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Categoricity in power
By the Löwenheim-Skolem theorem, a first-order theory with an
infinite model has a model in all big-enough infinite cardinalities.
Thus the theory does not determine the model. The best we can
hope for is:

Definition ( Loś, 1954)

A class of structure (or a sentence, or a theory) is categorical in λ
if it has exactly one model of cardinality λ (up to isomorphism).

Example

I Sets (with no structure) are categorical in all infinite cardinals.

I Q-vector spaces and algebraically closed fields of characteristic
zero are categorical exactly in the uncountable cardinals.

I Dense linear orders without endpoints are categorical only in
ℵ0.
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By the Löwenheim-Skolem theorem, a first-order theory with an
infinite model has a model in all big-enough infinite cardinalities.
Thus the theory does not determine the model. The best we can
hope for is:

Definition ( Loś, 1954)
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Theorem (Morley, 1965)

Let K be the class of models of a countable first-order theory. If K
is categorical in some λ ≥ ℵ1, then K is categorical in all λ′ ≥ ℵ1.

Intuition: there is a simple uniform reason for categoricity: namely
a nice notion of independence which gives rise to a notion of
dimension.

Morley’s proof (and subsequent generalizations) confirm this: it led
to the development of forking, a joint generalization of linear and
algebraic independence, now a central concept of model theory.
This in turn led to Shelah’s classification theory.

Question

What if K is not first-order axiomatizable? For example, what if K
is axiomatized by an infinitary logic?
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Shelah’s eventual categoricity conjecture (∼1977)

There is a cardinal µ such that an Lω1,ω sentence categorical in
some λ ≥ µ is categorical in all λ′ ≥ µ.

Theorem (V., 2017)

There is a cardinal µ such that a universal Lω1,ω sentence
categorical in some λ ≥ µ is categorical in all λ′ ≥ µ.

Here, ψ is universal if it is of the form ∀x0 . . . ∀xnφ, with φ
quantifier-free.

Note: Shelah conjectured µ = iω1 (the lowest it can be). In the
theorem, µ = iiω1

. The spirit is that we look “high-enough” as
low cardinals are more prone to pathologies/coding tricks (c.f. the
behavior of DLOs). In many earlier approximations, µ was a large
cardinal.
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The plan

1. Frameworks for (non-elementary) model theory.

2. Shelah’s eventual categoricity conjecture (SECC):

2.1 Why it is hard.
2.2 Why it is interesting.

3. Set-theoretic aspects.

4. Local and global approaches to classification theory.

5. A sketch of the proof of SECC in universal classes.

6. Conclusion.
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Frameworks for model theory



Universal classes

Definition

A universal class is a class K of structure in a fixed vocabulary
τ = τ(K ) which is closed under isomorphism, taking
τ -substructures, and taking unions of increasing chains.

Example

Q-vector spaces, locally finite groups, examples with nontrivial
failures of amalgamation (Kolesnikov and Lambie-Hanson 2016,
Baldwin-Koerwien-Laskowski 2017)...

Algebraically closed fields are not a universal class.

Fact (Tarski, 1954)

K is universal if and only if K is the class of models of a universal
L∞,ω-theory.
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Eventual categoricity in universal classes

Theorem (V., 2017)

Let K be a universal class. There is a cardinal µ (depending only
on |τ(K )|) such that if K is categorical in some λ ≥ µ, then K is
categorical in all λ′ ≥ µ.

Note: in fact one can take µ = ii
(2|τ(K)|)

+ .
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Abstract elementary classes (Shelah, 1980s)
An AEC is a pair K = (K ,≤K), where K is a class of structures in
a fixed vocabulary τ(K) and ≤K is a partial order on K satisfying
some of the basic category-theoretic properties of (Mod(T ),�).

For example, K is closed under unions of ≤K-increasing chains and
satisfies the downward Löwenheim-Skolem-Tarski theorem. More
precisely:

There exists a (least) cardinal LS(K) ≥ |τ(K)|+ ℵ0 such that for
any M ∈ K and any A ⊆ |M|, there is M0 ≤K M containing A with
‖M0‖ ≤ |A|+ LS(K).

