# Forking and categoricity in non-elementary model theory

Sebastien Vasey

Harvard University

August 8, 2019 Some recent directions in model theory 16th CLMPST Prague

Given a first-order theory T, we want to study its class K of models as a category. What should the morphisms be?

Given a first-order theory T, we want to study its class K of models as a category. What should the morphisms be?

• ("West coast" model theory) Elementary embeddings.

Given a first-order theory T, we want to study its class K of models as a category. What should the morphisms be?

- ("West coast" model theory) Elementary embeddings.
- ("East coast" model theory) Monomorphisms, aka substructure embeddings.

Given a first-order theory T, we want to study its class K of models as a category. What should the morphisms be?

- ("West coast" model theory) Elementary embeddings.
- ("East coast" model theory) Monomorphisms, aka substructure embeddings.
- (Universal algebra) Homomorphisms.

Given a first-order theory T, we want to study its class K of models as a category. What should the morphisms be?

- ("West coast" model theory) Elementary embeddings.
- ("East coast" model theory) Monomorphisms, aka substructure embeddings.
- (Universal algebra) Homomorphisms.

Let Elem(T), Emb(T), and Mod(T) be the respective categories. We will focus on Elem(T) at first, then will give a framework encompassing all of these and much more. Category-theoretic properties of Elem(T)

#### Question

What traditional model-theoretic properties can we "see" by just looking at the category Elem(T)? That is, which of these properties are invariant under equivalence of categories?

Category-theoretic properties of Elem(T)

#### Question

What traditional model-theoretic properties can we "see" by just looking at the category Elem(T)? That is, which of these properties are invariant under equivalence of categories?

 Non-examples: quantifier elimination (Morleyization gives an isomorphic category). Elimination of imaginaries (passing to T<sup>eq</sup> gives an equivalent category). Category-theoretic properties of Elem(T)

#### Question

What traditional model-theoretic properties can we "see" by just looking at the category Elem(T)? That is, which of these properties are invariant under equivalence of categories?

- Non-examples: quantifier elimination (Morleyization gives an isomorphic category). Elimination of imaginaries (passing to T<sup>eq</sup> gives an equivalent category).
- Examples: categoricity in λ, stability in λ (but for this we need to describe cardinalities category-theoretically!).

# Presentability

Let  $\lambda$  be a regular cardinal.

## Definition

A partially ordered set is  $\lambda$ -directed if any subset of size strictly less than  $\lambda$  has an upper bound. Directed means  $\aleph_0$ -directed.

# Presentability

Let  $\lambda$  be a regular cardinal.

## Definition

A partially ordered set is  $\lambda$ -directed if any subset of size strictly less than  $\lambda$  has an upper bound. Directed means  $\aleph_0$ -directed.

#### Definition (Gabriel-Ulmer, 1971)

An object M in a category  $\mathcal{K}$  is  $\lambda$ -presentable if for any  $\lambda$ -directed diagram  $D: I \to \mathcal{K}$ , any morphism  $f: M \to \operatorname{colim} D$  factors through some  $D_i$ :

$$M \longrightarrow \operatorname{colim} D$$

$$\bigcap_{D_i}$$

# Presentability

Let  $\lambda$  be a regular cardinal.

## Definition

A partially ordered set is  $\lambda$ -directed if any subset of size strictly less than  $\lambda$  has an upper bound. Directed means  $\aleph_0$ -directed.

#### Definition (Gabriel-Ulmer, 1971)

An object M in a category  $\mathcal{K}$  is  $\lambda$ -presentable if for any  $\lambda$ -directed diagram  $D: I \to \mathcal{K}$ , any morphism  $f: M \to \text{colim } D$  factors through some  $D_i$ :



# Presentability: more definitions

## Example

In the category of sets, an object is  $\lambda\text{-presentable}$  if and only if it has cardinality strictly less than  $\lambda.$ 

# Presentability: more definitions

#### Example

In the category of sets, an object is  $\lambda$ -presentable if and only if it has cardinality strictly less than  $\lambda$ .

