Independence in tame abstract elementary classes

Sebastien Vasey

Carnegie Mellon University

January 11, 2015 Joint Mathematics Meeting AMS-ASL Special Session on Beyond First-Order Model Theory San Antonio, USA

 \triangleright Forking is one of the key notions of modern stability theory.

- \triangleright Forking is one of the key notions of modern stability theory.
- In Is there such a notion outside of first-order (e.g. for logics such as $L_{\omega_1,\omega}$?

- \triangleright Forking is one of the key notions of modern stability theory.
- In Is there such a notion outside of first-order (e.g. for logics such as $L_{\omega_1,\omega}$?
- \triangleright We provide the following answer in the framework of abstract elementary classes (AECs):

- \triangleright Forking is one of the key notions of modern stability theory.
- In Its there such a notion outside of first-order (e.g. for logics such as $L_{\omega_1,\omega}$?
- \triangleright We provide the following answer in the framework of abstract elementary classes (AECs):

Theorem

Let K be a fully tame and short AEC which has a monster model and is categorical in unboundedly-many cardinals.

Then there exists λ such that $K_{\geq \lambda}$ admits an independence notion with all the properties of forking in a superstable first-order theory.

Abstract elementary classes

Definition (Shelah, 1985)

Let K be a nonempty class of structures of the same similarity type $L(K)$, and let \leq be a partial order on K. (K, \leq) is an abstract elementary class (AEC) if it satisfies:

- 1. K is closed under isomorphism, \leq respects isomorphisms.
- 2. If $M < N$ are in K, then $M \subset N$.
- 3. Coherence: If $M_0 \subseteq M_1 \leq M_2$ are in K and $M_0 \leq M_2$, then $M_0 \leq M_1$.
- 4. Downward Löwenheim-Skolem axiom: There is a cardinal $LS(K) \geq |L(K)| + \aleph_0$ such that for any $N \in K$ and $A \subseteq |N|$, there exists $M \leq N$ containing A of size $\leq LS(K) + |A|$.
- 5. Chain axioms: If δ is a limit ordinal, $\langle M_i : i < \delta \rangle$ is a \le -increasing chain in K , then $M:=\bigcup_{i<\delta}M_i$ is in K , and: 5.1 $M_0 \leq M$. 5.2 If $N \in K$ is such that $M_i \le N$ for all $i < \delta$, then $M \le N$.

For $\psi \in L_{\omega_1,\omega}$, Φ a countable fragment containing ψ , $K := (Mod(\psi), \prec_{\Phi})$ is an AEC with $LS(K) = \aleph_0$.

Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

- \triangleright This is the approach Shelah adopts in his books on classification theory for AECs.
- \triangleright Many proofs have a set-theoretic flavor and rely on GCH-like principles.

Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

- \triangleright This is the approach Shelah adopts in his books on classification theory for AECs.
- \triangleright Many proofs have a set-theoretic flavor and rely on GCH-like principles.

Question (The global approach to AECs)

Work in ZFC, but make *global* model-theoretic hypotheses (like a monster model or locality conditions on types). What can we say about the AEC?

Throughout the talk, we fix an AEC K . We assume we work inside a "big" model-homogeneous universal model \mathfrak{C} .

Throughout the talk, we fix an AEC K . We assume we work inside a "big" model-homogeneous universal model \mathfrak{C} .

Fact

Such a $\mathfrak C$ exists if and only if K has joint embedding, no maximal models, and amalgamation.

Throughout the talk, we fix an AEC K . We assume we work inside a "big" model-homogeneous universal model \mathfrak{C} .

Fact

Such a $\mathfrak C$ exists if and only if K has joint embedding, no maximal models, and amalgamation.

Definition

For $\bar b\in {}^{<\infty}\mathfrak C$, $A\subseteq |\mathfrak C|$, let $\mathsf{gtp}(\bar b/A)$ be the orbit of $\bar b$ under the automorphisms of C fixing A .

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is $(κ)-tame if for any M and any distinct $p, q \in gS(M)$, there$ exists $A \subseteq |M|$ of size less than κ such that $p \restriction A \neq q \restriction A$.

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is $(κ)-tame if for any M and any distinct p, $q \in gS(M)$, there$ exists $A \subseteq |M|$ of size less than κ such that $p \restriction A \neq q \restriction A$.

Definition (Boney, 2013)

K is fully $(κ)-tame and short if for any α , any M , and any$ distinct $p,q\in {\rm g}$ S $^\alpha$ (*M*), there exists $A\subseteq |M|$ and $I\subseteq \alpha$ of size less than κ such that $\rho^I\restriction A\neq q^I\restriction A.$

Fact (Makkai-Shelah, Boney)

Let $\kappa > LS(K)$ be strongly compact. Then:

1. (No need for K to have a monster model) If K is categorical in some $\lambda \geq \kappa$, then $K_{\geq \kappa}$ has a monster model.