Examples include (Mod(T ),�) (where LS(K) = |T |), K = (K ,⊆)
where K is a universal class (LS(K) = |τ(K)|+ ℵ0), (Mod(ψ),�Φ)
(where LS(K) = |Φ|+ |τ(Φ)|+ ℵ0), ψ ∈ L∞,ω, and more generally
classes of models of L∞,ω(∃≥λ) sentences.

Even if the class is elementary, the ordering may not be elementary
substructure. E.g. fields ordered by subfield or classes K of
modules with M ≤K N iff N/M ∈ K (Baldwin-Eklof-Trlifaj, 2007).
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Shelah’s eventual categoricity conjecture for AECs

An AEC categorical in some high-enough cardinal is categorical in
all high-enough cardinals.



Accessible categories

Definition (Gabriel-Ulmer, 1971)

An object M in a category C is λ-presentable (λ regular) if any
morphism of M into the colimit of a λ-directed system factors
through the system.

Definition (Lair 1981, Makkai-Paré 1989)

A category C is λ-accessible if it is closed under λ-directed
colimits, contains a set of λ-presentable objects, and every object
is a λ-directed colimit of λ-presentable objects. C is accessible if it
is λ-accessible for some λ.

Any AEC K (with morphisms the injective homomorphisms
f : M → N such that f [M] ≤K N) is accessible, but there are other
examples (Banach spaces, λ-complete Boolean algebras, etc.).
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Fact (Rosický, 1981)

Accessible categories are (up to equivalence of categories) classes
of models of L∞,∞-sentences.

Fact (Boney-Grossberg-Lieberman-Rosický-V., 2016)

A category is accessible with morphisms mono if and only if it is
(for some µ) equivalent to a µ-AEC (roughly, an AEC closed only
under µ-directed unions).

Fact (Lieberman-Rosický-V., 2017 (preprint))

Universal classes are, up to equivalence of categories, locally
ℵ0-multipresentable categories whose morphisms are mono.
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What is so hard about Shelah’s eventual categoricity
conjecture?

The lack of compactness.

I An arbitrary AEC may fail amalgamation.

I Even if the AEC has amalgamation, Morley’s proof does not
generalize: what is the type of an element in this context?
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Orbital types
In any AEC K, we define tpK(a/B;M) (the orbital type of a over
B as computed inside M), for M ∈ K, a ∈ M, and B ⊆ |M|, as the
finest notion of type preserving K-embeddings.

More precisely, tpK(a/B;M) is the E -equivalence class of
(a,B,M), where E is the finest equivalence relation on pairs
(a,B,M) satisfying:

If f : M → N is an injective homomorphism fixing B with
f [M] ≤K N, then (a,B,M)E (f (a),B,N).

In the elementary context, orbital types contain the same
information as syntactic types. Not in AECs.

Example

Let K be the AEC consisting of isomorphic copies of (Q, <), with
M ≤K N iff M = N. Then tpK(1/(0, 1);Q) 6= tpK(2/(0, 1);Q), but
both have the same syntactic type.
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Tameness

Definition (Grossberg-Vandieren, 2006)

An AEC K is (< κ)-tame if whenever p, q are distinct orbital types
over M, there exists A ⊆ |M| with |A| < κ such that p � A 6= q � A.
We say that K is tame if it is (< κ)-tame for some κ.

The previous example was not (< ℵ0)-tame.



Why is Shelah’s eventual categoricity conjecture
interesting?

Conjecture (Shelah)

An AEC categorical in some high-enough cardinal is categorical in
all high-enough cardinals.

I Q: This is only a test question: what is the real goal?

I A: To develop a theory of independence, dimensions, and the
dividing lines around it, in the very general setup of AECs.
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Why bother?

I Just like not all topological spaces are compact, not all classes
of mathematical objects are elementary: consider torsion
modules, locally finite groups, Zilber’s pseudoexponential
fields, etc.

I AECs seem to strike a good balance between generality and
feasibility. However sometimes one can generalize results as
far as accessible categories.