#### Definition

The *presentability rank* of *M* is the minimal regular cardinal  $\lambda$  so that *M* is  $\lambda$ -presentable.

# Presentability: more definitions

#### Example

In the category of sets, an object is  $\lambda$ -presentable if and only if it has cardinality strictly less than  $\lambda$ .

#### Definition

The *presentability rank* of *M* is the minimal regular cardinal  $\lambda$  so that *M* is  $\lambda$ -presentable.

#### Definition

The *(internal) size* of M is the predecessor of its presentability rank (if it exists).

```
Work in Elem(T). Let \lambda > |T|.
```

Work in Elem(T). Let  $\lambda > |T|$ .

• *M* has cardinality  $\lambda$  if and only if *M* has internal size  $\lambda$ .

## Work in Elem(T). Let $\lambda > |T|$ .

- *M* has cardinality  $\lambda$  if and only if *M* has internal size  $\lambda$ .
- T is categorical in λ if and only if Elem(T) has a unique object of size λ, up to isomorphism.

Work in Elem(T). Let  $\lambda > |T|$ .

- *M* has cardinality  $\lambda$  if and only if *M* has internal size  $\lambda$ .
- T is categorical in λ if and only if Elem(T) has a unique object of size λ, up to isomorphism.
- T is stable in λ if and only if for every object M of size λ, there exists N of size λ universal over M.

Work in Elem(T). Let  $\lambda > |T|$ .

- *M* has cardinality  $\lambda$  if and only if *M* has internal size  $\lambda$ .
- T is categorical in λ if and only if Elem(T) has a unique object of size λ, up to isomorphism.
- T is stable in λ if and only if for every object M of size λ, there exists N of size λ universal over M.
- At least consistently, we can also characterize simplicity (using saturation) and NIP (using the generic pair theorem).

Work in Elem(T). Let  $\lambda > |T|$ .

- *M* has cardinality  $\lambda$  if and only if *M* has internal size  $\lambda$ .
- T is categorical in λ if and only if Elem(T) has a unique object of size λ, up to isomorphism.
- T is stable in λ if and only if for every object M of size λ, there exists N of size λ universal over M.
- At least consistently, we can also characterize simplicity (using saturation) and NIP (using the generic pair theorem).

Shelah's thesis: dividing lines should have "internal" and "external" characterizations.

A category is  $\lambda$ -accessible if:

- 1. It has  $\lambda$ -directed colimits.
- 2. There is a set S of  $\lambda$ -presentable objects such that any object is a  $\lambda$ -directed colimits of members of S.

A category is  $\lambda$ -accessible if:

- 1. It has  $\lambda$ -directed colimits.
- 2. There is a set S of  $\lambda$ -presentable objects such that any object is a  $\lambda$ -directed colimits of members of S.

#### Example

► Elem(T), Emb(T), Mod(T), for T first-order (in the last two cases, of "low" complexity). This works even if T has sentences in L<sub>∞,∞</sub>.

A category is  $\lambda$ -accessible if:

- 1. It has  $\lambda$ -directed colimits.
- 2. There is a set S of  $\lambda$ -presentable objects such that any object is a  $\lambda$ -directed colimits of members of S.

#### Example

- ► Elem(T), Emb(T), Mod(T), for T first-order (in the last two cases, of "low" complexity). This works even if T has sentences in L<sub>∞,∞</sub>.
- *R*-Mod, with homomorphisms or monomorphisms or pure monomorphisms, etc.

A category is  $\lambda$ -accessible if:

- 1. It has  $\lambda$ -directed colimits.
- 2. There is a set S of  $\lambda$ -presentable objects such that any object is a  $\lambda$ -directed colimits of members of S.