Fact (Makkai-Shelah, Boney)

Let $\kappa > \text{LS}(K)$ be strongly compact. Then:

- 1. (No need for K to have a monster model) If K is categorical in some $\lambda \geq \kappa$, then $K_{\geq \kappa}$ has a monster model.
- 2. K is fully $(κ)-tame and short.$

Definition An AEC K with a monster model is good if:

Definition

An AEC K with a monster model is good if:

1. *K* is stable in all $\lambda \geq \text{LS}(K)$.

Definition

- 1. K is stable in all $\lambda \geq \text{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M ", for $p \in \text{gS}^{<\infty}(N)$, $M \leq N$, which satisfies:

Definition

- 1. K is stable in all $\lambda \geq \text{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M ", for $p \in \text{gS}^{<\infty}(N)$, $M < N$, which satisfies:
	- 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.

Definition

- 1. K is stable in all $\lambda > \text{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in \text{gS}^{<\infty}(N)$, $M < N$, which satisfies:
	- 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
	- 2.2 Monotonicity: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p^l \restriction N'$ dnf over M'.

Definition

- 1. K is stable in all $\lambda > \text{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in \text{gS}^{<\infty}(N)$, $M < N$, which satisfies:
	- 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
	- 2.2 Monotonicity: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p^l \restriction N'$ dnf over M'.
	- 2.3 Existence of unique extension: If $p \in gS^{\alpha}(M)$ and $N \geq M$, there exists a unique $q \in \text{gS}^\alpha(N)$ extending p and not forking over M . Moreover q is algebraic if and only if p is.

Definition

- 1. K is stable in all $\lambda > \text{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in \text{gS}^{<\infty}(N)$, $M < N$, which satisfies:
	- 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
	- 2.2 Monotonicity: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p^l \restriction N'$ dnf over M'.
	- 2.3 Existence of unique extension: If $p \in gS^{\alpha}(M)$ and $N \geq M$, there exists a unique $q \in \text{gS}^\alpha(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.
	- 2.4 Set local character: If $p \in gS^{\alpha}(M)$, there exists $M_0 \leq M$ with $||M_0|| \leq |\alpha| + \mathsf{LS}(K)$ such that p dnf over M_0 .

Definition

- 1. K is stable in all $\lambda > \text{LS}(K)$.
- 2. There is a relation "p does not fork (dnf) over M", for $p \in \text{gS}^{<\infty}(N)$, $M < N$, which satisfies:
	- 2.1 **Invariance**: If $f \in Aut(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
	- 2.2 Monotonicity: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p^l \restriction N'$ dnf over M'.
	- 2.3 Existence of unique extension: If $p \in gS^{\alpha}(M)$ and $N \geq M$, there exists a unique $q \in \text{gS}^\alpha(N)$ extending p and not forking over M . Moreover q is algebraic if and only if p is.
	- 2.4 Set local character: If $p \in gS^{\alpha}(M)$, there exists $M_0 \leq M$ with $||M_0|| \leq |\alpha| + \mathsf{LS}(K)$ such that p dnf over M_0 .
	- 2.5 Chain local character: If $\langle M_i : i \leq \delta \rangle$ is increasing continuous, $p \in {\rm g}$ S $^{\alpha}(M_{\delta})$ and cf $(\delta) > \alpha$, then there exists $i<\delta$ such that p dnf over M_i .

For α a cardinal, F an interval of cardinals, we say K is $(α , F)$ -good if it is good when we restrict types to have length less than α , and models to have size in \mathcal{F} .

- For α a cardinal, F an interval of cardinals, we say K is $(α , F)$ -good if it is good when we restrict types to have length less than α , and models to have size in \mathcal{F} .
- ► For example, good means $($\infty, \geq LS(K)$)-good. In Shelah's$ terminology, $(\leq 1, \lambda)$ -good means K has a type-full good λ -frame.

 \triangleright Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.

- \triangleright Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- ▶ A key question: If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_{δ} does not fork over M_0 ?
- \triangleright Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- ▶ A key question: If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_{δ} does not fork over M_0 ?
- \triangleright For types of finite length, this follows from local character.
- \triangleright Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- ▶ A key question: If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_{δ} does not fork over M_0 ?
- \triangleright For types of finite length, this follows from local character.
- \triangleright But for longer types, this is much harder.

Some previous work on independence in AECs

Fact (Shelah)

Let K be an AEC, categorical in λ , λ^+ , with at least one but "few" models in λ^{++} . If $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++} -saturated, then K is $(\leq \lambda^+, \lambda^+)$ -good.

Some previous work on independence in AECs

Fact (Shelah)

Let K be an AEC, categorical in λ , λ^+ , with at least one but "few" models in λ^{++} . If $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++} -saturated, then K is $(\leq \lambda^+, \lambda^+)$ -good.

Fact (V.)

If K is $(\leq \mu)$ -tame and categorical in a λ with cf(λ) $> \mu$, then K is $($1,>\lambda$)-good.$

Fact (Shelah)

Let K be an AEC, categorical in λ , λ^+ , with at least one but "few" models in λ^{++} . If $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++} -saturated, then K is $(\leq \lambda^+, \lambda^+)$ -good.

Fact (V.)

