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Introduction

I Forking is one of the key notions of modern stability theory.

I Is there such a notion outside of first-order (e.g. for logics
such as Lω1,ω)?

I We provide the following answer in the framework of abstract
elementary classes (AECs):

Theorem
Let K be a fully tame and short AEC which has a monster model
and is categorical in unboundedly-many cardinals.
Then there exists λ such that K≥λ admits an independence notion
with all the properties of forking in a superstable first-order theory.
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Abstract elementary classes

Definition (Shelah, 1985)

Let K be a nonempty class of structures of the same similarity type
L(K ), and let ≤ be a partial order on K . (K ,≤) is an abstract
elementary class (AEC) if it satisfies:

1. K is closed under isomorphism, ≤ respects isomorphisms.

2. If M ≤ N are in K , then M ⊆ N.

3. Coherence: If M0 ⊆ M1 ≤ M2 are in K and M0 ≤ M2, then
M0 ≤ M1.

4. Downward Löwenheim-Skolem axiom: There is a cardinal
LS(K ) ≥ |L(K )|+ ℵ0 such that for any N ∈ K and A ⊆ |N|,
there exists M ≤ N containing A of size ≤ LS(K ) + |A|.

5. Chain axioms: If δ is a limit ordinal, 〈Mi : i < δ〉 is a
≤-increasing chain in K , then M :=

⋃
i<δ Mi is in K , and:

5.1 M0 ≤ M.
5.2 If N ∈ K is such that Mi ≤ N for all i < δ, then M ≤ N.



Example of an AEC

For ψ ∈ Lω1,ω, Φ a countable fragment containing ψ,
K := (Mod(ψ),≺Φ) is an AEC with LS(K ) = ℵ0.



Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can
we transfer them up? Can we build a structure theory cardinal by
cardinal?

I This is the approach Shelah adopts in his books on
classification theory for AECs.

I Many proofs have a set-theoretic flavor and rely on GCH-like
principles.

Question (The global approach to AECs)

Work in ZFC, but make global model-theoretic hypotheses (like a
monster model or locality conditions on types). What can we say
about the AEC?
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Global assumptions

Throughout the talk, we fix an AEC K . We assume we work inside
a “big” model-homogeneous universal model C.

Fact
Such a C exists if and only if K has joint embedding, no maximal
models, and amalgamation.

Definition
For b̄ ∈ <∞C, A ⊆ |C|, let gtp(b̄/A) be the orbit of b̄ under the
automorphisms of C fixing A.
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Tameness, or “easy” AECs

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is (< κ)-tame if for any M and any distinct p, q ∈ gS(M), there
exists A ⊆ |M| of size less than κ such that p � A 6= q � A.

Definition (Boney, 2013)

K is fully (< κ)-tame and short if for any α, any M, and any
distinct p, q ∈ gSα(M), there exists A ⊆ |M| and I ⊆ α of size less
than κ such that pI � A 6= qI � A.
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Tame AECs and large cardinals

Fact (Makkai-Shelah, Boney)

Let κ > LS(K ) be strongly compact. Then:

1. (No need for K to have a monster model) If K is categorical
in some λ ≥ κ, then K≥κ has a monster model.

2. K is fully (< κ)-tame and short.
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Axioms of superstable forking

Definition
An AEC K with a monster model is good if:

1. K is stable in all λ ≥ LS(K ).

2. There is a relation “p does not fork (dnf) over M”, for
p ∈ gS<∞(N), M ≤ N, which satisfies:

2.1 Invariance: If f ∈ Aut(C), p dnf over M, then f (p) dnf over
f [M].

2.2 Monotonicity: if M ≤ M ′ ≤ N ′ ≤ N, I ⊆ α, and p ∈ gSα(N)
dnf over M, then pI � N ′ dnf over M ′.

2.3 Existence of unique extension: If p ∈ gSα(M) and N ≥ M,
there exists a unique q ∈ gSα(N) extending p and not forking
over M. Moreover q is algebraic if and only if p is.

2.4 Set local character: If p ∈ gSα(M), there exists M0 ≤ M
with ‖M0‖ ≤ |α|+ LS(K ) such that p dnf over M0.

2.5 Chain local character: If 〈Mi : i ≤ δ〉 is increasing
continuous, p ∈ gSα(Mδ) and cf(δ) > α, then there exists
i < δ such that p dnf over Mi .
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Localizing goodness

I For α a cardinal, F an interval of cardinals, we say K is
(< α,F)-good if it is good when we restrict types to have
length less than α, and models to have size in F .

I For example, good means (<∞,≥ LS(K ))-good. In Shelah’s
terminology, (≤ 1, λ)-good means K has a type-full good
λ-frame.
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Challenges in proving goodness

I Since we do not have much compactness, extension is usually
very difficult to prove, especially across cardinals.

I A key question: If 〈pi : i ≤ δ〉 is an increasing continuous
chain of types and each pi does not fork over M0 for i < δ, do
we have that pδ does not fork over M0?

I For types of finite length, this follows from local character.

I But for longer types, this is much harder.
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Some previous work on independence in AECs

Fact (Shelah)

Let K be an AEC, categorical in λ, λ+, with at least one but
“few” models in λ++.
If 2λ < 2λ

+
< 2λ

++
and the weak diamond ideal on λ+ is not

λ++-saturated, then K is (≤ λ+, λ+)-good.

Fact (V.)

If K is (≤ µ)-tame and categorical in a λ with cf(λ) > µ, then K
is (≤ 1,≥ λ)-good.

Fact (Makkai-Shelah, Boney-Grossberg)

Let κ > LS(K ) be strongly compact and let K be categorical in a
λ = λ<κ. Then K≥λ is good.
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Main theorem

Theorem
Let κ = iκ > LS(K ). Assume K is categorical in λ > κ.

1. If K is (< κ)-tame, then K≥λ is (≤ 1,≥ λ)-good.

2. If λ > (κ<κ)+5 and K is fully (< κ)-tame and short, then
K≥λ is good.

Corollary

If K is (< κ)-tame, κ = iκ > LS(K ), and K is categorical in a
λ > κ, then K is stable in all cardinals.

Remark
We can replace categoricity by a natural definition of superstability,
analog to κ(T ) = ℵ0.
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Shelah’s categoricity conjecture in “easy” AECs?

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many
cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω-successful good frame and weak GCH holds, then K
is categorical in some λ > LS(K ) if and only if K is categorical in
all λ > LS(K ).

It turns out our construction gives an ω-successful good frame.
Thus modulo Shelah’s claim, we get:

Corollary

Assume weak GCH. If there are unboundedly-many strongly
compact cardinals, then Shelah’s categoricity conjecture holds.

Remark
Shelah claims stronger results in chapter IV of his book on AECs.
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A rough idea of the construction

Fix a “nice-enough” AEC K .

1. Using methods such as Galois-Morleyization and previous
results of Boney-Grossberg, show that coheir has some (not
all) of the properties of a good independence relation.

2. Show that coheir induces a good (≤ 1, λ)-independence
relation (for suitable λ).

3. Use further properties of coheir and results of Shelah to get
that this frame is successful, and hence induces a good
(≤ λ, λ)-independence relation.

4. Use a strong continuity property proven by Shelah as well as
tameness and shortness to obtain a good
(≤ λ,≥ λ)-independence relation.

5. Use tameness and shortness to obtain a good
(<∞,≥ λ)-independence relation.
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Thank you!

I For further reference, see:
Sebastien Vasey, Infinitary stability theory.

I A preprint can be accessed from my webpage:
http://svasey.org/

I For a direct link, you can take a picture of the QR code below:

http://svasey.org/