#### Example

- ► Elem(T), Emb(T), Mod(T), for T first-order (in the last two cases, of "low" complexity). This works even if T has sentences in L<sub>∞,∞</sub>.
- *R*-Mod, with homomorphisms or monomorphisms or pure monomorphisms, etc.
- Banach spaces with contractions (internal size is density character).

A category is  $\lambda$ -accessible if:

- 1. It has  $\lambda$ -directed colimits.
- 2. There is a set S of  $\lambda$ -presentable objects such that any object is a  $\lambda$ -directed colimits of members of S.

#### Example

- ► Elem(T), Emb(T), Mod(T), for T first-order (in the last two cases, of "low" complexity). This works even if T has sentences in L<sub>∞,∞</sub>.
- *R*-Mod, with homomorphisms or monomorphisms or pure monomorphisms, etc.
- Banach spaces with contractions (internal size is density character).

## Definition (Equivalence of amalgam)

Consider a span:  $M_1 \leftarrow M_0 \rightarrow M_2$ 

## Definition (Equivalence of amalgam)

Consider a span:  $M_1 \leftarrow M_0 \rightarrow M_2$ 

Two amalgams  $M_1 \rightarrow N^a \leftarrow M_2$ ,  $M_1 \rightarrow N^b \leftarrow M_2$  of this span are *equivalent* if there exists N and arrows making the following diagram commute:



## Definition (Equivalence of amalgam)

Consider a span:  $M_1 \leftarrow M_0 \rightarrow M_2$ 

Two amalgams  $M_1 \rightarrow N^a \leftarrow M_2$ ,  $M_1 \rightarrow N^b \leftarrow M_2$  of this span are *equivalent* if there exists N and arrows making the following diagram commute:



Example: in  $Set_{mono}$ ,  $\{0\}$  and  $\{1\}$  have two non-equivalent amalgams over  $\emptyset$ :  $\{0, 1\}$  and  $\{1\}$  (with the obvious morphisms).

A stable independence notion is a class of squares (called independent squares, marked with  $\bot$ ) such that:

1. Independent squares are closed under equivalence of amalgam.

- 1. Independent squares are closed under equivalence of amalgam.
- 2. Existence: any span can be amalgamated to an independent square.

- 1. Independent squares are closed under equivalence of amalgam.
- 2. Existence: any span can be amalgamated to an independent square.
- 3. Uniqueness: any two *independent* amalgam of the same span are equivalent.

- 1. Independent squares are closed under equivalence of amalgam.
- 2. Existence: any span can be amalgamated to an independent square.
- 3. Uniqueness: any two *independent* amalgam of the same span are equivalent.
- 4. Symmetry:

## Definition (stable independence notion - continued)

#### 5. Transitivity:



## Definition (stable independence notion - continued)

#### 5. Transitivity:



 Accessibility: the category whose objects are arrows and whose morphisms are independent squares is accessible. This implies that any arrow can be "resolved" in an independent way:



A category with directed colimits has *at most one* stable independence notion.

A category with directed colimits has *at most one* stable independence notion.

#### Example

In any accessible category with pushouts, the class of all squares form a stable independence notion.

A category with directed colimits has *at most one* stable independence notion.

#### Example

- In any accessible category with pushouts, the class of all squares form a stable independence notion.
- ► A first-order T is stable if and only if Elem(T) has a stable independence notion (given by nonforking squares).

A category with directed colimits has *at most one* stable independence notion.

#### Example

- In any accessible category with pushouts, the class of all squares form a stable independence notion.
- ► A first-order T is stable if and only if Elem(T) has a stable independence notion (given by nonforking squares).
- (LRV 2019) Assuming a large cardinal axiom, an accessible category with directed colimits and all morphisms monos has stable independence (on a cofinal full subcategory) if and only if it is stable in a proper class of cardinals.

