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Method of multidimensional diagrams: the short version

Idea: in the category of models of a first-order theory, if we
understand the small objects well, we understand everything.

Pseudo-definition: a (nice) category is excellent if any
n-dimensional cube without top corner consisting of small objects
can be “nicely amalgamated”.

Two key themes/pseudo-results:

1. If the category is excellent, then we understand it well. In
particular, “small” in the definition above can be removed.

2. If any low-dimensional cube of objects can be nicely
amalgamated (i.e. we have “enough base cases”), then the
category is excellent.
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The plan

I The categoricity spectrum problem.

I Excellence: how it works.

I Excellence: how to derive it.

I Some questions.



Categoricity
We say a class of structures K is categorical in λ if it has exactly
one model of cardinality λ (up to isomorphism).

The categoricity spectrum of K is the class of infinite cardinals λ
such that K is categorical in λ.

Example

I The class of all groups is not categorical in any cardinal.

I The class of all sets is categorical in all infinite cardinals.

I The class of Q-vector spaces is categorical in all uncountable
cardinals, not in ℵ0.

I The class of dense linear orders without endpoints is
categorical only in ℵ0.

These are the only categoricity spectrums, for classes axiomatized
by a countable first-order theory.
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Categoricity (2)

Theorem (Morley, 1965)

A countable first-order theory categorical in some uncountable
cardinal is categorical in all uncountable cardinals.

The methods used for the proof of Morley’s theorem have played a
big role in model theory and beyond. Can this be generalized to
other setups?



Abstract elementary classes (Shelah, 1980s)
An AEC is a pair K = (K ,≤K), where K is a class of structures in
a fixed vocabulary τ(K) and ≤K is a partial order on K satisfying
some of the basic category-theoretic properties of (Mod(T ),�).

For example, K is closed under unions of ≤K-increasing chains and
satisfies the downward Löwenheim-Skolem-Tarski theorem. More
precisely, there exists a (least) cardinal LS(K) ≥ |τ(K)|+ ℵ0 such
that for any M ∈ K and any A ⊆ |M|, there is M0 ≤K M
containing A with ‖M0‖ ≤ |A|+ LS(K).

Examples include (Mod(T ),�) (where LS(K) = |T |),
(Mod(ψ),�Φ) (where LS(K) = |Φ|+ |τ(Φ)|+ ℵ0), ψ ∈ L∞,ω, and
more generally classes of models of L∞,ω(∃≥λ) sentences.

Fact (Beke-Rosický, 2012)

Any finitely accessible category with all morphisms mono is an
AEC, and any AEC is an accessible category with directed colimits
and all morphisms mono.
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Note: by working with AECs, we lose the first-order compactness
theorem. This can be seen as a problem...

...or as an opportunity.
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Definition

The categoricity spectrum of an AEC K is the class of cardinals
µ ≥ LS(K) such that K is categorical in µ.

The big open problem is:

Conjecture (Shelah’s eventual categoricity conjecture for
AECs)

The categoricity spectrum of an AEC is either bounded or contains
an end segment.
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Categoricity at a successor

Historically, most approximations to Shelah’s eventual categoricity
conjecture have assumed categoricity in a successor cardinal.

Why? Because if we are categorical in µ+, we can just work in µ. If
we are categorical in a limit µ, we have to work with models of
different sizes below µ and it is much harder.

Theorem (Makkai-Shelah 1990, Grossberg-VanDieren 2006,
Boney 2014)

If there is a proper class of strongly compact cardinals, then
Shelah’s eventual categoricity conjecture holds when we assume
categoricity in a high-enough successor cardinal.



Categoricity at a limit

Theorem (Shelah-V.)

Shelah’s eventual categoricity conjecture holds if there is a proper
class of strongly compact cardinals.

Theorem (Shelah-V.)

Assume 2µ < 2λ whenever µ < λ. Then Shelah’s eventual
categoricity conjecture holds in AECs with the amalgamation
property.

