The partition notation means that given objects A→ B in K with
|A| = λ, |B| = λ+, if F is a coloring of pairs from B in λ-many
colors so that any two pairs with the same type over A have the
same color, then we can find a homogeneous set for F of
cardinality λ+.
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Theorem (V.)

If K is an abstract elementary class with amalgamation and K is
stable in λ, then:

λ+
K−→

(
λ+

)
λ

Definition (Shelah, late 1970s)

An abstract elementary class (AEC) is a concrete category K
satisfying the following conditions:

I All morphisms are concrete monomorphisms (injections).

I K has concrete directed colimits (also known as direct limits –
basically closure under unions of increasing chains).

I (Smallness condition) Every object is a directed colimit of a
fixed set of “small” subobjects.



Examples of abstract elementary classes

All the categories mentioned before are AECs.

Any AEC is an accessible category: a category with all sufficiently
directed colimits satisfying a certain smallness condition.
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Abstract elementary classes and logic
A first-order formula is a statement like (∀x∃y)(x · y = 1).

For any list T of first-order formulas, the category Mod(T ) of
models of T forms an AEC (the morphisms are the functions
preserving all formulas).

We will call such a category a first-order class. It is one of the
basic objects of study in model theory.

Stability theory was developped for first-order classes first, by
Saharon Shelah.
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Beyond first-order classes

First-order classes are important, because of the compactness
theorem: if all finite subsets of a given theory have a model, then
the whole theory has a model. This is powerful (one can use it to
build models for nonstandard analysis) but means that many
interesting categories are not first-order.

Also, the morphisms of first-order classes are not so natural.

Example

The category of fields is not first-order because the embedding
Q→ R does not preserve the formula (∃x)(x · x = 2). In fact none
of the examples given so far are first-order.

One goal of the research presented here is to develop a general
framework for the parts of model theory that are
“category-theoretic”.



Beyond first-order classes

First-order classes are important, because of the compactness
theorem: if all finite subsets of a given theory have a model, then
the whole theory has a model. This is powerful (one can use it to
build models for nonstandard analysis) but means that many
interesting categories are not first-order.

Also, the morphisms of first-order classes are not so natural.

Example

The category of fields is not first-order because the embedding
Q→ R does not preserve the formula (∃x)(x · x = 2).

In fact none
of the examples given so far are first-order.

One goal of the research presented here is to develop a general
framework for the parts of model theory that are
“category-theoretic”.



Beyond first-order classes

First-order classes are important, because of the compactness
theorem: if all finite subsets of a given theory have a model, then
the whole theory has a model. This is powerful (one can use it to
build models for nonstandard analysis) but means that many
interesting categories are not first-order.

Also, the morphisms of first-order classes are not so natural.

Example

The category of fields is not first-order because the embedding
Q→ R does not preserve the formula (∃x)(x · x = 2). In fact none
of the examples given so far are first-order.

One goal of the research presented here is to develop a general
framework for the parts of model theory that are
“category-theoretic”.



Beyond first-order classes

First-order classes are important, because of the compactness
theorem: if all finite subsets of a given theory have a model, then
the whole theory has a model. This is powerful (one can use it to
build models for nonstandard analysis) but means that many
interesting categories are not first-order.

Also, the morphisms of first-order classes are not so natural.

Example

The category of fields is not first-order because the embedding
Q→ R does not preserve the formula (∃x)(x · x = 2). In fact none
of the examples given so far are first-order.

One goal of the research presented here is to develop a general
framework for the parts of model theory that are
“category-theoretic”.



Shelah’s eventual categoricity conjecture

Any two algebraically closed fields of the same characteristic and
the same uncountable cardinality are isomorphic (because they
have the same transcendence degree).

Thus it seems any AEC with a “perfect theory of dimension”
should have unique objects of each high-enough cardinality. Morley
(1965) proved a sort of converse for first-order classes, and Shelah
proposed this should generalize:

Conjecture (Shelah, late seventies)

An AEC with a single object of some high-enough cardinality has a
single object in all high-enough cardinalities.

The only known way to prove such statements is via stability
theory.
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Shelah’s eventual categoricity conjecture

Conjecture (Shelah, late seventies)

An AEC with a single object of some high-enough cardinality has a
single object in all high-enough cardinalities.

The conjecture is still open.

Partial approximations before
my thesis include: Shelah 1983, Makkai-Shelah
1990, Shelah 1999, Shelah-Villaveces
1999, VanDieren 2006, Grossberg-VanDieren 2006,
Shelah 2009, Hyttinen-Kesälä 2011, Boney 2014.
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Toward Shelah’s eventual categoricity conjecture

Theorem (V. 2017)

Shelah’s eventual categoricity conjecture is true for universal AECs.

Theorem (Shelah-V.)

Shelah’s eventual categoricity conjecture is true for all AECs,
assuming a large cardinal axiom (there exists a proper class of
strongly compact cardinals).