# Stable independence and cofibrant generation

### Theorem (LRV)

Let  ${\cal K}$  be an accessible, bicomplete category. Let  ${\cal M}$  be a class of morphisms of  ${\cal K}$  such that:

- 1.  $\mathcal{M}$  contains all isomorphisms, is closed under transfinite compositions, pushouts, and retracts.
- 2. The induced category  $\mathcal{K}_{\mathcal{M}}$  is accessible and closed under directed colimits in  $\mathcal{K}$ .
- 3.  $\mathcal{M}$  is coherent: if  $M_0 \xrightarrow{f} M_1 \xrightarrow{g} M_2$ ,  $g, gf \in \mathcal{M}$ , then  $f \in \mathcal{M}$ .

# Stable independence and cofibrant generation

### Theorem (LRV)

Let  ${\cal K}$  be an accessible, bicomplete category. Let  ${\cal M}$  be a class of morphisms of  ${\cal K}$  such that:

- 1.  $\mathcal{M}$  contains all isomorphisms, is closed under transfinite compositions, pushouts, and retracts.
- 2. The induced category  $\mathcal{K}_{\mathcal{M}}$  is accessible and closed under directed colimits in  $\mathcal{K}$ .

3.  $\mathcal{M}$  is coherent: if  $M_0 \xrightarrow{f} M_1 \xrightarrow{g} M_2$ ,  $g, gf \in \mathcal{M}$ , then  $f \in \mathcal{M}$ .

Then  $\mathcal{K}_{\mathcal{M}}$  has stable independence if and only if  $\mathcal{M}$  is cofibrantly generated (i.e. can be generated from a subset using transfinite compositions, pushouts, and retracts).

## New examples of stable independence

# Corollary (LRV)

- 1. The category of flat *R*-modules with flat morphisms (more generally, any AEC of "roots of Ext") has stable independence.
- 2. Any Grothendieck topos restricted to regular monos has stable independence.
- 3. Any Grothendieck abelian category restricted to regular monos has stable independence.
- Any combinatorial model category where all objects are cofibrant and whose cofibrations are coherent (e.g. monos) has stable independence, when restricted to its cofibrations.

► Recall that part of the axioms of stable independence is that the category K<sub>ind</sub> whose objects are K-arrows and whose morphisms are independent squares is accessible.

- ► Recall that part of the axioms of stable independence is that the category K<sub>ind</sub> whose objects are K-arrows and whose morphisms are independent squares is accessible.
- It makes sense to ask: does K<sub>ind</sub> have a stable independence notion?

- ► Recall that part of the axioms of stable independence is that the category K<sub>ind</sub> whose objects are K-arrows and whose morphisms are independent squares is accessible.
- ► It makes sense to ask: does K<sub>ind</sub> have a stable independence notion?
- ► If yes, the independent squares in K<sub>ind</sub> correspond to independent *cubes* in K.

- ► Recall that part of the axioms of stable independence is that the category K<sub>ind</sub> whose objects are K-arrows and whose morphisms are independent squares is accessible.
- It makes sense to ask: does K<sub>ind</sub> have a stable independence notion?
- ► If yes, the independent squares in K<sub>ind</sub> correspond to independent *cubes* in K.
- ► We can then ask whether (K<sub>ind</sub>)<sub>ind</sub> has stable independence, etc.
- ► Continuing in this fashion, we can inductively define when K has n-dimensional stable independence, for n ≥ 2.

- ► Recall that part of the axioms of stable independence is that the category K<sub>ind</sub> whose objects are K-arrows and whose morphisms are independent squares is accessible.
- It makes sense to ask: does K<sub>ind</sub> have a stable independence notion?
- ► If yes, the independent squares in K<sub>ind</sub> correspond to independent *cubes* in K.
- ► We can then ask whether (K<sub>ind</sub>)<sub>ind</sub> has stable independence, etc.
- ► Continuing in this fashion, we can inductively define when K has n-dimensional stable independence, for n ≥ 2.
- These *n*-dimensional diagrams are known in model theory (Shelah's main gap, Zilber's pseudoexponential fields, etc.) but the definitions are arguably complicated and ad-hoc.