If K is $(\leq \mu)$ -tame and categorical in a λ with cf(λ) $> \mu$, then K is $($1,>\lambda$)-good.$

Fact (Makkai-Shelah, Boney-Grossberg)

Let $\kappa > \text{LS}(K)$ be strongly compact and let K be categorical in a $\lambda = \lambda^{<\kappa}$. Then $K_{\geq \lambda}$ is good.

Theorem Let $\kappa = \beth_{\kappa} > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

Theorem Let $\kappa = \mathbb{I}_{\kappa} > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$. 1. If K is $(κ)-tame, then $K_{>\lambda}$ is $(\leq 1, \geq \lambda)$ -good.$

Theorem

Let $\kappa = \mathbb{I}_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

- 1. If K is $(κ)-tame, then $K_{>\lambda}$ is $(\leq 1, \geq \lambda)$ -good.$
- 2. If $\lambda > (\kappa^{{<}\kappa})^{+5}$ and K is fully $(<\kappa)$ -tame and short, then $K_{\geq \lambda}$ is good.

Theorem

Let $\kappa = \mathbb{I}_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

- 1. If K is $(κ)-tame, then $K_{>\lambda}$ is $(\leq 1, \geq \lambda)$ -good.$
- 2. If $\lambda > (\kappa^{{<}\kappa})^{+5}$ and K is fully $(<\kappa)$ -tame and short, then $K_{\geq \lambda}$ is good.

Corollary

If K is $(<\kappa$)-tame, $\kappa = \beth_{\kappa} > LS(K)$, and K is categorical in a $\lambda > \kappa$, then K is stable in all cardinals.

Theorem

Let $\kappa = \mathbb{I}_{\kappa} > \mathsf{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

- 1. If K is $(κ)-tame, then $K_{>\lambda}$ is $(\leq 1, \geq \lambda)$ -good.$
- 2. If $\lambda > (\kappa^{{<}\kappa})^{+5}$ and K is fully $(<\kappa)$ -tame and short, then $K_{\geq \lambda}$ is good.

Corollary

If K is $(κ)-tame, $\kappa = \beth_{\kappa} > \text{LS}(K)$, and K is categorical in a$ $\lambda > \kappa$, then K is stable in all cardinals.

Remark

We can replace categoricity by a natural definition of superstability, analog to $\kappa(T) = \aleph_0$.

Shelah's categoricity conjecture in "easy" AECs?

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω -successful good frame and weak GCH holds, then K is categorical in some $\lambda > \mathsf{LS}(K)$ if and only if K is categorical in all $\lambda > \mathsf{LS}(K)$.

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω -successful good frame and weak GCH holds, then K is categorical in some $\lambda > \mathsf{LS}(K)$ if and only if K is categorical in all $\lambda > \mathsf{LS}(K)$.

It turns out our construction gives an ω -successful good frame. Thus modulo Shelah's claim, we get:

Corollary

Assume weak GCH. If there are unboundedly-many strongly compact cardinals, then Shelah's categoricity conjecture holds.

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly-many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah)

If K has an ω -successful good frame and weak GCH holds, then K is categorical in some $\lambda > LS(K)$ if and only if K is categorical in all $\lambda > \mathsf{LS}(K)$.

It turns out our construction gives an ω -successful good frame. Thus modulo Shelah's claim, we get:

Corollary

Assume weak GCH. If there are unboundedly-many strongly compact cardinals, then Shelah's categoricity conjecture holds.

Remark

Shelah claims stronger results in chapter IV of his book on AECs.

Fix a "nice-enough" AEC K .

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good $(\leq 1, \lambda)$ -independence relation (for suitable λ).

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good $(\leq 1, \lambda)$ -independence relation (for suitable λ).
- 3. Use further properties of coheir and results of Shelah to get that this frame is *successful*, and hence induces a good $(\leq \lambda, \lambda)$ -independence relation.

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good $(\leq 1, \lambda)$ -independence relation (for suitable λ).
- 3. Use further properties of coheir and results of Shelah to get that this frame is *successful*, and hence induces a good $(\leq \lambda, \lambda)$ -independence relation.
- 4. Use a strong continuity property proven by Shelah as well as tameness and shortness to obtain a good $(\leq \lambda, \geq \lambda)$ -independence relation.

- 1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
- 2. Show that coheir induces a good $(\leq 1, \lambda)$ -independence relation (for suitable λ).
- 3. Use further properties of coheir and results of Shelah to get that this frame is *successful*, and hence induces a good $(\leq \lambda, \lambda)$ -independence relation.
- 4. Use a strong continuity property proven by Shelah as well as tameness and shortness to obtain a good $(\leq \lambda, \geq \lambda)$ -independence relation.
- 5. Use tameness and shortness to obtain a good $($\infty, \ge \lambda$)-independent relation.$

Thank you!

- \blacktriangleright For further reference, see: Sebastien Vasey, Infinitary stability theory.
- \triangleright A preprint can be accessed from my webpage: <http://svasey.org/>
- \triangleright For a direct link, you can take a picture of the QR code below:

