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A puzzle

If six students come to a party, then three of them all know each other, or three of
them all do not know each other.

More formally and generally:

Theorem (Ramsey, 1930)

For any natural number k , there exists a natural number n such that:

n→ (k)2

The notation is due to Erdős and Rado. It means: for any set X with at least n
elements and any coloring F of the unordered pairs from X in two colors, there exists
H ⊆ X with |H| = k so that F is constant on the pairs from H (we call H a
homogeneous set for F ).

If k = 3, n = 6 suffices. If k = 5, the optimal value of n is not known.
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The notation is due to Erdős and Rado. It means: for any set X with at least n
elements and any coloring F of the unordered pairs from X in two colors, there exists
H ⊆ X with |H| = k so that F is constant on the pairs from H (we call H a
homogeneous set for F ).

If k = 3, n = 6 suffices. If k = 5, the optimal value of n is not known.



A puzzle

If six students come to a party, then three of them all know each other, or three of
them all do not know each other. More formally and generally:

Theorem (Ramsey, 1930)

For any natural number k , there exists a natural number n such that:

n→ (k)2
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An infinite variation on the puzzle

If an infinite number of students come to a party, then infinitely-many all know each
other or infinitely-many all do not know each other.

More formally:

Theorem (Ramsey, 1930)

ℵ0 → (ℵ0)2

Said differently, for any set X with |X | ≥ ℵ0 and any coloring F of the unordered pairs
from X , there exists H ⊆ X so that |H| = ℵ0 and F is constant on the unordered pairs
from H.

The theorem does not say that |X | = |H|: it does not rule out a party with
uncountably-many students where all friends/strangers groups (= homogeneous sets)
are countable.
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Ramsey’s dream

For any infinite cardinal λ, if λ students come to a party, then there is a group of
λ-many that all know each other or a group of λ-many that all do not know each
other. That is:

λ→ (λ)2

This is wrong for most cardinals λ.
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The Sierpiński coloring

Proposition (Sierpiński)

|R| 6→ (|R|)2.

Proof.

Fix a well-ordering C of the reals. Set F ({x , y}) = 1 when x < y iff x C y , and
F ({x , y}) = 0 otherwise (F is called the Sierpiński coloring). Assume for a
contradiction H is an uncountable homogeneous set for F . Without loss of generality,
for x , y ∈ H, x < y if and only if x C y . As C is a well-ordering, each x ∈ H has an
immediate successor x ′ in H. Find a rational rx between x and x ′. Then x → rx is an
injection of H (uncountable) into the rationals (countable), contradiction.

The Sierpiński coloring relies on a well-ordering of the reals. Is there a more “natural”
counterexample?
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A counterexample with an infinite number of colors

Proposition (Erdős-Kakutani)

|R| 6→ (3)ℵ0

Proof.

Take F ({x , y}) = some rational between x and y . A set H homogeneous for F cannot
contain three elements!

In the reals, a countable set allows one to distinguish uncountably-many points. There
are however many structures where this is not the case.
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Ramsey’s dream in the complex field

Proposition

If F is a coloring of the unordered pairs of complex numbers in two colors such that
F ({f (x), f (y)}) = F ({x , y}) for any field automorphism f of C, then F has a
homogeneous set of cardinality |C|.

Proof.

Any transcendence basis for C does the job.

This proves |C| → |C|2 but “relativized to C” (for colorings preserved by
automorphisms).
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Types
A category K has amalgamation if any diagram of the form B ← A→ C can be
completed to a commuting square (no universal property required – this is much
weaker than pushouts).

Definition

Given a concrete category K with amalgamation and an object A of K, a type over A

is just a pair (x ,A
f−→ B), with x ∈ B. Two types (x ,A

f−→ B), (y ,A
g−→ C ) are

considered the same if there exists maps h1, h2 so that h1(x) = h2(y) and the following
diagram commutes:

B D

A C

h1

f

g

h2
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Types in fields, linear orders, and graphs

Essentially, one can think of types over a fixed base A as the orbits of an
automorphism group fixing A.

For example in the category of fields, e
1
3 and e

1
2 have the same type over Q but not

the same type over Q(e).

In the category of fields, there are at most max(|A|,ℵ0) types over every object A (just
one type for the transcendental element).

In the category of linear orders, there are |R| types over Q. In general, types
correspond to Dedekind cuts.

In the category of graphs with induced subgraph embeddings, there are at least 2|V (G)|

types over any graph G .
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Definition (Stability)

A concrete category K is stable in λ if there are at most λ-many types over any object
of cardinality λ. Stable means stable in an unbounded class.

I The category of graphs with induced subgraph embeddings and the category of
linear orders are unstable. The category of fields is stable (in all cardinals).

I (Eklof 1971, Mazari-Armida) The category of R-modules with embeddings is
always stable, and stable in all cardinals if and only if R is Noetherian.