Theorem (V. 2019)

Assuming the GCH, Shelah’s eventual categoricity conjecture is
true for AECs with amalgamation. In this case one can list all
possibilities for the class of cardinals in which the category has a
unique object.
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Stability and order

Theorem (V. 2016, Boney)

A tame AEC K with amalgamation is stable if and only if it does

not have the “order property”: any faithful functor Lin
F−→ K

factors through the forgetful functor.

Lin K

Set

F

U



Order in graphs: an intermission

Graphs with induced subgraph embeddings are unstable, so they
must have the order property: where is it?

It is given by a half graph: for any linear ordering L, consider the
bipartite graph on L t L where we put an edge from i to j if only if
i ≤ j (the picture below is for L = {1, 2, 3, 4, 5, 6, 7}):

Graphs omitting half graphs are studied in finite combinatorics too
(Malliaris-Shelah, Regularity lemmas for stable graphs. TAMS
2014).
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Stable independence

The proofs of the eventual categoricity conjecture and of the

partition theorem λ+
K−→ (λ+)λ involve describing what it means

for a type to be “determined” over a small base. This is called
forking in the first-order context, and is the key tool developped by
Shelah in his classification theory book. It generalizes algebraic
independence in fields.

Unfortunately Shelah’s definition is syntactic, hard to describe, and
some properties depend on compactness. With my collaborators,
we found a completely category-theoretic definition.
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Definition (Equivalence of amalgam)

Consider a diagram: B ← A→ C .

Two amalgams B → D1 ← C , B → D2 ← C of this diagram are
equivalent if there exists D and arrows making the following
diagram commute:

D2 D

B D1

A C

Example: in Setmono , {0} and {1} have two non-equivalent
amalgams over ∅: {0, 1} and {1} (with the expected morphisms).
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Definition (Stable independence; Lieberman-Rosický-V., 2019)

A stable independence notion is a class of squares (called
independent squares, marked with ^) such that:

1. Independent squares are closed under equivalence of amalgam.

2. Existence: any span can be amalgamated to an independent
square.

3. Uniqueness: any two independent amalgam of the same span
are equivalent.

4. Symmetry:

B D C D

A C A B

^ ⇒ ^
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Definition (stable independence notion - continued)

5. Transitivity:

B D F B F

A C E A E

^ ^ ⇒
^

6. Accessibility: the category whose objects are arrows and whose
morphisms are independent squares is accessible. This implies
that any arrow can be “filtered” in an independent way:

A B

Ai Bi

^



Definition (stable independence notion - continued)

5. Transitivity:

B D F B F

A C E A E

^ ^ ⇒
^

6. Accessibility: the category whose objects are arrows and whose
morphisms are independent squares is accessible. This implies
that any arrow can be “filtered” in an independent way:

A B

Ai Bi

^



Theorem (Canonicity theorem; Lieberman-Rosický-V. 2019)

A category with directed colimits (in particular an AEC) has at
most one stable independence notion.

In any accessible category with pushouts, the class of all squares
forms a stable independence notion.

In very simple AECs, like the AEC of vector spaces or sets, stable
independence is given by pullback squares. In the AEC of fields,
the definition is essentially given by algebraic independence.

Theorem (Lieberman-Rosický-V. 2019)

An AEC with a stable independence notion has amalgamation, is
tame, and is stable.

Certain converses are true too (for example in first-order classes, or
assuming large cardinals).
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Stable independence and cofibrant generation

Theorem (Lieberman-Rosický-V.)

Let K be an accessible cocomplete category (like the category of
R-modules with homomorphisms). Let M be a class of morphisms
of K satisfying reasonable closure properties (like the monos, or
the pure monos).

Then the subcategory of K with only morphisms from M has
stable independence if and only if M is cofibrantly generated (i.e.
can be generated from a small subclass using transfinite
compositions, pushouts, and retracts).
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New examples of stable independence

Corollary (Lieberman-Rosický-V.)

1. The AEC of flat R-modules with flat morphisms (more
generally, any AEC of “roots of Ext”) has stable
independence.

2. Any Grothendieck topos restricted to regular monos has stable
independence.

3. Any Grothendieck abelian category restricted to monos has
stable independence.

4. Any Cisinski model category restricted to monos has stable
independence.



Summary and future work
We have seen several ways to think of stability:

I The study of universes with “good Ramsey theory”.

I A generalized theory of field extensions.

I Existence of an axiomatic notion of “being independent”,
generalizing linear and algebraic independence.

I Cofibrant generation in abstract homotopy theory
(“morphisms being generated by a small set”).

Some directions for future work:

I What are applications of these connections? Ongoing work: a
simple proof of a theorem of Makkai-Rosický on existence of
pseudopullback for combinatorial categories.

I Where else does stable independence occur?

I Develop a systematic theory of higher-dimensional stable
independence.
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