It is known (Kolman-Shelah, 1996) that categoricity above a
measurable cardinal implies amalgamation below the categoricity
cardinal. Thus we obtain that Shelah’s eventual categoricity
conjecture is consistent with a proper class of measurable cardinals.
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The main technical result

Theorem (Shelah-V.)

1. Assume 2λ < 2µ whenever λ < µ. If an AEC has a superstable
independence notion, then it is excellent.

2. Shelah’s eventual categoricity conjecture holds for excellent
AECs.

The cardinal arithmetic assumption can be bypassed in the
presence of large cardinals.

In the two setups mentioned above, it was known that the
existence of a superstable independence notion followed from
categoricity. The second part was also essentially known (all that
was needed was a working definition of “excellent”).

So really, the main contribution is the first part: “two-dimensional
nice amalgamation implies n-dimensional nice amalgamation for all
n”.
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The categoricity spectrum in AECs with amalgamation

One can work harder and build superstable independence notions
(i.e. prove the “base cases”) with weaker hypotheses. This leads to
a full characterization of the categoricity spectrum in AECs with
amalgamation:

Theorem (V.)

Assume 2µ < 2λ whenever µ < λ. Let K be an AEC with
amalgamation and arbitrarily large models. Let C be the
categoricity spectrum of K. Exactly one of the following holds:

1. C = ∅.
2. C = [LS(K)+m, LS(K)+n] for some m ≤ n < ω.

3. C = [χ,∞) for some χ < i
(2LS(K))

+ .

There are examples for all three cases.



Eventual categoricity assuming no maximal models

Theorem (V.)

Assuming diamond on every stationary set, Shelah’s eventual
categoricity conjecture holds in AECs with no maximal models.

In practice, having no maximal models is a much weaker condition
than amalgamation.

Note that an AEC always has no maximal models above a
measurable cardinal (Boney 2014): one can take a sufficiently
complete ultraproduct.
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Excellence: the starting point

Theorem (Shelah, 1983)

Assume 2ℵn < 2ℵn+1 for every n < ω. Let ψ be an Lω1,ω sentence.
If ψ is categorical in ℵn for each n < ω, then ψ is categorical in all
infinite cardinals.

It is really necessary in Shelah’s theorem to make assumptions on
all the ℵn’s: for each n < ω, there is an example of Hart-Shelah
(analyzed further by Baldwin-Kolesnikov) categorical in ℵ0, . . . ,ℵn
but not in any λ > ℵn.
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Getting existence

Let’s work in an AEC K with LS(K) = ℵ0 (for simplicity).

Philosophy: assume we understand everything in ℵ0, we want to
understand what happens above.

First goal: build a model of cardinality ℵ1.

Lemma

Assume K has a countable model and for every countable M ∈ K
there exists a countable N ∈ K with M �K N. Then K has a
model of cardinality ℵ1.

M

N
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Getting existence (2)

Next goal: Getting a model of size ℵ2.

By the previous argument, it is enough to get a model of size ℵ1,
and show there is no maximal model of size ℵ1.

Lemma

Assume that K has a countable model, every countable model has
a proper extension, and K has the disjoint amalgamation property
for countable models. Then K has a model of size ℵ2.

M2

M3

M0

OO

// M1
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The extension properties
To get a model in ℵ3, we would need to consider a 3-dimensional
version of disjoint amalgamation.

Let us state the n-dimensional
extension properties more generally:

Definition

For I a downward-closed system of sets, a (λ, I )-system is a
sequence 〈Mi : i ∈ I 〉 of models in K of cardinality λ such that for
u ⊆ v in I , Mu ≤K Mv . In other words, it is a functor from (I ,⊆)
into Kλ.

Definition

An I -system is disjoint if Mu ∩Mv = Mu∩v for every u, v ∈ I . A
system is called strict if Mu �K Mv for u ( v .

We always identify a natural number n with {0, . . . , n − 1}. We
write P−(n) for P(n)\{n} (think of it as an n-dimensional cube
without the topmost corner).
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The existence properties (2)

We talk about (λ, n)-systems instead (λ,P(n))-system. Similarly,
(λ, n−)-systems are (λ,P−(n))-systems.