I AECs are very closed: if K is an AEC, then so is:
1. K≥λ, its class of models of cardinality at least λ.
2. K¬p, its class of models omitting a fixed type p.
3. (when K is “superstable”) Kλ-sat, the class of λ-saturated

models of K.

These closure properties are used throughout the development
of the theory. They do not hold for elementary classes (or
even say L∞,ω). Thus studying AECs can help us understand
elementary classes better.

I We have less absoluteness, so more interesting connections
with set theory!
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Connections with set theory

The study of AECs is highly non-absolute.

Folklore: categoricity in ℵ1 for a countable first-order theory is
absolute.

Open: is categoricity in ℵ1 for an Lω1,ω-sentence absolute?

This fails already for Lω1,ω(∃≥ℵ1). In fact:

Theorem (Shelah)

There is an Lω1,ω(∃≥ℵ1)-sentence ψ that is categorical in ℵ0 such
that:

1. If 2ℵ0 > ℵ1 and MAℵ1 holds, then ψ is categorical in ℵ1.

2. If 2ℵ0 < 2ℵ1 , then ψ has 2ℵ1-many models of cardinality ℵ1.
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Connections with combinatorial set theory

Theorem (Shelah, 1987)

Assume 2λ < 2λ
+

. Let K be an AEC which is categorical in λ and
λ+. Then K has the amalgamation property for models of
cardinality λ.

M1
// N

M0

OO

// M2

OO

The proof proceeds by contradiction and uses the weak diamond to
“guess” how to build a tree of failures and code many models in
λ+ using disjoint stationary sets.
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Connections with large cardinals

Theorem (Makkai-Shelah, 1990)

Shelah’s eventual categoricity conjecture for a successor cardinal
holds for classes of models of an Lκ,ω sentence, κ strongly
compact.

Theorem (Boney, 2014)

For K an AEC, if κ > LS(K) is strongly compact then K is closed
under fine κ-complete ultraproducts. Consequently, K is
(< κ)-tame.

Corollary (Shelah, Grossberg-VanDieren, Boney, 2014)

Shelah’s eventual categoricity conjecture for a successor holds for
all AECs provided that there is a proper class of strongly compact
cardinals.
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Connections with large cardinals (2)

Theorem (V., 2016)

Assume 2λ < 2λ
+

for all λ, there is a proper class of strongly
compact cardinals, and a claim of Shelah holds. Then Shelah’s
eventual categoricity conjecture holds for all AECs.

Theorem (V., 2017)

If there is a proper class of strongly compact cardinals, then
Shelah’s eventual categoricity conjecture holds for all AECs closed
under intersections.

Theorem (Boney-Unger, 2017)

There is an AEC which is tame only if a large cardinal axiom holds.
Thus the statement “every AEC is tame” is equivalent to a large
cardinal axiom (a proper class of almost strongly compact
cardinals).
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Compactness, large cardinals, and stability

Shelah’s eventual categoricity conjecture for universal classes holds
in ZFC.

Large cardinals (and diamond-like principles) give back some
amount of compactness, but may “drown out the stability”.

The equation is:

“Amount of model-theoretic compactness = Amount of
set-theoretic compactness + amount of stability”.
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Large cardinals and stability: an example
Let T be a first-order theory and consider the statement:

(∗)T Every long-enough sequence in a model of T contains an
indiscernible subsequence.

I “(∗)T for all T” is a large cardinal axiom (implying the
existence of 0]).

I However (∗)T holds in ZFC for any countable theory T
categorical in an uncountable cardinal (more generally for any
stable theory T ).

I Thus there is constant tension and interplay between large
cardinals and stability theory.

I Conclusion: one should attempt to isolate the model-theoretic
properties provided by large cardinals (e.g. tameness), and
study them separately, trying in particular to derive them from
stability-theoretic assumptions (e.g. categoricity).

I Conjecture (Grossberg 1986, Grossberg-VanDieren 2006):
Amalgamation and tameness should follow from categoricity.
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The global approach to classification theory for AECs

I Assume some properties globally (e.g. amalgamation and
tameness). Often, they are consequences of large cardinals
(together with categoricity).

I Study classes satisfying these assumptions.

I Upside: often completely in ZFC.

I Downside: how do we derive these global properties without
large cardinals?