I (Kucera and Mazari-Armida) The category of R-modules with pure embeddings is
always stable, and stable in all cardinals if and only if R is pure-semisimple.
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Ramsey’s dream in stable AECs

Theorem (V.)

If K is an abstract elementary class with amalgamation and K is stable in λ, then:

λ+
K−→

(
λ+

)
λ

Here λ+ is the cardinal right after λ.

The partition notation means that given objects A→ B in K with |A| = λ, |B| = λ+,
if F is a coloring of pairs from B in λ-many colors so that any two pairs with the same
type over A have the same color, then we can find a homogeneous set for F of
cardinality λ+.



Ramsey’s dream in stable AECs

Theorem (V.)

If K is an abstract elementary class with amalgamation and K is stable in λ, then:

λ+
K−→

(
λ+

)
λ

Here λ+ is the cardinal right after λ.

The partition notation means that given objects A→ B in K with |A| = λ, |B| = λ+,
if F is a coloring of pairs from B in λ-many colors so that any two pairs with the same
type over A have the same color, then we can find a homogeneous set for F of
cardinality λ+.



Theorem (V.)

If K is an abstract elementary class with amalgamation and K is stable in λ, then:

λ+
K−→

(
λ+

)
λ

Definition (Shelah, late 1970s)

An abstract elementary class (AEC) is a concrete category K satisfying the following
conditions:

I All morphisms are concrete monomorphisms (injections).

I K has concrete directed colimits (also known as direct limits – basically closure
under unions of increasing chains).

I (Smallness condition) Every object is a directed colimit of a fixed set of “small”
subobjects.



Examples of abstract elementary classes

All the categories mentioned before are AECs.

Any AEC is an accessible category: a category with all sufficiently directed colimits
satisfying a certain smallness condition.
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Abstract elementary classes and logic
A first-order formula is a statement like (∀x∃y)(x · y = 1).

For any list T of first-order formulas, the category Mod(T ) of models of T forms an
AEC (the morphisms are the functions preserving all formulas).

We will call such a category a first-order class. It is one of the basic objects of study in
model theory.

Stability theory was developped for first-order classes first, by Saharon Shelah.
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Beyond first-order classes

First-order classes are important, because of the compactness theorem: if all finite
subsets of a given theory have a model, then the whole theory has a model. This is
powerful (one can use it to build models for nonstandard analysis) but means that
many interesting categories are not first-order.

Also, the morphisms of first-order classes are not so natural.

Example

The category of fields is not first-order because the embedding Q→ R does not
preserve the formula (∃x)(x · x = 2). In fact none of the examples given so far are
first-order.

One goal of the research presented here is to develop a general framework for the
parts of model theory that are “category-theoretic”.
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Shelah’s eventual categoricity conjecture

Any two algebraically closed fields of the same characteristic and the same uncountable
cardinality are isomorphic (because they have the same transcendence degree).

Thus it seems any AEC with a “perfect theory of dimension” should have unique
objects of each high-enough cardinality. Morley (1965) proved a sort of converse for
first-order classes, and Shelah proposed this should generalize:

Conjecture (Shelah, late seventies)

An AEC with a single object of some high-enough cardinality has a single object in all
high-enough cardinalities.

The only known way to prove such statements is via stability theory.
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Shelah’s eventual categoricity conjecture

Conjecture (Shelah, late seventies)

An AEC with a single object of some high-enough cardinality has a single object in all
high-enough cardinalities.

The conjecture is still open.

Partial approximations before
my thesis include: Shelah 1983, Makkai-Shelah 1990, Shelah 1999,
Shelah-Villaveces 1999, VanDieren 2006, Grossberg-VanDieren
2006, Shelah 2009, Hyttinen-Kesälä 2011, Boney 2014.
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Toward Shelah’s eventual categoricity conjecture

Theorem (V. 2017)

Shelah’s eventual categoricity conjecture is true for universal AECs.

Theorem (Shelah-V.)

Shelah’s eventual categoricity conjecture is true for all AECs, assuming a large cardinal
axiom (there exists a proper class of strongly compact cardinals).

Theorem (V. 2019)

Assuming the GCH, Shelah’s eventual categoricity conjecture is true for AECs with
amalgamation. In this case one can list all possibilities for the class of cardinals in
which the category has a unique object.
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Locality of types

Definition (Grossberg-VanDieren 2006)

A concrete category is tame if any two distinct types over the same base are already
distinct when restricted to a “small” base.

The category of fields is tame: to distinguish two algebraic elements, one just needs
their minimal polynomial. Also, any first-order class is tame (by the compactness
theorem).

Example

For any finite A ⊆ (0, 1) there is an automorphism of (R, <) sending 1 to 2 and fixing
A. However there is no such automorphism sending 1 to 2 and fixing the whole open
interval (0, 1).
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How prevalent is tameness?