#### Theorem (eventual categoricity)

Let  $\mathcal{K}$  be a finitely accessible category with all morphisms monos (or just an AEC). Assume either:

- 1. (Shelah-V.) There is a proper class of strongly compacts.
- 2. (V.)  $\Diamond_S$  for all stationary sets *S*, and *K* has no maximal objects.
- 3. (V. 2017)  $\mathcal{K}$  has "low complexity" (locally multipresentable/universal)

If  $\mathcal{K}$  is categorical in *some* high-enough cardinal, then  $\mathcal{K}$  is categorical in *all* high-enough cardinals.

#### Theorem (eventual categoricity)

Let  $\mathcal{K}$  be a finitely accessible category with all morphisms monos (or just an AEC). Assume either:

- 1. (Shelah-V.) There is a proper class of strongly compacts.
- 2. (V.)  $\Diamond_S$  for all stationary sets *S*, and *K* has no maximal objects.
- 3. (V. 2017)  $\mathcal{K}$  has "low complexity" (locally multipresentable/universal)

If  $\mathcal{K}$  is categorical in *some* high-enough cardinal, then  $\mathcal{K}$  is categorical in *all* high-enough cardinals.

The proof of the first two proceed by first deriving existence of *n*-dimensional stable independence at all cardinals  $\lambda$ , via an elaborate induction on *n* and  $\lambda$  [schematically,  $(n, \lambda^+)$ -stable implies  $(n + 1, \lambda)$ -stable].

#### Theorem (eventual categoricity)

Let  $\mathcal{K}$  be a finitely accessible category with all morphisms monos (or just an AEC). Assume either:

- 1. (Shelah-V.) There is a proper class of strongly compacts.
- 2. (V.)  $\Diamond_S$  for all stationary sets *S*, and *K* has no maximal objects.
- 3. (V. 2017)  $\mathcal{K}$  has "low complexity" (locally multipresentable/universal)

If  $\mathcal{K}$  is categorical in *some* high-enough cardinal, then  $\mathcal{K}$  is categorical in *all* high-enough cardinals.

The proof of the first two proceed by first deriving existence of *n*-dimensional stable independence at all cardinals  $\lambda$ , via an elaborate induction on *n* and  $\lambda$  [schematically,  $(n, \lambda^+)$ -stable implies  $(n + 1, \lambda)$ -stable]. In the third case, we can bypass this.

### Open problems

- Can one prove eventual categoricity in ZFC, at least for finitely accessible categories or AECs?
- What is the status of eventual categoricity for accessible categories? Accessible categories with directed colimits?
- How do presentability ranks behave in general accessible categories? For example, can there be an object of limit presentability rank? The answer is no under SCH (LRV, 2019)
- When does existence of two-dimensional independence imply existence of higher dimensional independence?
- What are more examples of stable independence in mainstream mathematics (and computer science)?

# Thank you!

Some references:

- Sebastien Vasey, Accessible categories, set theory, and model theory: an invitation, arXiv:1904.11307.
- Michael Lieberman, Jiří Rosický, and Sebastien Vasey, Forking independence from the categorical point of view, Advances in Mathematics 346 (2019), 719–772.
- Michael Lieberman, Jiří Rosický, and Sebastien Vasey, Weak factorization systems and stable independence, arXiv:1904.05691.
- Saharon Shelah and Sebastien Vasey, Categoricity and multidimensional diagrams, arXiv:1805.0629.
- Sebastien Vasey, The categoricity spectrum of large abstract elementary classes with amalgamation, arXiv:1805.04068.
- Sebastien Vasey, Shelah's eventual categoricity conjecture in universal classes: part II, Selecta Mathematica 23 (2017), no. 2, 1469–1506.