Definition

We say K has (λ, n)-extension if any strict disjoint (λ, n−)-system
can be completed to a strict disjoint (λ, n)-system.

Base cases:

I (λ, 0) extension says that K has a model of cardinality λ.

I (λ, 1)-extension says that every model of cardinality λ can be
properly extended.

I (λ, 2)-extension is disjoint amalgamation.
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We showed before that (ℵ0,≤ 1)-extension implies
(ℵ1, 0)-extension, and (ℵ0,≤ 2)-extension implies
(ℵ1,≤ 1)-extension. This can be generalized to:

Lemma

if K has (< λ,≤ n)-extension, then K has (λ,< n)-extension.

Corollary

If K has (ℵ0, < ω)-extension, then K has (λ,< ω)-extension for
every λ.
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1. Q: How do we prove the (ℵ0, < ω)-extension property? A:
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The uniqueness properties: the two-dimensional case

Naively, one may want to require any two amalgams to be unique
up to isomorphism. This does not quite work. For example:

Example

Consider countably infinite sets B,C ,D,E with D = B ∪ C ⊆ E
and E\D infinite. Then D and E are not isomorphic over B ∪ C .

We also do not necessarily have pushouts or prime models. It is
something we want to prove rather than assume.
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Definition

Consider a span: M1

M0

f1
OO

f2
// M2

Two amalgams

ga
1 : M1 → Na, ga

2 : M2 → Na, gb
1 : M1 → Nb, gb

2 : M2 → Nb of
(f1, f2) are equivalent if there exists N and ga, gb making the
following diagram commute:

Nb gb
// N∗

M1

gb
1

>>||||||||
ga

1
// Na

ga

OO

M0

f1

OO

f2
// M2
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2

OO
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2
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Remark

Equivalence of amalgam is an equivalence relation if K has the
amalgamation property.

In the category of sets, any two disjoint amalgams of the same
span are equivalent. This is not always the case.

Example

Let K be the class of graphs. One can amalgamate two graphs
disjointly with all cross edges, or disjointly with no cross edges.
These form non-equivalent amalgams.

There are even examples in the class of algebraically closed fields
of characteristic zero (categorical in every uncountable cardinal).
Solution: restrict oneself to only certain squares (called the
independent (or nonforking) squares).
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Stable independence

Definition (Lieberman-Rosický-V.)

A stable independence notion is a class of squares (called
independent squares) such that:

1. Independent squares are closed under isomorphisms and
equivalence of amalgam.

2. Existence: any span can be amalgamated to an independent
square.

3. Uniqueness: any two independent amalgam of the same span
are equivalent.

4. Transitivity:

M1
//

^

M3

^

// M5

⇒
M1

//

^

M5

M0

OO

// M2

OO

// M4

OO

M0

OO

// M4

OO



Definition (stable independence notion - continued)

5. Symmetry: “swapping the ears” M1 and M2 preserves
independence.

6. Accessibility: the arrow category whose morphisms are
independent squares is accessible. This implies that any arrow
can be resolved in an independent way:

M //

^
N

...

OO

...

OO

Mi

OO

//

^

Ni

OO

...

OO

...

OO

M1

OO

//

^

N1

OO

M0

OO

// N0

OO



Remark

If a stable independence notion exists, it is unique
(Boney-Grossberg-Kolesnikov-V. for AECs; Lieberman-Rosický-V.
for accessible categories with morphisms monos and chain bounds).

In our case, we also make a few more technical requirements, e.g.
closure under concrete directed colimits, independent squares are
pullbacks, and a strenghtening of accessibility, close to requiring
“finitely accessible”. We call the result a superstable independence
notion. From now on, assume we are working in an AEC with a
superstable independence notion. This is (somewhat) justified by:

Theorem (Boney-Grossberg; V.)

