Independence in tame abstract elementary classes

Sebastien Vasey

Carnegie Mellon University

January 11, 2015 Joint Mathematics Meeting AMS-ASL Special Session on Beyond First-Order Model Theory San Antonio, USA Forking is one of the key notions of modern stability theory.

Introduction

- Forking is one of the key notions of modern stability theory.
- Is there such a notion outside of first-order (e.g. for logics such as L_{ω1,ω})?

Introduction

- Forking is one of the key notions of modern stability theory.
- Is there such a notion outside of first-order (e.g. for logics such as L_{ω1,ω})?
- We provide the following answer in the framework of abstract elementary classes (AECs):

Introduction

- Forking is one of the key notions of modern stability theory.
- Is there such a notion outside of first-order (e.g. for logics such as L_{ω1,ω})?
- We provide the following answer in the framework of abstract elementary classes (AECs):

Theorem

Let K be a fully tame and short AEC which has a monster model and is categorical in unboundedly-many cardinals.

Then there exists λ such that $K_{\geq \lambda}$ admits an independence notion with all the properties of forking in a superstable first-order theory.

Abstract elementary classes

Definition (Shelah, 1985)

Let K be a nonempty class of structures of the same similarity type L(K), and let \leq be a partial order on K. (K, \leq) is an *abstract* elementary class (AEC) if it satisfies:

- 1. K is closed under isomorphism, \leq respects isomorphisms.
- 2. If $M \leq N$ are in K, then $M \subseteq N$.
- 3. Coherence: If $M_0 \subseteq M_1 \leq M_2$ are in K and $M_0 \leq M_2$, then $M_0 \leq M_1$.
- 4. Downward Löwenheim-Skolem axiom: There is a cardinal $LS(K) \ge |L(K)| + \aleph_0$ such that for any $N \in K$ and $A \subseteq |N|$, there exists $M \le N$ containing A of size $\le LS(K) + |A|$.
- 5. Chain axioms: If δ is a limit ordinal, $\langle M_i : i < \delta \rangle$ is a \leq -increasing chain in K, then $M := \bigcup_{i < \delta} M_i$ is in K, and: 5.1 $M_0 \leq M$. 5.2 If $N \in K$ is such that $M_i \leq N$ for all $i < \delta$, then $M \leq N$.

For $\psi \in L_{\omega_1,\omega}$, Φ a countable fragment containing ψ , $\mathcal{K} := (Mod(\psi), \prec_{\Phi})$ is an AEC with $LS(\mathcal{K}) = \aleph_0$.

Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

- This is the approach Shelah adopts in his books on classification theory for AECs.
- Many proofs have a set-theoretic flavor and rely on GCH-like principles.

Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

- This is the approach Shelah adopts in his books on classification theory for AECs.
- Many proofs have a set-theoretic flavor and rely on GCH-like principles.

Question (The global approach to AECs)

Work in ZFC, but make *global* model-theoretic hypotheses (like a monster model or locality conditions on types). What can we say about the AEC?

Throughout the talk, we fix an AEC K. We assume we work inside a "big" model-homogeneous universal model \mathfrak{C} .

Throughout the talk, we fix an AEC K. We assume we work inside a "big" model-homogeneous universal model \mathfrak{C} .

Fact

Such a \mathfrak{C} exists if and only if K has joint embedding, no maximal models, and amalgamation.

Throughout the talk, we fix an AEC K. We assume we work inside a "big" model-homogeneous universal model \mathfrak{C} .

Fact

Such a \mathfrak{C} exists if and only if K has joint embedding, no maximal models, and amalgamation.

Definition

For $\bar{b} \in {}^{<\infty}\mathfrak{C}$, $A \subseteq |\mathfrak{C}|$, let $gtp(\bar{b}/A)$ be the orbit of \bar{b} under the automorphisms of \mathfrak{C} fixing A.

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is $(< \kappa)$ -tame if for any *M* and any distinct $p, q \in gS(M)$, there exists $A \subseteq |M|$ of size less than κ such that $p \upharpoonright A \neq q \upharpoonright A$.

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is $(< \kappa)$ -tame if for any *M* and any distinct $p, q \in gS(M)$, there exists $A \subseteq |M|$ of size less than κ such that $p \upharpoonright A \neq q \upharpoonright A$.

Definition (Boney, 2013)

K is fully $(<\kappa)$ -tame and short if for any α , any M, and any distinct $p, q \in gS^{\alpha}(M)$, there exists $A \subseteq |M|$ and $I \subseteq \alpha$ of size less than κ such that $p' \upharpoonright A \neq q' \upharpoonright A$.