Theorem (V. 2019)

Assuming the GCH, any AEC with amalgamation and a unique object in some
high-enough cardinal is tame.

This solves a conjecture of Grossberg-VanDieren.

Earlier Boney (2014) had shown that tameness follows from a large cardinal axiom,
and always holds in universal AECs.

It is now known that many concrete examples are tame (including the ones from the
beginning of the talk).
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Stability and order

Theorem (V. 2016, Boney)

A tame AEC K with amalgamation is stable if and only if it does not have the “order

property”: any faithful functor Lin
F−→ K factors through the forgetful functor.

Lin K

Set

F

U



Order in graphs: an intermission

Graphs with induced subgraph embeddings are unstable, so they must have the order
property: where is it?

It is given by a half graph: for any linear ordering L, consider the bipartite graph on
L t L where we put an edge from i to j if only if i ≤ j (the picture below is for
L = {1, 2, 3, 4, 5, 6, 7}):

Graphs omitting half graphs are studied in finite combinatorics too (Malliaris-Shelah,
Regularity lemmas for stable graphs. TAMS 2014).
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Stable independence

The proofs of the eventual categoricity conjecture and of the partition theorem

λ+
K−→ (λ+)λ involve describing what it means for a type to be “determined” over a

small base. This is called forking in the first-order context, and is the key tool
developped by Shelah in his classification theory book. It generalizes algebraic
independence in fields.

Unfortunately Shelah’s definition is syntactic, hard to describe, and some properties
depend on compactness. With my collaborators, we found a completely
category-theoretic definition.
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Definition (Equivalence of amalgam)

Consider a diagram: B ← A→ C .

Two amalgams B → D1 ← C , B → D2 ← C of this diagram are equivalent if there
exists D and arrows making the following diagram commute:

D2 D

B D1

A C

Example: in Setmono , {0} and {1} have two non-equivalent amalgams over ∅: {0, 1}
and {1} (with the expected morphisms).
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Definition (Stable independence; Lieberman-Rosický-V., 2019)

A stable independence notion is a class of squares (called independent squares, marked
with ^) such that:

1. Independent squares are closed under equivalence of amalgam.

2. Existence: any span can be amalgamated to an independent square.

3. Uniqueness: any two independent amalgam of the same span are equivalent.

4. Symmetry:

B D C D

A C A B

^ ⇒ ^
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Definition (stable independence notion - continued)

5. Transitivity:

B D F B F

A C E A E

^ ^ ⇒
^

6. Accessibility: the category whose objects are arrows and whose morphisms are
independent squares is accessible. This implies that any arrow can be “filtered” in
an independent way:

A B

Ai Bi

^
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Theorem (Canonicity theorem; Lieberman-Rosický-V. 2019)

A category with directed colimits (in particular an AEC) has at most one stable
independence notion.

In any accessible category with pushouts, the class of all squares forms a stable
independence notion.

In very simple AECs, like the AEC of vector spaces or sets, stable independence is
given by pullback squares. In the AEC of fields, the definition is essentially given by
algebraic independence.

Theorem (Lieberman-Rosický-V. 2019)

An AEC with a stable independence notion has amalgamation, is tame, and is stable.

Certain converses are true too (for example in first-order classes, or assuming large
cardinals).
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Stable independence and cofibrant generation

Theorem (Lieberman-Rosický-V.)

Let K be an accessible cocomplete category (like the category of R-modules with
homomorphisms). Let M be a class of morphisms of K satisfying reasonable closure
properties (like the monos, or the pure monos).

Then the subcategory of K with only morphisms from M has stable independence if
and only if M is cofibrantly generated (i.e. can be generated from a small subclass
using transfinite compositions, pushouts, and retracts).
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New examples of stable independence

Corollary (Lieberman-Rosický-V.)

1. The AEC of flat R-modules with flat morphisms (more generally, any AEC of
“roots of Ext”) has stable independence.

2. Any Grothendieck topos restricted to regular monos has stable independence.

3. Any Grothendieck abelian category restricted to monos has stable independence.

4. Any Cisinski model category restricted to monos has stable independence.
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Summary and future work
We have seen several ways to think of stability:

I The study of universes with “good Ramsey theory”.

I A generalized theory of field extensions.

I Existence of an axiomatic notion of “being independent”, generalizing linear and
algebraic independence.

I Cofibrant generation in abstract homotopy theory (“morphisms being generated
by a small set”).

Some directions for future work:

I What are applications of these connections? Ongoing work: a simple proof of a
theorem of Makkai-Rosický on existence of pseudopullback for combinatorial
categories.

I Where else does stable independence occur?

I Develop a systematic theory of higher-dimensional stable independence.
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Thank you!
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