Let K be an AEC, let κ > LS(K) be strongly compact. If K is
categorical in some µ > κ+ω, then there is a superstable
independence notion on the class K≥µ, and more generally on the
subclass of κ+ω-model-homogeneous models of K.
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for accessible categories with morphisms monos and chain bounds).

In our case, we also make a few more technical requirements, e.g.
closure under concrete directed colimits, independent squares are
pullbacks, and a strenghtening of accessibility, close to requiring
“finitely accessible”. We call the result a superstable independence
notion. From now on, assume we are working in an AEC with a
superstable independence notion.

This is (somewhat) justified by:

Theorem (Boney-Grossberg; V.)

Let K be an AEC, let κ > LS(K) be strongly compact. If K is
categorical in some µ > κ+ω, then there is a superstable
independence notion on the class K≥µ, and more generally on the
subclass of κ+ω-model-homogeneous models of K.



Remark

If a stable independence notion exists, it is unique
(Boney-Grossberg-Kolesnikov-V. for AECs; Lieberman-Rosický-V.
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An I -system 〈Mu : u ∈ I 〉 is called independent if whenever
u, v ⊆ w are in I , the square induced by Mu∩v ,Mu,Mv ,Mw is
independent.

From now on, we say “system” instead of “independent system”.
We strenghten the (λ, n)-extension property in the expected way.

Definition

We say K has (λ, n)-uniqueness if any two ways of completing a
(λ, n−)-system to a (λ, n)-system are equivalent (in the expected
sense generalizing equivalence of amalgams).

Base cases:

I n = 0 is joint embedding.

I n = 1 is amalgamation.

I n = 2 is the uniqueness property of independent squares.

The superstable independence notion gives (λ,≤ 2)-extension and
(λ,≤ 2)-uniqueness for all λ.
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To make it easier to describe results, define:

Definition

K has the (λ, n)-properties if it has both (λ, n)-uniqueness and
(λ, n)-extension.

Similarly to before, one can show:

Lemma

If K has the (< λ,≤ n)-properties, then K has the
(λ,< n)-properties.

Corollary (Shelah, 1983)

If K has the (ℵ0, < ω)-properties, then K has the
(λ,< ω)-properties for every λ.
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From now on, drop the assumption that LS(K) = ℵ0.

Definition

Call K excellent if it has the (LS(K), < ω)-properties.

We have just seen that excellent AECs have in fact the
(λ,< ω)-properties for all λ. After a little bit more work, one gets
a categoricity transfer:

Theorem (Shelah-V.)

The categoricity spectrum of an excellent AEC K is either empty,
{LS(K)}, or an end-segment starting below i

(2LS(K))
+ .

Great... But how does one get excellence???
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Limit systems

Definition

For M,N of the same cardinality, N is limit over M if there exists
an increasing continuous chain 〈Mi : i ≤ δ〉 such that M0 = M,
Mδ = N, and Mi+1 is universal over Mi for all i < δ.

Definition

A (λ, I )-system 〈Nu : u ∈ I 〉 is limit if for every u ∈ I , there exists
Mu ∈ I so that Nu is limit over Mu and Nv ≤K Mu for all v < u.

Nu

Nv1

((

Mu

Nv0
//

OO

Nv2

UU
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Definition

K has strong (λ, n)-uniqueness if any limit (λ, n−)-system has at
most one completion to a limit (λ, n)-system.

Base cases: for n = 0, this says limit models are unique (a
consequence of categoricity). For n = 1, this says any two limit
models are isomorphic over their common base (not a consequence
of categoricity anymore!).

Theorem (Shelah 2009; VanDieren 2016)

If K has a superstable independence notion, then K has strong
(λ,≤ 1)-uniqueness for every λ.