Fact (Makkai-Shelah, Boney)

Let $\kappa > \mathsf{LS}(K)$ be strongly compact. Then:

1. (No need for K to have a monster model) If K is categorical in some $\lambda \ge \kappa$, then $K_{>\kappa}$ has a monster model.

Fact (Makkai-Shelah, Boney)

Let $\kappa > \mathsf{LS}(K)$ be strongly compact. Then:

- 1. (No need for K to have a monster model) If K is categorical in some $\lambda \ge \kappa$, then $K_{>\kappa}$ has a monster model.
- 2. K is fully $(< \kappa)$ -tame and short.

Definition An AEC K with a monster model is *good* if:

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.

Definition

- 1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \le N$, which satisfies:

Definition

- 1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \le N$, which satisfies:
 - 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then f(p) dnf over f[M].

Definition

- 1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \le N$, which satisfies:
 - 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then f(p) dnf over f[M].
 - 2.2 **Monotonicity**: if $M \le M' \le N' \le N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p' \upharpoonright N'$ dnf over M'.

Definition

- 1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \le N$, which satisfies:
 - 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then f(p) dnf over f[M].
 - 2.2 **Monotonicity**: if $M \le M' \le N' \le N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p' \upharpoonright N'$ dnf over M'.
 - 2.3 Existence of unique extension: If $p \in gS^{\alpha}(M)$ and $N \ge M$, there exists a unique $q \in gS^{\alpha}(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.

Definition

- 1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \le N$, which satisfies:
 - 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then f(p) dnf over f[M].
 - 2.2 **Monotonicity**: if $M \le M' \le N' \le N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p' \upharpoonright N'$ dnf over M'.
 - 2.3 Existence of unique extension: If $p \in gS^{\alpha}(M)$ and $N \ge M$, there exists a unique $q \in gS^{\alpha}(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.
 - 2.4 Set local character: If $p \in gS^{\alpha}(M)$, there exists $M_0 \leq M$ with $||M_0|| \leq |\alpha| + LS(K)$ such that p dnf over M_0 .

Definition

- 1. K is stable in all $\lambda \geq \mathsf{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \le N$, which satisfies:
 - 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then f(p) dnf over f[M].
 - 2.2 **Monotonicity**: if $M \le M' \le N' \le N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p' \upharpoonright N'$ dnf over M'.
 - 2.3 Existence of unique extension: If $p \in gS^{\alpha}(M)$ and $N \ge M$, there exists a unique $q \in gS^{\alpha}(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.
 - 2.4 Set local character: If $p \in gS^{\alpha}(M)$, there exists $M_0 \leq M$ with $||M_0|| \leq |\alpha| + LS(K)$ such that p dnf over M_0 .
 - 2.5 Chain local character: If $\langle M_i : i \leq \delta \rangle$ is increasing continuous, $p \in gS^{\alpha}(M_{\delta})$ and $cf(\delta) > \alpha$, then there exists $i < \delta$ such that p dnf over M_i .

For α a cardinal, F an interval of cardinals, we say K is (< α, F)-good if it is good when we restrict types to have length less than α, and models to have size in F.

- For α a cardinal, F an interval of cardinals, we say K is (< α, F)-good if it is good when we restrict types to have length less than α, and models to have size in F.
- For example, good means (<∞, ≥ LS(K))-good. In Shelah's terminology, (≤ 1, λ)-good means K has a type-full good λ-frame.</p>

Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.

- Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- A key question: If ⟨p_i : i ≤ δ⟩ is an increasing continuous chain of types and each p_i does not fork over M₀ for i < δ, do we have that p_δ does not fork over M₀?

- Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- ▶ A key question: If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_{δ} does not fork over M_0 ?
- ► For types of finite length, this follows from local character.

- Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- A key question: If ⟨p_i : i ≤ δ⟩ is an increasing continuous chain of types and each p_i does not fork over M₀ for i < δ, do we have that p_δ does not fork over M₀?
- ► For types of finite length, this follows from local character.
- But for longer types, this is much harder.

Some previous work on independence in AECs

Fact (Shelah)

Let *K* be an AEC, categorical in λ , λ^+ , with at least one but "few" models in λ^{++} . If $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++} -saturated, then *K* is $(\leq \lambda^+, \lambda^+)$ -good.

Some previous work on independence in AECs

Fact (Shelah)

Let K be an AEC, categorical in λ , λ^+ , with at least one but "few" models in λ^{++} . If $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++} -saturated, then K is $(\leq \lambda^+, \lambda^+)$ -good.

Fact (V.)

If K is $(\leq \mu)$ -tame and categorical in a λ with $cf(\lambda) > \mu$, then K is $(\leq 1, \geq \lambda)$ -good.

Fact (Shelah)

Let K be an AEC, categorical in λ , λ^+ , with at least one but "few" models in λ^{++} . If $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++} -saturated, then K is $(\leq \lambda^+, \lambda^+)$ -good.