Theorem

Let K be a tame AEC with amalgamation.

I (Grossberg-V. 2017) In tame AECs with amalgamation,
several of the usual definitions of superstability are equivalent.

I (V. 2017 (preprint)) In tame AECs with amalgamation,
superstability follows from stability on a tail.
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The local approach to classification theory for AECs

I Assume properties only locally: at a single cardinal.

I Flavor: given good behavior in λ, inductively try to get good
behavior in µ for all µ > λ and eventually prove global
properties of the class.

I Upside: very general and powerful.

I Downside: complex, often not in ZFC.
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Good frames (Shelah, Sh:600, 2009)

Idea: K has a good λ-frame if it has “superstable-like” behavior for
orbital types over models of cardinality λ.

Theorem (Shelah, 2009)

Categoricity in a proper class of cardinals implies the existence of a
good λ-frame (for some well-chosen λ).

Theorem (Shelah, 2009)

(2λ < 2λ
+
< 2λ

++
) If K has a good λ-frame, then either there are

many models in λ++, or a subclass of K has a good λ+-frame.
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Tameness and good frames

Let us say that K is (λ, λ+)-tame if orbital types over models of
cardinality λ+ are determined by their restrictions of cardinality λ.

Theorem (Boney-V., 2017)

If K has a good λ-frame, is (λ, λ+)-tame, and has amalgamation
in λ+, then it has a good λ+-frame.

Theorem (V., 2017 (preprint))

(2λ < 2λ
+

) If K has a (categorical) good λ-frame and a good
λ+-frame, then it is (λ, λ+)-tame.

It follows that two consecutive good frames are “connected”: this
is a result deriving compactness from stability assumptions (and a
little bit of combinatorial set theory, but no large cardinals).
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Categoricity in universal classes: a sketch

Theorem (V., 2017)

Shelah’s eventual categoricity conjecture holds in universal classes.

The first step changes the class to derive amalgamation:

Theorem (V., 2017)

Let K be a universal class categorical in a high-enough cardinal.
Then there is an ordering ≤ such that (K ,≤) is a tame AEC with
amalgamation and primes (over sets of the form Ma).

The second step proves the categoricity transfer in the new class:

Theorem (V., 2017)

Shelah’s eventual categoricity conjecture holds in tame AECs with
amalgamation and primes.



Categoricity in universal classes: a sketch

Theorem (V., 2017)

Shelah’s eventual categoricity conjecture holds in universal classes.

The first step changes the class to derive amalgamation:

Theorem (V., 2017)

Let K be a universal class categorical in a high-enough cardinal.
Then there is an ordering ≤ such that (K ,≤) is a tame AEC with
amalgamation and primes (over sets of the form Ma).

The second step proves the categoricity transfer in the new class:

Theorem (V., 2017)

Shelah’s eventual categoricity conjecture holds in tame AECs with
amalgamation and primes.



Categoricity in universal classes: a sketch

Theorem (V., 2017)

Shelah’s eventual categoricity conjecture holds in universal classes.

The first step changes the class to derive amalgamation:

Theorem (V., 2017)

Let K be a universal class categorical in a high-enough cardinal.
Then there is an ordering ≤ such that (K ,≤) is a tame AEC with
amalgamation and primes (over sets of the form Ma).

The second step proves the categoricity transfer in the new class:

Theorem (V., 2017)

Shelah’s eventual categoricity conjecture holds in tame AECs with
amalgamation and primes.



Categoricity in tame AECs with primes and amalgamation

Lemma

If K is a tame AECs with primes and amalgamation categorical in
two “high-enough” cardinals λ1 < λ2, then K is categorical in λ+

1 .

Rough sketch of the proof.

1. The model of cardinality λ2 is saturated (for orbital types).

2. K has a good λ1-frame.

3. AFSOC K is not categorical in λ+
1 . Then there is a type p

over a model of size λ1 omitted by a model of size λ+
1 .

4. The AEC K¬p of models omitting p has a good λ1-frame, is
tame, and has primes.

5. By tameness there is a good λ2-frame on K¬p, so the model
in λ2 omits p, contradiction!
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