Also define limit (λ, n)-extension (limit (λ, n−)-systems can be
extended to limit (λ, n)-systems), limit (λ, n)-existence (limit
(λ, n)-system exists), and limit (λ, n)-uniqueness (like
(λ, n)-uniqueness but for limit models).
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Lemma

1. Limit (λ,≤ n)-extension implies limit (λ,≤ n)-existence.

2. Limit (λ,≤ 2)-extension and strong (λ,≤ 2)-uniqueness hold.

3. (λ,≤ n)-extension implies limit (λ,≤ n)-extension.

4. (λ, n)-uniqueness implies limit (λ, n)-uniqueness implies strong
(λ, n)-uniqueness.

Theorem (Shelah-V.)

Assume categoricity in λ.

1. Limit (λ,≤ n)-extension implies (λ,≤ n)-extension.

2. The limit (λ,< ω)-properties imply the (λ,< ω)-properties.

Bottom line: it suffices to look at the limit properties.
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Limit (λ,< n)-uniqueness implies that any two limit
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Lemma
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Getting existence

Lemma

Limit (λ+, n)-existence implies limit (λ, n + 1)-existence.

Proof.

Resolve the system!

Corollary

Limit ([λ, λ+ω), 0)-existence implies limit ([λ, λ+ω), < ω)-existence.



M // N

... ...

M1 N1

M0 N0



M //

^

N

...

OO

...

OO

M1

OO

//

^

N1

OO

M0

OO

// N0

OO



Getting uniqueness
We have seen how to derive existence and extension. It remains to
deal with uniqueness. The template is:

Fact (Shelah, 1987)

Assume 2λ < 2λ
+

. If an AEC K is categorical in λ and has a
universal model in λ+, then it has amalgamation in λ.

Schematically, this gives (λ, 1)-uniqueness from the
([λ, λ+], 0)-properties. We generalize this to:

Theorem (Shelah-V.)

Assume 2λ < 2λ
+

. If K has the limit ([λ, λ+],≤ n)-properties, then
K has limit (λ, n + 1)-uniqueness.

The basic idea is to proceed by contradiction, build a continuous
tree of failure, then use the cardinal arithmetic (weak diamond) to
get a contradiction.
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tree of failure, then use the cardinal arithmetic (weak diamond) to
get a contradiction.



Getting uniqueness
We have seen how to derive existence and extension. It remains to
deal with uniqueness. The template is:

Fact (Shelah, 1987)

Assume 2λ < 2λ
+

. If an AEC K is categorical in λ and has a
universal model in λ+, then it has amalgamation in λ.

Schematically, this gives (λ, 1)-uniqueness from the
([λ, λ+], 0)-properties. We generalize this to:

Theorem (Shelah-V.)

Assume 2λ < 2λ
+

. If K has the limit ([λ, λ+],≤ n)-properties, then
K has limit (λ, n + 1)-uniqueness.

The basic idea is to proceed by contradiction, build a continuous
tree of failure, then use the cardinal arithmetic (weak diamond) to
get a contradiction.



Getting uniqueness without cardinal arithmetic

Theorem (Shelah-V.)

Let θ be least such that 2λ < 2θ. If K has the limit
([λ, θ],≤ n)-properties, then there exists unboundedly-many
λ′ ∈ [λ, θ) such that K has (λ′, n + 1)-uniqueness.

If we work above some large cardinals (e.g. a strongly compact
cardinal), then sufficiently complete ultraproduct of systems are
well-behaved, so (λ′, n)-uniqueness transfers down, and we get
([λ, θ), n + 1)-uniqueness.

Theorem (Shelah-V.)

Let θ be least such that 2λ < 2θ. Assume that systems can be
“uniformly extended”. If K has the limit ([λ, θ],≤ n)-properties,
then K has limit ([λ, θ), n + 1)-uniqueness.
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Putting it all together

Recall that we are working in an AEC K with a superstable
independence notion. This implies that all the 2-dimensional
properties hold. Therefore we obtain:

Theorem (Shelah-V.)

Let K be an AEC with a superstable independence notion. Assume
that K is categorical in λ := LS(K).

1. If 2λ
+n
< 2λ

+(n+1)
for all n < ω, then K is excellent.