Fact (V.)

If K is $(\leq \mu)$ -tame and categorical in a λ with $cf(\lambda) > \mu$, then K is $(\leq 1, \geq \lambda)$ -good.

Fact (Makkai-Shelah, Boney-Grossberg)

Let $\kappa > \mathsf{LS}(K)$ be strongly compact and let K be categorical in a $\lambda = \lambda^{<\kappa}$. Then $K_{>\lambda}$ is good.

Theorem Let $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

Theorem Let $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$. 1. If K is $(< \kappa)$ -tame, then $K_{>\lambda}$ is $(\leq 1, \geq \lambda)$ -good.

Theorem

Let $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

- 1. If K is $(<\kappa)$ -tame, then $K_{\geq\lambda}$ is $(\leq 1, \geq \lambda)$ -good.
- 2. If $\lambda > (\kappa^{<\kappa})^{+5}$ and K is fully $(<\kappa)$ -tame and short, then $K_{\geq \lambda}$ is good.

Theorem

Let $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

- 1. If K is $(<\kappa)$ -tame, then $K_{\geq\lambda}$ is $(\leq 1, \geq \lambda)$ -good.
- 2. If $\lambda > (\kappa^{<\kappa})^{+5}$ and K is fully $(<\kappa)$ -tame and short, then $K_{\geq \lambda}$ is good.

Corollary

If K is $(< \kappa)$ -tame, $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$, and K is categorical in a $\lambda > \kappa$, then K is stable in *all* cardinals.

Theorem

Let $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

- 1. If K is (< κ)-tame, then $K_{\geq \lambda}$ is ($\leq 1, \geq \lambda$)-good.
- 2. If $\lambda > (\kappa^{<\kappa})^{+5}$ and K is fully $(<\kappa)$ -tame and short, then $K_{\geq \lambda}$ is good.

Corollary

If K is $(< \kappa)$ -tame, $\kappa = \beth_{\kappa} > \mathsf{LS}(K)$, and K is categorical in a $\lambda > \kappa$, then K is stable in *all* cardinals.

Remark

We can replace categoricity by a natural definition of superstability, analog to $\kappa(T) = \aleph_0$.

Shelah's categoricity conjecture in "easy" AECs?

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω -successful good frame and weak GCH holds, then K is categorical in some $\lambda > LS(K)$ if and only if K is categorical in all $\lambda > LS(K)$.

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω -successful good frame and weak GCH holds, then K is categorical in some $\lambda > LS(K)$ if and only if K is categorical in all $\lambda > LS(K)$.

It turns out our construction gives an ω -successful good frame. Thus modulo Shelah's claim, we get:

Corollary

Assume weak GCH. If there are unboundedly-many strongly compact cardinals, then Shelah's categoricity conjecture holds.

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω -successful good frame and weak GCH holds, then K is categorical in some $\lambda > LS(K)$ if and only if K is categorical in all $\lambda > LS(K)$.

It turns out our construction gives an ω -successful good frame. Thus modulo Shelah's claim, we get:

Corollary

Assume weak GCH. If there are unboundedly-many strongly compact cardinals, then Shelah's categoricity conjecture holds.

Remark

Shelah claims stronger results in chapter IV of his book on AECs.

Fix a "nice-enough" AEC K.

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good ($\leq 1, \lambda$)-independence relation (for suitable λ).

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good ($\leq 1, \lambda$)-independence relation (for suitable λ).
- 3. Use further properties of coheir and results of Shelah to get that this frame is *successful*, and hence induces a good $(\leq \lambda, \lambda)$ -independence relation.

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good ($\leq 1, \lambda$)-independence relation (for suitable λ).
- 3. Use further properties of coheir and results of Shelah to get that this frame is *successful*, and hence induces a good $(\leq \lambda, \lambda)$ -independence relation.
- 4. Use a strong continuity property proven by Shelah as well as tameness and shortness to obtain a good $(\leq \lambda, \geq \lambda)$ -independence relation.

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good ($\leq 1, \lambda$)-independence relation (for suitable λ).
- 3. Use further properties of coheir and results of Shelah to get that this frame is *successful*, and hence induces a good $(\leq \lambda, \lambda)$ -independence relation.
- 4. Use a strong continuity property proven by Shelah as well as tameness and shortness to obtain a good $(\leq \lambda, \geq \lambda)$ -independence relation.
- 5. Use tameness and shortness to obtain a good $(<\infty,\geq\lambda)$ -independence relation.

Thank you!

- For further reference, see: Sebastien Vasey, *Infinitary stability theory*.
- A preprint can be accessed from my webpage: http://svasey.org/
- ► For a direct link, you can take a picture of the QR code below:

