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Categories of models

Given a first-order theory T , we want to study its class K of
models as a category. What should the morphisms be?

I (“West coast” model theory) Elementary embeddings.

I (“East coast” model theory) Monomorphisms, aka
substructure embeddings.

I (Universal algebra) Homomorphisms.

Let Elem(T ), Emb(T ), and Mod(T ) be the respective categories.

We will focus on Elem(T ) at first, then will give a framework
encompassing all of these and much more.
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Category-theoretic properties of Elem(T )

Question

What traditional model-theoretic properties can we “see” by just
looking at the category Elem(T )? That is, which of these
properties are invariant under equivalence of categories?

I Non-examples: quantifier elimination (Morleyization gives an
isomorphic category). Elimination of imaginaries (passing to
T eq gives an equivalent category).

I Examples: categoricity in λ, stability in λ (but for this we
need to describe cardinalities category-theoretically!).
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Presentability
Let λ be a regular cardinal.

Definition

A partially ordered set is λ-directed if any subset of size strictly
less than λ has an upper bound. Directed means ℵ0-directed.

Definition (Gabriel-Ulmer, 1971)

An object M in a category K is λ-presentable if for any λ-directed
diagram D : I → K, any morphism f : M → colimD factors
through some Di :

M colimD

Di
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Presentability: more definitions

Example

In the category of sets, an object is λ-presentable if and only if it
has cardinality strictly less than λ.

Definition

The presentability rank of M is the minimal regular cardinal λ so
that M is λ-presentable.

Definition

The (internal) size of M is the predecessor of its presentability rank
(if it exists).
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Some category-theoretic properties

Work in Elem(T ). Let λ > |T |.

I M has cardinality λ if and only if M has internal size λ.

I T is categorical in λ if and only if Elem(T ) has a unique
object of size λ, up to isomorphism.

I T is stable in λ if and only if for every object M of size λ,
there exists N of size λ universal over M.

I At least consistently, we can also characterize simplicity (using
saturation) and NIP (using the generic pair theorem).

Shelah’s thesis: dividing lines should have “internal” and
“external” characterizations.
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Definition (Lair 81, Makkai-Paré 89, Adámek-Rosický 94)

A category is λ-accessible if:

1. It has λ-directed colimits.

2. There is a set S of λ-presentable objects such that any object
is a λ-directed colimits of members of S .

Example

I Elem(T ), Emb(T ), Mod(T ), for T first-order (in the last two
cases, of “low” complexity). This works even if T has
sentences in L∞,∞.

I R-Mod, with homomorphisms or monomorphisms or pure
monomorphisms, etc.

I Banach spaces with contractions (internal size is density
character).
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Definition (Equivalence of amalgam)

Consider a span: M1 ← M0 → M2

Two amalgams M1 → Na ← M2, M1 → Nb ← M2 of this span are
equivalent if there exists N and arrows making the following
diagram commute:

Nb

M1 Na

M0 M2

Example: in Setmono , {0} and {1} have two non-equivalent
amalgams over ∅: {0, 1} and {1} (with the obvious morphisms).
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Definition (Lieberman-Rosický-V., 2019)

A stable independence notion is a class of squares (called
independent squares, marked with ^) such that:

1. Independent squares are closed under equivalence of amalgam.

2. Existence: any span can be amalgamated to an independent
square.

3. Uniqueness: any two independent amalgam of the same span
are equivalent.

4. Symmetry:

M1 M3 M2 M3

M0 M2 M0 M1

^ ⇒ ^
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Definition (stable independence notion - continued)

5. Transitivity:

M1 M3 M5 M1 M5

M0 M2 M4 M0 M4

^ ^ ⇒
^

6. Accessibility: the category whose objects are arrows and whose
morphisms are independent squares is accessible. This implies
that any arrow can be “resolved” in an independent way:

M N

Mi Ni

^
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Theorem (LRV 2019)

A category with directed colimits has at most one stable
independence notion.

Example

I In any accessible category with pushouts, the class of all
squares form a stable independence notion.

I A first-order T is stable if and only if Elem(T ) has a stable
independence notion (given by nonforking squares).

I (LRV 2019) Assuming a large cardinal axiom, an accessible
category with directed colimits and all morphisms monos has
stable independence (on a cofinal full subcategory) if and only
if it is stable in a proper class of cardinals.
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Stable independence and cofibrant generation

Theorem (LRV)

Let K be an accessible, bicomplete category. Let M be a class of
morphisms of K such that:

1. M contains all isomorphisms, is closed under transfinite
compositions, pushouts, and retracts.

2. The induced category KM is accessible and closed under
directed colimits in K.

3. M is coherent: if M0
f−→ M1

g−→ M2, g , gf ∈M, then f ∈M.

Then KM has stable independence if and only if M is cofibrantly
generated (i.e. can be generated from a subset using transfinite
compositions, pushouts, and retracts).
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New examples of stable independence

Corollary (LRV)

1. The category of flat R-modules with flat morphisms (more
generally, any AEC of “roots of Ext”) has stable
independence.

2. Any Grothendieck topos restricted to regular monos has stable
independence.

3. Any Grothendieck abelian category restricted to regular monos
has stable independence.

4. Any combinatorial model category where all objects are
cofibrant and whose cofibrations are coherent (e.g. monos)
has stable independence, when restricted to its cofibrations.



Higher dimensional stable independence

I Recall that part of the axioms of stable independence is that
the category Kind whose objects are K-arrows and whose
morphisms are independent squares is accessible.

I It makes sense to ask: does Kind have a stable independence
notion?

I If yes, the independent squares in Kind correspond to
independent cubes in K.

I We can then ask whether (Kind)ind has stable independence,
etc.

I Continuing in this fashion, we can inductively define when K
has n-dimensional stable independence, for n ≥ 2.

I These n-dimensional diagrams are known in model theory
(Shelah’s main gap, Zilber’s pseudoexponential fields, etc.)
but the definitions are arguably complicated and ad-hoc.
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Theorem (eventual categoricity)

Let K be a finitely accessible category with all morphisms monos
(or just an AEC). Assume either:

1. (Shelah-V.) There is a proper class of strongly compacts.

2. (V.) ♦S for all stationary sets S , and K has no maximal
objects.

3. (V. 2017) K has “low complexity” (locally
multipresentable/universal)

If K is categorical in some high-enough cardinal, then K is
categorical in all high-enough cardinals.

The proof of the first two proceed by first deriving existence of
n-dimensional stable independence at all cardinals λ, via an
elaborate induction on n and λ [schematically, (n, λ+)-stable
implies (n + 1, λ)-stable]. In the third case, we can bypass this.
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Open problems

I Can one prove eventual categoricity in ZFC, at least for
finitely accessible categories or AECs?

I What is the status of eventual categoricity for accessible
categories? Accessible categories with directed colimits?

I How do presentability ranks behave in general accessible
categories? For example, can there be an object of limit
presentability rank? The answer is no under SCH (LRV, 2019)

I When does existence of two-dimensional independence imply
existence of higher dimensional independence?

I What are more examples of stable independence in
mainstream mathematics (and computer science)?
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