2. If systems can be “uniformly extended”, then K is excellent.

The categoricity assumption is not too important: one can show
that if K is an AEC with a superstable independence notion, then
for any µ > LS(K), the class of µ-saturated models is an AEC with
a superstable independence notion that is categorical in µ.
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Some remarks

It is enough to have a “local” superstable independence notion.
This can be constructed using Shelah’s theory of good frames.

Essentially we have swept under the rug how to get the “base
cases” (i.e. n ≤ 2). In the categoricity transfers we mentioned,
some of them are straight out assumed (amalgamation is
1-uniqueness, no maximal models is 1-extension, categoricity itself
implies 0-uniqueness).

In some simpler setups, excellence can be bypassed all together:

Theorem (V.)

Let ψ be a universal Lω1,ω sentence. If ψ is categorical in some
µ ≥ iiω1

, then ψ is categorical in all µ′ ≥ iiω1
.

This has recently been extended to the more general multiuniversal
classes (Ackerman-Boney-V.).



Some remarks

It is enough to have a “local” superstable independence notion.
This can be constructed using Shelah’s theory of good frames.

Essentially we have swept under the rug how to get the “base
cases” (i.e. n ≤ 2). In the categoricity transfers we mentioned,
some of them are straight out assumed (amalgamation is
1-uniqueness, no maximal models is 1-extension, categoricity itself
implies 0-uniqueness).

In some simpler setups, excellence can be bypassed all together:

Theorem (V.)

Let ψ be a universal Lω1,ω sentence. If ψ is categorical in some
µ ≥ iiω1

, then ψ is categorical in all µ′ ≥ iiω1
.

This has recently been extended to the more general multiuniversal
classes (Ackerman-Boney-V.).



Some remarks

It is enough to have a “local” superstable independence notion.
This can be constructed using Shelah’s theory of good frames.

Essentially we have swept under the rug how to get the “base
cases” (i.e. n ≤ 2). In the categoricity transfers we mentioned,
some of them are straight out assumed (amalgamation is
1-uniqueness, no maximal models is 1-extension, categoricity itself
implies 0-uniqueness).

In some simpler setups, excellence can be bypassed all together:

Theorem (V.)

Let ψ be a universal Lω1,ω sentence. If ψ is categorical in some
µ ≥ iiω1

, then ψ is categorical in all µ′ ≥ iiω1
.

This has recently been extended to the more general multiuniversal
classes (Ackerman-Boney-V.).



Some remarks

It is enough to have a “local” superstable independence notion.
This can be constructed using Shelah’s theory of good frames.

Essentially we have swept under the rug how to get the “base
cases” (i.e. n ≤ 2). In the categoricity transfers we mentioned,
some of them are straight out assumed (amalgamation is
1-uniqueness, no maximal models is 1-extension, categoricity itself
implies 0-uniqueness).

In some simpler setups, excellence can be bypassed all together:

Theorem (V.)

Let ψ be a universal Lω1,ω sentence. If ψ is categorical in some
µ ≥ iiω1

, then ψ is categorical in all µ′ ≥ iiω1
.

This has recently been extended to the more general multiuniversal
classes (Ackerman-Boney-V.).



Some questions

I Does Shelah’s eventual categoricity conjecture hold in ZFC? If
not, what is its consistency strength? (a proper class of
measurables is the current upper bound).

I In which examples does excellence hold? (e.g. they
automatically hold in Zilber’s quasiminimal classes - BHHKK
2014).

I In which examples does excellence fail? (Hart-Shelah is the
only known example - are there other more natural ones?)

I Is multidimensional independence canonical?
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Canonicity of multidimensional independence

Definition

An I -system 〈Mu : u ∈ I 〉 is independent if for any u, v ,w with
u, v ⊆ w , the square induced by Mu∩v ,Mu,Mv ,Mw is independent.

Applied to a cube (a P(3)-system), this means that all the faces,
as well as the diagonal planes, are independent.

Are there other possible notions of multidimensional independence,
or do two dimensions suffice?
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